Skip to main content

Models of the Visual Cortex for Object Representation: Learning and Wired Approaches

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8603))

Abstract

Computational modeling now spans more than three decades. Biologically-plausible models are usually organized into a hierarchy that models the brain in primates after carefully examining neurophysiological and psychophysical studies. Currently, these models extract some values (corners, edges, textures, contours) from images and then apply machine learning algorithms to learn objects or shapes. Are they really that different from classical, non-biologically-inspired, computer vision methods? What facts can we learn from the primate visual system other than the extensively used edge extraction by means of Gabor filters? Should we work more on the representation along this hierarchy before applying a learning strategy? We review the status of computational modeling for object recognition and propose what can be the next challenges to solve.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ramón y Cajal, S.: Sobre las fibras nerviosas de la capa molecular del cerebelo. Rev. Trim. Histol. Norm. Patol. 1, 33–49 (1888)

    Google Scholar 

  2. Ramón y Cajal, S.: The croonian lecture: La fine structure des centres nerveux. Roy. Soc. Lond. Proc. Ser. I 55, 444–468 (1894)

    Article  Google Scholar 

  3. Ramón y Cajal, S.: Variaciones morfologicas, normales y patologicas del reticulo neurofibrilar. Trab. Lab. Investig. Biol. Madrid. 3, 9–15 (1904)

    Google Scholar 

  4. Hubel, D., Wiesel, T.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148, 574–591 (1959)

    Google Scholar 

  5. Hubel, D., Wiesel, T.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195(1), 215–243 (1968)

    Google Scholar 

  6. Poggio, T., Serre, T.: Models of visual cortex. Scholarpedia 8(4), 3516 (2013)

    Article  Google Scholar 

  7. Tsotsos, J.K.: Behaviorist intelligence and the scaling problem. Artif. Intell. 75(2), 135–160 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fukushima, K.: A neural network model for selective attention in visual pattern recognition. Bio. Cybern. 55(1), 5–16 (1986)

    Article  MATH  Google Scholar 

  9. Barlow, H.: Visual experience and cortical development. Nature 258(5532), 199–204 (1975)

    Article  Google Scholar 

  10. Hubel, D., Wiesel, T.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)

    Google Scholar 

  11. Hubel, D., Wiesel, T.: Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965)

    Google Scholar 

  12. Grossberg, S.: Some nonlinear networks capable of learning a spatial pattern of arbitrary complexity. PNAS 2(59), 368–372 (1968)

    Article  Google Scholar 

  13. Grossberg, S.: Neural pattern discrimination. J. Theor. Biol. 2(27), 291–337 (1970)

    Article  Google Scholar 

  14. Grossberg, S.: A neural model of attention, reinforcement and discrimination learning. Int. Rev. Neurobiol. 18, 263–327 (1975)

    Article  Google Scholar 

  15. Marr, D.: Vision: A computational investigation into the human representation and processing of visual information. W.H. Freeman, NY (1982)

    Google Scholar 

  16. Zucker, S.W.: Computer vision and human perception: an essay on the discovery of constraints. In: Proceedings of the International Conference on Artificial Intelligence, pp. 1102–1116 (1981)

    Google Scholar 

  17. Fukushima, K.: Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)

    Article  MATH  Google Scholar 

  18. Fukushima, K., Miyake, S., Ito, T.: Neocognitron: a neural network model for a mechanism of visual patter recognition. IEEE Trans. Syst. Man Cybern. 13, 826–834 (1983)

    Article  Google Scholar 

  19. Fukushima, K.: Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Netw. 1, 119–130 (1988)

    Article  Google Scholar 

  20. Crick, F.: Function of the thalamic reticular complex - the searchlight hypothesis. PNAS 81(14), 4586–4590 (1984)

    Article  Google Scholar 

  21. von der Malsburg, C.: Nervous structures with dynamical links. Ber. Bunsenges. Phys. Chem. 89, 703–710 (1985)

    Article  Google Scholar 

  22. Crick, F., Koch, C.: Towards a neurobiological theory of consciousness. 2(263–275), 203 (1990)

    Google Scholar 

  23. Anderson, C., Van Essen, D.: Shifter circuits: a computational strategy for dynamic aspects of visual processing. PNAS 84(17), 6297–6301 (1987)

    Article  Google Scholar 

  24. Postma, E., van den Herik, H., Hudson, P.: Dynamic selection through gating lattices. In: IEEE International Joint Conference on Neural Networks, vol. 3, pp. 786–791 (1992)

    Google Scholar 

  25. Olshausen, B., Anderson, C., Van Essen, D.: A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J. Neurosci. 13(11), 4700–4719 (1993)

    Google Scholar 

  26. Heinke, D., Humphreys, G.: Attention, spatial representation, and visual neglect: simulating emergent attention and spatial memory in the selective attention for identification model (SAIM). Psychol. Rev. 110(1), 29–87 (2003)

    Article  Google Scholar 

  27. Orban, G.A.: Higher order visual processing in macaque extrastriate cortex. Psychol. Rev. 88(1), 59–89 (2008)

    MathSciNet  Google Scholar 

  28. Krüger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., Rodríguez-Sánchez, A., Wiskott, L.: Deep hierarchies in the primate visual cortex: what can we learn for computer vision? IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1847–1871 (2013)

    Article  Google Scholar 

  29. Wallis, G., Rolls, E.: Invariant face and object recognition in the visual system. Prog. Neurobiol. 51(2), 167–194 (1997)

    Article  Google Scholar 

  30. von der Malsburg, C.: Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14(2), 85–100 (1973)

    Article  Google Scholar 

  31. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neurosci. 2(11), 1019–1025 (1999)

    Article  Google Scholar 

  32. Riesenhuber, M., Poggio, T.: Neural mechanisms of object recognition. Curr. Opin. Neurobiol. 12(2), 162–168 (2002)

    Article  Google Scholar 

  33. Serre, T.: Learning a Dictionary of Shape-Components in Visual Cortex: Comparison with Neurons, Humans and Machines. Ph.D. thesis, Massachusetts Institute of Technology (2006)

    Google Scholar 

  34. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M.: Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 411–426 (2007)

    Article  Google Scholar 

  35. Amit, Y.: A neural network architecture for visual selection. Neural Comput. 12, 1141–1164 (2000)

    Article  Google Scholar 

  36. Suzuki, N., Hashimoto, N., Kashimori, Y., Zheng, M., Kambara, T.: A neural model of predictive recognition in form pathway of visual cortex. BioSystems 76, 33–42 (2004)

    Article  Google Scholar 

  37. Rao, R., Ballard, D.: Dynamic model of visual recognition predicts neural response properties in the visual cortex. Neural Comput. 9(4), 721–763 (1997)

    Article  Google Scholar 

  38. Rao, R., Ballard, D.: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neurosci. 2(1), 79–87 (1999)

    Article  Google Scholar 

  39. Fidler, S., Berginc, G., Leonardis, A.: Hierarchical statistical learning of generic parts of object structure. In: IEEE CVPR, pp. 182–189 (2006)

    Google Scholar 

  40. Weidenbacher, U., Neumann, H.: Extraction of surface-related features in a recurrent model of V1–V2 interactions. PLOS ONE 4(6), e5909 (2009)

    Article  Google Scholar 

  41. Heitger, F., Rosenthaler, L., von der Heydt, R., Peterhans, E., Kubler, O.: Simulation of neural contour mechanisms: from simple to end-stopped cells. Vis. Res. 32(5), 963–981 (1992)

    Article  Google Scholar 

  42. Murphy, T., Finkel, L.: Shape representation by a network of V4-like cells. Neural Netw. 20, 851–867 (2007)

    Article  MATH  Google Scholar 

  43. Azzopardi, G., Petkov, N.: Detection of retinal vascular bifurcations by trainable V4-Like filters. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part I. LNCS, vol. 6854, pp. 451–459. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  44. Rodríguez-Sánchez, A., Tsotsos, J.: The importance of intermediate representations for the modeling of 2D shape detection: Endstopping and curvature tuned computations. In: IEEE CVPR, pp. 4321–4326 (2011)

    Google Scholar 

  45. Leventhal, A.G., Hirsch, H.V.: Cortical effect of early selective exposure to diagonal lines. Science 190(4217), 902–904 (1975)

    Article  Google Scholar 

  46. Rainer, G., Miller, E.K.: Effects of visual experience on the representation of objects in the prefrontal cortex. Neuron 27(1), 179–189 (2000)

    Article  Google Scholar 

  47. Tommasi, T., Quadrianto, N., Caputo, B., Lampert, C.H.: Beyond dataset bias: multi-task unaligned shared knowledge transfer. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS, vol. 7724, pp. 1–15. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  48. Pinto, N., Cox, D., Dicarlo, J.: Why is real-world visual object recognition hard? PLOS Comput. Biol. 4(1), 151–156 (2008)

    Article  MathSciNet  Google Scholar 

  49. Wang, G., Zhang, Y., Fei-Fei, L.: Using dependent regions for object categorization in a generative framework. In: IEEE CVPR, pp. 1597–1604 (2006)

    Google Scholar 

  50. Grauman, K., Darrell, T.: Pyramid match kernels: Discriminative classification with sets of image features. MIT Technical report CSAIL-TR-2006-20 (2006)

    Google Scholar 

  51. Mutch, J., Lowe, D.: Multiclass object recognition with sparse, localized features. IEEE CVPR, pp. 11–18 (2006)

    Google Scholar 

  52. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scenes categories. In: IEEE CVPR, pp. 2169–2178 (2006)

    Google Scholar 

  53. Zhang, H., Berg, A., Marie, M., Malik, J.: Svm-knn: Discriminative nearest neighbor classification for visual category recognition. In: IEEE CVPR, pp. 2126–2136 (2006)

    Google Scholar 

  54. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: IEEE CVPR, p. 178 (2004)

    Google Scholar 

  55. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)

    Article  Google Scholar 

  56. Bell, A.J., Sejnowski, T.J.: The of natural scenes are edge filters. Vis. Res. 37(23), 3327–3338 (1997)

    Article  Google Scholar 

  57. Karklin, Y., Lewicki, M.S.: Emergence of complex cell properties by learning to generalize in natural scenes. Nature 457(7225), 83–86 (2008)

    Article  Google Scholar 

  58. Cadieu, C., Kouth, K., Pasupathy, A., Connor, C., Riesenhuber, M., Poggio, T.: A model of V4 shape selectivity and invariance. J. Neurophysiol. 98, 1733–1750 (2007)

    Article  Google Scholar 

  59. Pasupathy, A., Connor, C.: Responses to contour features in macaque area V4. J. Neurophysiol. 82(5), 2490–2502 (1999)

    Google Scholar 

  60. Pasupathy, A., Connor, C.: Shape representation in area V4: Position-specific tuning for boundary conformation. J. Neurophysiol. 86(5), 2505–2519 (2001)

    Google Scholar 

  61. Pasupathy, A., Connor, C.: Population coding of shape in area V4. Nature Neurosci. 5(12), 1332–1338 (2002)

    Article  Google Scholar 

  62. Rodríguez-Sánchez, A., Tsotsos, J.: The roles of endstopped and curvature tuned computations in a hierarchical representation of 2D shape. PLOS ONE 7(8), 1–13 (2012)

    Article  Google Scholar 

  63. Rodríguez-Sánchez, A.: Intermediate Visual Representations for Attentive Recognition Systems. Ph.D. thesis, York University, Dept. of Computer Science and Engineering (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. Rodríguez-Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rodríguez-Sánchez, A.J., Piater, J. (2014). Models of the Visual Cortex for Object Representation: Learning and Wired Approaches. In: Grandinetti, L., Lippert, T., Petkov, N. (eds) Brain-Inspired Computing. BrainComp 2013. Lecture Notes in Computer Science(), vol 8603. Springer, Cham. https://doi.org/10.1007/978-3-319-12084-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12084-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12083-6

  • Online ISBN: 978-3-319-12084-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics