Skip to main content

Brain Ventricular Morphology Analysis Using a Set of Ventricular-Specific Feature Descriptors

  • Conference paper
Biomedical Simulation (ISBMS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8789))

Included in the following conference series:

  • 1698 Accesses

Abstract

Morphological changes of the brain lateral ventricles are known to be a marker of brain atrophy. Anatomically, each lateral ventricle has three horns, which extend into the different parts (i.e. frontal, occipital and temporal lobes) of the brain; their deformations can be associated with morphological alterations of the surrounding structures and they are revealed as complex patterns of their shape variations across subjects. In this paper, we propose a novel approach for the ventricular morphometry using structural feature descriptors, defined on the 3D shape model of the lateral ventricles, to characterize its shape, namely width, length and bending of individual horns and relative orientations between horns. We also demonstrate the descriptive ability of our feature-based morphometry through statistical analyses on a clinical dataset from a study of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antiga, L., Ene-Iordache, B., Remuzzi, A.: Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography. IEEE Trans. Med. Imaging 22(5), 674–684 (2003)

    Article  Google Scholar 

  2. Apostolova, L.G., Green, A.E., Babakchanian, S., Hwang, K.S., Chou, Y.Y., Toga, A.W., Thompson, P.M.: Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment (MCI), and Alzheimer Disease. Alz. Dis. Assoc. Dis. 26(1), 17–27 (2012)

    Article  Google Scholar 

  3. Aribisala, B.S., Valdés Hernández, M.C., Royle, N.A., Morris, Z., Muñoz Maniega, S., Bastin, M.E., Deary, I.J., Wardlaw, J.M.: Brain atrophy associations with white matter lesions in the ageing brain: the Lothian Birth Cohort 1936. Eur. Radiol. 23(4), 1084–1092 (2013)

    Article  Google Scholar 

  4. Bourne, S.K., Conrad, A., Konrad, P.E., Neimat, J.S., Davis, T.L.: Ventricular width and complicated recovery following deep brain stimulation surgery. Stereotact Funct. Neurosurg. 90(3), 167–172 (2012)

    Article  Google Scholar 

  5. Buckner, R.L.: Memory and executive function in aging and ad: multiple factors that cause decline and reserve factors that compensate. Neuron 44(1), 195–208 (2004)

    Article  Google Scholar 

  6. Deary, I.J., Gow, A.J., Taylor, M.D., Corley, J., Brett, C., Wilson, V., Campbell, H., Whalley, L.J., Visscher, P.M., Porteous, D.J., Starr, J.M.: The Lothian Birth Cohort 1936: a study to examine influences on cognitive ageing from age 11 to age 70 and beyond. BMC Geriatr. 7, 28 (2007)

    Article  Google Scholar 

  7. Ferrarini, L., Palm, W.M., Olofsen, H., van Buchem, M.A., Reiber, J.H.C., Admiraal-Behloul, F.: Shape differences of the brain ventricles in Alzheimer’s disease. NeuroImage 32(3), 1060–1069 (2006)

    Article  Google Scholar 

  8. Frisoni, G.B., Geroldi, C., Beltramello, A., Bianchetti, A., Binetti, G., Bordiga, G., DeCarli, C., Laakso, M.P., Soininen, H., Testa, C., et al.: Radial width of the temporal horn: a sensitive measure in alzheimer disease. American Journal of Neuroradiology 23(1), 35–47 (2002)

    Google Scholar 

  9. Gower, J.C.: Generalized procrustes analysis. Psychometrika 40(1), 33–51 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gutman, B.A., Wang, Y., Rajagopalan, P., Toga, A.W., Thompson, P.M.: Shape matching with medial curves and 1-D group-wise registration. In: 2012 9th IEEE International Symposium on Biomedical Imaging, pp. 716–719 (2012)

    Google Scholar 

  11. Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: A review. Med. Image Anal. 13(4), 543–563 (2009)

    Article  Google Scholar 

  12. Heitz, G., Rohlfing, T., Maurer, J.C.R.: Statistical shape model generation using nonrigid deformation of a template mesh. In: SPIE on Medical Imaging, pp. 1411–1421 (2005)

    Google Scholar 

  13. Jeong, H.S., Lee, S., Yoon, S., Jung, J.J., Cho, H.B., Kim, B.N., Ma, J., Ko, E., Im, J.J., Ban, S., Renshaw, P.F., Lyoo, I.K.: Morphometric abnormalities of the lateral ventricles in methamphetamine-dependent subjects. Drug Alcohol Depend 131(3), 222–229 (2013)

    Article  Google Scholar 

  14. Kim, J., Park, J.: Organ Shape Modeling Based on the Laplacian Deformation Framework for Surface-Based Morphometry Studies. J. Comp. Sci. Eng. 6, 219–226 (2012)

    Article  Google Scholar 

  15. Lee, J.H., Yoon, S., Renshaw, P.F., Kim, T.S., Jung, J.J., Choi, Y., Kim, B.N., Jacobson, A.M., Lyoo, I.K.: Morphometric changes in lateral ventricles of patients with recent-onset type 2 diabetes mellitus. PloS One 8(4), e60515 (2013)

    Google Scholar 

  16. Lu, Y.C., Untaroiu, C.D.: Statistical shape analysis of clavicular cortical bone with applications to the development of mean and boundary shape models. Comput. Meth. Prog. Bio. 111(3), 613–628 (2013)

    Article  Google Scholar 

  17. Ng, H.-F., Chuang, C.-H., Hsu, C.-H.: Extraction and Analysis of Structural Features of Lateral Ventricle in Brain Medical Images. In: 2012 Sixth International Conference on Genetic and Evolutionary Computing (ICGEC), pp. 35–38 (2012)

    Google Scholar 

  18. Nolte, J.: Essentials of the Human Brain. Elsevier Health Sciences (2009)

    Google Scholar 

  19. Piccinelli, M., Veneziani, A., Steinman, D.A., Remuzzi, A., Antiga, L.: A framework for geometric analysis of vascular structures: application to cerebral aneurysms. IEEE Trans. Med. Imaging 28(8), 1141–1155 (2009)

    Article  Google Scholar 

  20. Wan, K.R., Toy, J.A., Wolfe, R., Danks, A.: Factors affecting the accuracy of ventricular catheter placement. J. Clin. Neurosci. 18(4), 485–488 (2011)

    Article  Google Scholar 

  21. Wardlaw, J.M., Bastin, M.E., Valdés Hernández, M.C., Maniega, S.M., Royle, N.A., Morris, Z., Clayden, J.D., Sandeman, E.M., Eadie, E., Murray, C., Starr, J.M., Deary, I.J.: Brain aging, cognition in youth and old age and vascular disease in the Lothian Birth Cohort 1936: rationale, design and methodology of the imaging protocol. Int. J. Stroke 6(6), 547–559 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kim, J., Ryoo, H., del C. Valdés Hernández, M., Royle, N.A., Park, J. (2014). Brain Ventricular Morphology Analysis Using a Set of Ventricular-Specific Feature Descriptors. In: Bello, F., Cotin, S. (eds) Biomedical Simulation. ISBMS 2014. Lecture Notes in Computer Science, vol 8789. Springer, Cham. https://doi.org/10.1007/978-3-319-12057-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12057-7_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12056-0

  • Online ISBN: 978-3-319-12057-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics