Skip to main content

A Geometric Model for the Functional Circuits of the Visual Front-End

  • Conference paper
  • First Online:
Brain-Inspired Computing (BrainComp 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8603))

Included in the following conference series:

Abstract

This paper reviews a biologically-inspired geometric model for the functional circuits of the visual front-end. An axiomatic approach is taken towards the filters and their tasks in early vision. A high-dimensional Lie-group based approach models the convolutions of the receptive fields in a multi-scale, multi-orientation, multi-velocity, multi-spatial frequency, multi-disparity and multi-color framework. In these new, and essentially invertible, extra-dimensional expansions new geometric reasoning can be developed. They give a feasible approach to the understanding of context, Gestalt, and association fields and enable full exploitation of adaptive, geometry-driven strategies, such as for contour completion and convection. The high-dimensionality leads to high computational costs, but, just as in human vision, this can be solved by massively parallel implementations, which is one of the goals of the EU Human brain project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See for most Mathematica code of the formulas in this chapter the book: [16].

References

  1. Alexander, D., van Leeuwen, C.: Mapping of contextual modulation in the population response of primary visual cortex. Cogn. Neurodyn. 4, 124 (2012)

    Google Scholar 

  2. Bartfeld, E., Grinvald, A.: Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. Proc. Nat. Acad. Sci. U.S.A. 89(24), 11905–11909 (1992)

    Article  Google Scholar 

  3. Bekkers, E.J., Duits, R., ter Haar Romeny, B.M., Berendschot, T.J.: A new retinal vessel tracking method based on orientation scores. arXiv:1212.3530v4, Computer Vision and Pattern Recognition, pp. 1–28 (2012)

  4. Bergholm, F.: Edge focusing. IEEE Trans. Pattern Anal. Mach. Intell. 9, 726–741 (1987)

    Article  Google Scholar 

  5. Citti, A., Sarti, G.: A cortical based model of perceptual completion in the roto-translation space. JMIV 24(3), 307–326 (2006)

    Article  MathSciNet  Google Scholar 

  6. Crair, M.C., Ruthazer, E.S., Gillespie, D.C., Stryker, M.P.: Relationship between the ocular dominance and orientation maps in visual cortex of monocularly deprived cats. Neuron 19, 307–318 (1997)

    Article  Google Scholar 

  7. Duits, R., Felsberg, M., Granlund, G., ter Haar Romeny, B.: Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the Euclidean motion group. Int. J. Comput. Vis. 72(1), 79–102 (2007)

    Article  Google Scholar 

  8. Duits, R., Franken, E.: Left-invariant diffusions on the space of positions and orientations and their application to crossing-preserving smoothing of HARDI images. Int. J. Comput. Vis., 40 (2010)

    Google Scholar 

  9. Duits, R., Franken, E.M.: Left invariant parabolic evolution equations on SE(2) and contour enhancement via invertible orientation scores, Part I: Linear left-invariant diffusion equations on SE(2). Q. Appl. Math. AMS 68, 255–292 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Duits, R., Franken, E.M.: Left invariant parabolic evolution equations on SE(2) and contour enhancement via invertible orientation scores, Part II: Nonlinear left-invariant diffusion equations on invertible orientation scores. Q. Appl. Math. AMS 68, 293–331 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Field, D., Hayes, A., Hess, R.F.: Contour integration by the human visual system: evidence for a local ‘association field’. Vis. Res. 33–2, 173–193 (1993)

    Article  Google Scholar 

  12. Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M.A.: Scale and the differential structure of images. Image Vis. Comput. 10(6), 376–388 (1992)

    Article  Google Scholar 

  13. Frostig, R.D.: In vivo optical imaging of brain function. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  14. Grinvald, A.: Imaging input and output dynamics of neocortical networks in vivo: exciting times ahead. Proc. Nat. Acad. Sci. U.S.A. 102(40), 14125–14126 (2005)

    Article  Google Scholar 

  15. ter Haar Romeny, B.M. (ed.): Geometry-Driven Diffusion in Computer Vision. Computational Imaging and Vision Series, vol. 1. Kluwer Academic Publishers, Dordrecht (1994)

    MATH  Google Scholar 

  16. ter Haar Romeny, B.M. (ed.): Front-End Vision and Multi-Scale Image Analysis: Multi-Scale Computer Vision Theory and Applications, written in Mathematica. Computational Imaging and Vision Series, vol. 27. Springer, Berlin (2003)

    Google Scholar 

  17. Hadamard, J.: Sur les problèmes aux dérivées partielles et leur signification physique. Bul. Univ. Princeton 13, 49–62 (1902)

    MathSciNet  Google Scholar 

  18. Hubel, D.H.: Eye, Brain and Vision. Scientific American Library, vol. 22. Scientific American Press, New York (1988)

    Google Scholar 

  19. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)

    Google Scholar 

  20. Kaiser, D.: Physics and Feynman’s diagrams. Am. Sci. 93, 156–165 (2005)

    Article  Google Scholar 

  21. Koenderink, J.J.: The structure of images. Biol. Cybern. 50, 363–370 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lindeberg, T.: Scale-Space Theory in Computer Vision. The Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, Dordrecht (1994)

    Book  Google Scholar 

  23. Lindeberg, T.: Image matching using generalized scale-space interest points. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) ssvm 2013. LNCS, vol. 7893, pp. 355–367. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  25. Mooser, F., Bosking, W.H., Fitzpatrick, D.: A morphological basis for orientation tuning in primary visual cortex. Nature Neurosci. 7, 872–879 (2004)

    Article  Google Scholar 

  26. Nielsen, M.: From paradigm to algorithms in computer vision. Master’s thesis, Department of Computer Science, University of Copenhagen, March 1995

    Google Scholar 

  27. Ohki, K., Chung, S., Chng, Y.H., Kara, P., Reid, R.C.: Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005)

    Article  Google Scholar 

  28. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  29. Petitot, J.: Neurogéometrie de la vision-Modeles mathématiques et physiques des architectures fonctionelles. Les Éditions de l’École Polytechnique (2008)

    Google Scholar 

  30. Crandall, D.J., Huttenlocher, D.P.: Weakly supervised learning of part-based spatial models for visual object recognition. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 16–29. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  31. Riggs, L.A., Ratliff, F.: The effects of counteracting the normal movements of the eye. J. Opt. Soc. Am. 42, 872–873 (1952)

    Google Scholar 

  32. Rodieck, R.W.: The First Steps in Seeing. Sinauer Associates Inc, Sunderland (1998)

    Google Scholar 

  33. Schwartz, L.: Théorie des Distributions. Publications de l’Institut Mathématique de l’Université de Strasbourg, Paris (1950–1951)

    Google Scholar 

  34. Shmuel, A., Grinvald, A.: Coexistence of linear zones and pinwheels within orientation maps in cat visual cortex. Proc. Nat. Acad. Sci. 97(10), 5568–5573 (2000)

    Article  Google Scholar 

  35. Swindale, N.V., Matsubara, J.A., Cynader, M.S.: Surface organization of orientation and direction selectivity in cat area 18. J. Neurosci. 7, 1414–1427 (1987)

    Google Scholar 

  36. ter Haar Romeny, B.M.: The Differential Structure of Images, pp. 565–582. CRC Press, Boca Raton (2012)

    Google Scholar 

  37. ter Haar Romeny, B.M.: Front-End Vision and Multi-scale Image Analysis. Springer Verlag, Berlin (2003)

    Book  Google Scholar 

  38. Weickert, J.A.: Anisotropic diffusion in image processing. Ph.D. thesis, University of slautern, Department of Mathematics, Kaiserslautern, Germany, 29 January 1996

    Google Scholar 

  39. Weickert, J.A., Ishikawa, S., Imiya, A.: On the history of Gaussian scale-space axiomatics. In: Sporring, J., Nielsen, M., Florack, L.M.J., Johansen, P. (eds.) Gaussian Scale-Space Theory. Computational Imaging and Vision Series, Chap. 4, vol. 8, pp. 45–59. Kluwer Academic Publishers, Dordrecht (1997)

    Chapter  Google Scholar 

  40. Weliky, M., Bosking, W.H., Fitzpatrick, D.: A systematic map of direction preference in primary visual cortex. Nature 379, 725–728 (1996)

    Article  Google Scholar 

  41. Young, R.A.: The Gaussian derivative model for machine vision: visual cortex simulation. J. Opt. Soc. Am. (1986)

    Google Scholar 

  42. Young, R.A.: The Gaussian derivative model for machine vision: I. retinal mechanisms. Spat. Vis. 2(4), 273–293 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart M. ter Haar Romeny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

ter Haar Romeny, B.M. (2014). A Geometric Model for the Functional Circuits of the Visual Front-End. In: Grandinetti, L., Lippert, T., Petkov, N. (eds) Brain-Inspired Computing. BrainComp 2013. Lecture Notes in Computer Science(), vol 8603. Springer, Cham. https://doi.org/10.1007/978-3-319-12084-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12084-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12083-6

  • Online ISBN: 978-3-319-12084-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics