Skip to main content

Towards a Multiscale, High-Resolution Model of the Human Brain

  • Conference paper
  • First Online:
Book cover Brain-Inspired Computing (BrainComp 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8603))

Included in the following conference series:

Abstract

To understand the microscopical organization including cellular and fiber architecture it is a necessary prerequisite to build models of the human brain on a sound biological basis. We have recently pushed the limits of current technology by creating the first ultra-high resolution 3D-model of the human brain at nearly cellular resolution of 20 microns, the BigBrain model. At the same time, 3D Polarized Light Imaging provides a window to analyze the fiber architecture, i.e., the way, how brain regions are inter-connected, with unprecedented spatial resolution at the micrometer level. Considering the complexity and the pure size of the human brain with its nearly 86 billion nerve cells, both approaches are most challenging with respect to data handling and analysis in the TeraByte to PetaByte range, and require supercomputers. Parallelization and automation of image processing steps open up new perspectives to speed up the generation of new, ultra-high resolution models of the human brain, to provide new insights into the three-dimensional micro architecture of the human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brodmann, K.: Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth JA, Leipzig (1909)

    Google Scholar 

  2. Brodmann, K.: Beiträge zur histologischen Lokalisation der Grosshirnrinde. I: Die Regio Rolandica. Beiträge zur Lokalisation der Grosshirnrinde II, 79–107 (1903)

    Google Scholar 

  3. Sherwood, C.C., Lee, P.W.H., Rivara, C.B., Holloway, R.L., Gilissen, E.P.E., Simmons, R.M.T., Hakeem, A., Allman, J.M., Erwin, J.M., Hof, P.R.: Evolution of specialized pyramidal neurons in primate visual and motor cortex. Brain Behav. Evol. 61, 28–44 (2003)

    Article  Google Scholar 

  4. Braak, H., Braak, E.: Pyramidal cells of Betz within cingulate and precentral gigantopyramidal field in human-brain - Golgi and pigment architectonic study. Cell Tissue Res. 172, 103–119 (1976)

    Article  Google Scholar 

  5. Amunts, K., Schmidt-Passos, F., Schleicher, A., Zilles, K.: Postnatal development of interhemispheric asymmetry in the cytoarchitecture of human area 4. Anat. Embryol. (Berl.) 196, 393–402 (1997)

    Article  Google Scholar 

  6. Pakkenberg, B., Pelvig, D., Marner, L., Bundgaard, M.J., Gundersen, H.J., Nyengaard, J.R., Regeur, L.: Aging and the human neocortex. Exp. Gerontol. 38, 95–99 (2003)

    Article  Google Scholar 

  7. DeFelipe, J., Marco, P., Busturia, I., Merchan-Perez, A.: Estimation of the number of synapses in the cerebral cortex: methodological considerations. Cereb. Cortex 9, 722–732 (1999)

    Article  Google Scholar 

  8. Schleicher, A., Palomero-Gallagher, N., Morosan, P., Eickhoff, S., Kowalski, T., de Vos, K., Amunts, K., Zilles, K.: Quantitative architectonic analysis: a new approach to cortical mapping. Anat. Embryol. (Berl.) 210, 373–386 (2005)

    Article  Google Scholar 

  9. Eickhoff, S.B., Paus, T., Caspers, S., Grosbas, M.H., Evans, A.C., Zilles, K., Amunts, K.: Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage 36, 511–521 (2007)

    Article  Google Scholar 

  10. Eickhoff, S., Stephan, K.E., Mohlberg, H., Grefkes, C., Fink, G.R., Amunts, K., Zilles, K.: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25, 1325–1335 (2005)

    Article  Google Scholar 

  11. Eickhoff, S.B., Heim, S., Zilles, K., Amunts, K.: Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage 32, 570–582 (2006)

    Article  Google Scholar 

  12. Amunts, K., Weiss, P.H., Mohlberg, H., Pieperhoff, P., Gurd, J., Shah, J.N., Marshall, C.J., Fink, G.R., Zilles, K.: Analysis of the neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space - the role of Brodmann’s areas 44 and 45. Neuroimage 22, 42–56 (2004)

    Article  Google Scholar 

  13. Makuuchi, M., Grodzinsky, Y., Amunts, K., Santi, A., Friederici, A.D.: Processing non-canonical sentences in Broca’s region: reflections of movement distance and type. Cereb. Cortex 23(3), 694–702 (2013)

    Article  Google Scholar 

  14. Grothe, M., Zaborszky, L., Atienza, M., Gil-Neciga, E., Rodriguez-Romero, R., Teipel, S.J., Amunts, K., Suarez-Gonzalez, A., Cantero, J.L.: Reduction of basal forebrain cholinergic system parallels cognitive impairment in patients at high-risk of developing Alzheimer’s Disease. Cereb. Cortex 20, 1685–1695 (2010)

    Article  Google Scholar 

  15. Clos, M., Amunts, K., Laird, A., Fox, P.T., Eickhoff, S.B.: Tackling the multifunctional nature of Broca’s region meta-analytically: connectivity-based parcellation of area 44. Neuroimage 83, 174–188 (2013)

    Article  Google Scholar 

  16. Caspers, S., Eickhoff, S.B., Zilles, K., Amunts, K.: Microstructural grey matter parcellation and its relevance for connectome analyses. Neuroimage 80, 18–26 (2013)

    Article  Google Scholar 

  17. Herculano-Houzel, S.: The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc. Natl. Acad. Sci. U.S.A. 109(Suppl 1), 10661–10668 (2012)

    Article  Google Scholar 

  18. Hilgetag, C., Barbas, H.: Are there ten times more glia than neurons in the brain? Brain Struct. Funct. 213, 365–366 (2009)

    Article  Google Scholar 

  19. Blinkov, S.M., Glezer, I.I.: The Human Brain in Figures and Tables: A Quantitative Handbook. Basic Books, New York (1986)

    Google Scholar 

  20. Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M.E., Bludau, S., Bazin, P.L., Lewis, L.B., Oros-Peusquens, A.M., Shah, N.J., Lippert, T., Zilles, K., Evans, A.C.: BigBrain: an ultrahigh-resolution 3D human brain model. Science 340, 1472–1475 (2013)

    Article  Google Scholar 

  21. Amunts, K., Hawrylycz, M., Van Essen, D., Van Horn, J.D., Harel, N., Poline, J.B., De Martino, F., Bjaalie, J.G., Dehaene-Lambertz, G., Dehaene, S., Valdes-Sosa, P., Thirion, B., Zilles, K., Hill, S.L., Abrams, M.B., Tass, P.A., Vanduffel, W., Evans, A.C., Eickhoff, S.B.: Interoperable atlases of the human brain. Neuroimage (2014, in press)

    Google Scholar 

  22. Clarke, S.: Callosal connections and functional subdivision of the human occipital lobe. In: Gulyas, B., Ottoson, D., Roland, P.E. (eds.) Functional organization of the human visual cortex, pp. 137–149. Pergamon Press, Oxford (1993)

    Chapter  Google Scholar 

  23. Rockland, K.S.: Visual cortical organization at the single axon level: a beginning. Neurosci. Res. 42, 155–166 (2002)

    Article  Google Scholar 

  24. Le Bihan, D., Mangin, J.F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., Chabriat, H.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging 13, 534–546 (2001)

    Article  Google Scholar 

  25. Pierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., Di Chiro, G.: Diffusion tensor MR imaging of the human brain. Radiology 201, 637–648 (1996)

    Article  Google Scholar 

  26. Wedeen, V.J., Rosene, D.L., Wang, R., Dai, G., Mortazavi, F., Hagmann, P., Kaas, J.H., Tseng, W.Y.I.: The geometric structure of the brain fiber pathways: a continous orthogonal grid. Science 335, 1628–1634 (2012)

    Article  Google Scholar 

  27. Basser, P.J., Jones, D.K.: Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review. NMR Biomed. 15, 456–467 (2002)

    Article  Google Scholar 

  28. Mori, S., van Zijl, P.C.: Fibre tracking: principles and strategies - a technical review. NMR Biomed. 15, 468–480 (2002)

    Article  Google Scholar 

  29. Johansen-Berg, H., Rushworth, M.F.: Using diffusion imaging to study human connectional anatomy. Annu. Rev. Neurosci. 32, 75–94 (2009)

    Article  Google Scholar 

  30. Fornito, A., Bullmore, E.T.: Connectomics: a new paradigm for understanding brain disease. Eur. Neuropsychopharmacol. (2014, in press)

    Google Scholar 

  31. Jbabdi, S., Behrens, T.E.: Long-range connectomics. Ann. N. Y. Acad. Sci. 1305, 83–93 (2013)

    Article  Google Scholar 

  32. Van Essen, D.C.: Cartography and connectomes. Neuron 80, 775–790 (2013)

    Article  Google Scholar 

  33. Grefkes, C., Fink, G.R.: Connectivity-based approaches in stroke and recovery of function. Lancet Neurol. 13, 206–216 (2014)

    Article  Google Scholar 

  34. Wang, H., Black, A.J., Zhu, J., Stigen, T.W., Al-Qaisi, M.K., Netoff, T.I., Abosch, A., Akkin, T.: Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography. Neuroimage 58, 984–992 (2011)

    Article  Google Scholar 

  35. de Boer, J.F., Milner, T.E., van Gemert, M.J., Nelson, J.S.: Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett. 22, 934–936 (1997)

    Article  Google Scholar 

  36. Petrides, M., Pandya, D.N.: Distinct parietal and temporal pathways to the homologues of Broca’s area in the monkey. PLoS Biol. 7(8), e1000170 (2009). Epub, 11 Aug 2009

    Article  Google Scholar 

  37. Schmahmann, J.D., Pandya, D.N.: Fiber Pathways of the Brain. Oxford University Press, New York (2006)

    Book  Google Scholar 

  38. Galuske, R.A., Schlote, W., Bratzke, H., Singer, W.: Interhemispheric asymmetries of the modular structure in human temoral cortex. Science 289, 1946–1949 (2000)

    Article  Google Scholar 

  39. Axer, M., Grässel, D., Kleiner, M., Dammers, J., Dickscheid, T., Reckfort, J., Hütz, T., Eiben, B., Pietrzyk, U., Zilles, K., Amunts, K.: High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging. Front. Neuroinform. 5, 1–13 (2011)

    Google Scholar 

  40. Axer, M., Amunts, K., Gräßel, D., Palm, C., Dammers, J., Axer, H., Pietrzyk, U., Zilles, K.: A novel approach to the human connectome: Ultra-high resolution mapping of fiber tracts in the brain. Neuroimage 54, 1091–1101 (2011)

    Article  Google Scholar 

  41. Vidal, B.C., Mello, M.L.S., Caseiro-Filho, A.C., Godo, C.: Anisotropic properties of the myelin sheath. Acta Histochem. 66, 32–39 (1980)

    Article  Google Scholar 

  42. Jones, C.J.: A new calculus for the treatment of optical systems. J. Opt. Soc. Am. 31, 488–493 (1941)

    Article  Google Scholar 

  43. Breuer, L., Axer, M., Dammers, J.: A new constrained ICA approach for optimal signal decomposition in polarized light imaging. J. Neurosci. Methods 220, 30–38 (2013)

    Article  Google Scholar 

  44. Palm, C., Axer, M., Gräßel, D., Dammers, J., Lindemeyer, J., Zilles, K., Pietrzyk, U., Amunts, K.: Toward ultra-high resolution fiber tract mapping of the human brain - registration of polairization light images and reorientation of fiber vectors. Front. Hum. Neurosci. 4, 1–16 (2010)

    Google Scholar 

  45. Sitt, J.D., King, J.R., Naccache, L., Dehaene, S.: Ripples of consciousness. TINS 17, 552–554 (2013)

    Google Scholar 

  46. http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPA/JUROPA_node.html

  47. http://unicore.eu

  48. http://uftp-multicast.sourceforge.net/

  49. http://nifti.nimh.nih.gov/

  50. http://www.hdfgroup.org/HDF5/

Download references

Acknowledgement

The authors thank Janine Klapper for help in preparing the manuscript, and Thomas Lippert for scientific discussion and support. Daniel Mallmann and André Giesler from the “Federated Systems and Data” group at the Jülich Supercomputing Centre generously assisted with the adaptation of UNICORE to the specific workflow requirements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Amunts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Amunts, K., Bücker, O., Axer, M. (2014). Towards a Multiscale, High-Resolution Model of the Human Brain. In: Grandinetti, L., Lippert, T., Petkov, N. (eds) Brain-Inspired Computing. BrainComp 2013. Lecture Notes in Computer Science(), vol 8603. Springer, Cham. https://doi.org/10.1007/978-3-319-12084-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12084-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12083-6

  • Online ISBN: 978-3-319-12084-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics