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Abstract. The basic concepts of distance based classification are intro-
duced in terms of clear-cut example systems. The classical k-Nearest-
Neigbhor (kNN) classifier serves as the starting point of the discussion.
Learning Vector Quantization (LVQ) is introduced, which represents the
reference data by a few prototypes. This requires a data driven train-
ing process; examples of heuristic and cost function based prescriptions
are presented. While the most popular measure of dissimilarity in this
context is the Euclidean distance, this choice is frequently made with-
out justification. Alternative distances can yield better performance in
practical problems. Several examples are discussed, including more gen-
eral Minkowski metrics and statistical divergences for the comparison of,
e.g., histogram data. Furthermore, the framework of relevance learning
in LVQ is presented. There, parameters of adaptive distance measures
are optimized in the training phase. A practical application of Matrix
Relevance LVQ in the context of tumor classification illustrates the ap-
proach.

1 Introduction

This contribution summarizes a tutorial talk which was meant as a first introduc-
tion to distance and prototype based machine learning techniques. Accordingly,
our intention is not to give a complete overview of the field or to review all
relevant literature. The paper may serve as a starting point for the interested
reader to explore this practically relevant framework and active area of research.
The inference of classification schemes from previous observations, i.e. from
labelled example data, is one of the core issues in machine learning [1-4]. A
large variety of real world problems can be formulated as classification tasks.
Examples include handwritten character recognition, medical diagnoses based
on clinical data, pixel-wise segmentation and other image processing tasks, or
fault detection in technical systems based on sensor data, to name only a few.
Throughout this contribution we assume that observations are given in terms
of real-valued feature vectors in IV dimensions. In general, the structure of the



data can be more complex and may require modified approaches, for instance the
pseudo-FEuclidean embedding of relational data. For this and other extensions of
the concepts presented here, we refer the reader to [5, 6] and references therein.

A variety of frameworks and training algorithms have been developed for
the learning from examples, i.e. the data driven adaptation of parameters in the
chosen classification model. They range from classical statistics based methods
like Discriminant Analysis to the application of Multilayer Perceptrons or the
prominent Support Vector Machine [1-4].

A particularly transparent approach is that of distance or similarity based
classification [2,3,5]. Here, observations are directly compared with reference
data or prototypes which have been determined in a training process from avail-
able examples. The similarity or, more correctly, dis-similarity is quantified in
terms of a suitable distance measure.* The choice of appropriate measures is
in the focus of this contribution. Most of the concepts discussed here can be
applied in a much broader context, including supervised regression or the un-
supervised clustering of data [5]. Here, however, we will limit the discussion to
clear-cut classification problems and the use of prototype or reference data based
classifiers.

In the next section we discuss two classical methods: the k-Nearest-Neighbor
(kNN) approach [2,3,7] and Kohonen’s Learning Vector Quantization (LVQ)
[8,9] which — in their simplest versions — employ standard Euclidean distance.
Mainly in terms of LVQ we discuss how to extend the framework to more general
distance measures in Section 3.1. The use of divergences for the classification of
histograms serves as one example. Section 4 presents the elegant framework of
Relevance Learning Vector Quantization as an example for the use of adaptive
distance measures. We conclude with a brief summary in Section 5.

2 Simple classifiers based on Euclidean distances

When dealing with N-dimensional feature vectors, the use of Euclidean metrics
for their pairwise comparison seems natural. In the following we discuss two
classical methods which employ this measure in their simplest versions.

2.1 Nearest-Neighbor Classifiers

Arguably the simplest and by far most popular distance based scheme for vec-
torial data is the k-Nearest-Neighbor (kNN) classifier [2,3,7]. In this classical
approach, a given set of P vectors in N-dim. feature space is stored together
with labels which indicate their known assignment to one of the C' classes:

{x" y(x") =y")}_; where x* € RY and y" €{1,2,...,C}. (1)

4 In this article, we use the term distance in its general sense, not necessarily implying
symmetry or other metric properties.



Fig. 1. Illustration of simple classification schemes based on Euclidean distance. Both
panels display the same three class data set and decision boundaries represented by
solid lines. Left: Nearest-Neighbor classifier. Right: Nearest Prototype classification,
prototypes are marked by larger symbols as indicated by the legend.

An arbitrary feature vector x is classified according to the distances from the
reference samples. In the most basic INN scheme, its (squared) Euclidean dis-
tance

d(x,x") = (x —x")? = (z; fx?)Q (2)
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from all reference samples x* is computed and the data point is assigned to the
class of the Nearest Neighbor:
y(x) = y* =y(x*) with x* = argmin {d(x, x")}f:l. (3)
XM
In the more general kNN classifier the assignment, Eq. (3), is replaced by a
voting among the k closest reference vectors.

The kNN classifier is straightforward to implement and requires no further
analysis of the example data in a training phase. Furthermore, theoretical consid-
erations show that kNN schemes can achieve close to Bayes optimal classification
if k is selected appropriately [2,3]. As a consequence, the kNN classifier contin-
ues to be applied in a variety of practical contexts and often serves as a baseline
for comparison with other methods. Figure 2.1 (left panel) illustrates the INN
classifier for an artificial three class data set in two dimensions. The prescription
(3) results in a piece-wise linear tessellation of feature space.

Two major drawbacks of the approach are evident:

(I) For large data sets, the method involves considerable computational effort
in the working phase. The naive implementation of (3) requires the evalua-
tion of P distances and the identification of their minimum for each novel
classification. Although clever search and sorting strategies can reduce the
computational complexity [3], the basic problem persists for large data sets.



(IT) More importantly, class boundaries can become very complex since every
example is taken into account on an equal footing. The system is highly
sensitive to single, potentially mislabelled examples or outliers. This bears
the risk of over-fitting, i.e. the classifier can become too specific to the ex-
ample set which may result in poor generalization performance with respect
to novel data. The effect is clearly mildened when % neighbors are taken into
account. However, too large k can yield overly smooth boundaries.

Both problems suggest to reduce the number of reference examples. The repre-
sentation of the data set by a condensed set of examples was already considered
in [10]. A variety of improved selection schemes have been proposed which aim
at retaining relevant information contained in the data set, see e.g. [11] and
references therein.

2.2 Learning Vector Quantization

Here we consider approaches which compute class representatives without re-
stricting them to be elements of the training set. Each class is represented by at
least one vector in in a set of M labeled prototypes:

{w’, & }ﬁl where w/ € RY and ¢/ € {1,2,...C}. (4)

Together with the Euclidean measure, the prototypes parameterize piece-wise
linear class boundaries. Similar to the 1NN classifier, a Nearest Prototype Scheme
(NPC) assigns an arbitrary feature vector to class

y(x) = ¢* where ¢* is the label of w* = argmin {d(x, wj)}j]\i1 . ()

wJ

The term winner is frequently used for the closest prototype w* with respect to
data point x. More sophisticated voting rules, probabilistic or soft schemes can
be devised, but here we limit the discussion to crisp classifiers.

The right panel of Figure 2.1 illustrates the NPC scheme. The resulting de-
cision boundaries are obviously much smoother than those of the corresponding
INN classifier (left panel). The NPC scheme is less sensitive to details of the
data set which is reflected by the fact that it misclassifies some of the train-
ing examples. In comparison to the 1NN scheme, this should result in superior
generalization behavior in the presence of noisy examples and outliers.

Arguably the most attractive feature of prototype-based schemes is their in-
terpretability [12]. Prototypes are defined in the feature space of observations
and, hence, can be inspected by domain experts in the same way as the sample
data. This is in contrast to Multilayer Perceptrons or other model parameteri-
zations which are less transparent. Moreover, prototypes should be - in a sense -
typical for their classes. Thus, the concept is complementary to, for instance, the
Support Vector Machine approach [4] which puts emphasis on atypical samples
close to the decision boundaries.



LVQ prototypes are determined from the example data by more or less sophis-
ticated training procedures. A conceptually simple idea for their initialization is
to compute the class-conditional means, which appears promising when classes
are represented by single, more or less spherical clusters. In more realistic sit-
uations, LVQ prototypes could be initialized at random in feature space. More
reasonably, their initial positions could be determined by means of class-wise
unsupervised competitive learning [1-3] prior to the actual supervised training.

In the following we present two prominent prototype-based, iterative training
schemes from the family of Learning Vector Quantization algorithms.

Kohonen’s LVQ1
Kohonen’s original Learning Vector Quantization algorithm [8,9,13], known as
LVQ1, constitutes an intuitive, heuristic procedure for the computation of pro-
totypes. It is reminiscent of competitive learning for the purpose of unsupervised
Vector Quantization [2].

In LVQ1, single training examples are presented, for instance in randomized
order. Upon presentation of example {x,y}, the currently closest prototype w*
is determined in analogy to Eq. (5). Only the winner is updated according to

+1if c=y

W' — W Ut y) (x—w*) where ¥(c,y) = {_1 if ¢c#y. (6)

Here, the learning rate n > 0 controls the step size. Note that Eq. (6) could be
re-written as

w* — W' —n (", y)

g |5 x— w2 @

formally. The Winner Takes All (WTA) prescription moves the prototype w*
closer to or away from the feature vector if the class labels agree or disagree,
respectively. As a consequence, the sample x — or other feature vectors in its
vicinity — will be classified correctly with higher probability after the update.
Intuitively, after repeated presentation of the data set, prototypes approach po-
sitions which should be typical for the corresponding classes.

A number of variations of the basic scheme have been suggested in the litera-
ture, aiming at better generalization ability or more stable convergence behavior,
e.g. [9,14-17]. Several modifications update more than one prototype at a time,
e.g. LVQ2.1 or LVQ3, or employ adaptive learning rates as for instance the so-
called Optimized LVQ (OLVQ) [9]. However, the essential features of LVQ1 —
competitive learning and label-dependent updates — are present in all versions

of LVQ.

Generalized Learning Vector Quantization

Cost function based approaches [14-17] have attracted particular attention. First
of all, convergence properties can be studied analytically in terms of their ob-
jective function. Moreover, cost functions allow for systematic extensions of the



training schemes, for instance by including adaptive hyperparameters in the op-
timization [18,19].

Here we focus on the so—called Generalized Learning Vector Quantization
(GLVQ) as introduced by Sato and Yamada [14, 15]. The suggested cost function
is given by a sum over examples:

B M ) u d(w’,xt) — d(wh,x")
E = Z e* with e _¢<d(wJ,xN)+d(wK,X“))’ (8)

where w”/ and w’ denote the closest correct and closest incorrect prototype,
respectively, for a particular example {x*, y*}. Formally,

w’ = argmin {d(x", w’) | ¢/ = yu};\:
wi -

wh = argr?in {dx",w?) | & # y“}jﬂil . (9)

Popular choices for the monotonically increasing function &(z) in Eq. (8) are
the identity #(z) = z or a sigmoidal like &(z) = 1/[1 4+ exp(—~ z)] where v > 0
controls the steepness in the origin [14,20]. Its argument obeys —1 < z < 1,
negative values z < 0 indicate that the corresponding training example is cor-
rectly classified. Note that for large « the cost function approximates the number
of misclassified training data, while for small steepness the minimization of F
corresponds to maximizing the margin-like quantities [d(w’, x") — d(w”,x")].

One possible strategy to optimize F for a given data set is stochastic gradient
descent based on single example presentation [1,2,21,22]. The update step for

the winning prototypes w”, w’ given a particular example {x,y}, reads
0 4dy
J J —owd / J
wo e wh - ow @(6) =w" +7 P (6) (d] 4 dK)Z (X o )
0 4d
K K _ K / J K
whewh g = @) = w —7745(6)7((1‘1_’_@()2 (x —w’)

(10)

where the abbreviation d = d(w’,x) for the squared Euclidean distances has
been introduced.

Note that in contrast to GLVQ, LVQ1 cannot be interpreted as a stochastic
gradient descent, although Eq. (7) involves the gradient of d(w*,x). Formal
integration yields the function

P
> w(ery) (- w)’

| —

which is not differentiable at class borders. Crossing the decision boundary, a
different prototype becomes the winner and the sign of ¥ changes discontinu-
ously.



3 Extensions to general distance measures

Occasionally it is argued that all distance based methods are bound to fail in
high-dimensional feature space due to the so-called curse of dimensionality and
the related concentration of norms, see [23] for a general discussion thereof. The
problem is evident in the context of, e.g., density estimation or histogram based
techniques. However, we would like to emphasize that the argument does not
necessarily carry over to the comparison of distances. Consider, for instance, the
difference of two squared Euclidean distances

d(x,x%) —d(x,x°) = 2x - (x* —x%) + (x%)? — (x*)? (11)

which involves the projection of x into the low-dimensional subspace spanned
by reference vectors x%,x°. The concentration of norms suggests, indeed, that
the last two terms approximately cancel each other in high dimensions, while
the first remains non-trivial. Moreover, in the context of LVQ, x%, x® in (11) are
replaced by prototypes which have been determined as low noise representatives
of the data set.

Euclidean distance appears to be a natural measure and is by far the most
popular choice in practice. However, one should be aware that other measures
may be more suitable, depending on the nature of the data set at hand [24].
Both the kNN and the LVQ framework facilitate the use of alternative distance
measures in a rather straightforward fashion as outlined in the following.

3.1 Example metrics and more general measures

Frequently, distances d(x,y) are required to satisfy the metric properties
dx,y)=0 & x=y, dxy) =dy.x), dxz) <dxy)+dy.z). (12)

However, in the prototype based or kNN classification of a query x, these con-
ditions can be relaxed. For example, the NPC with prototypes {w?} is still well
defined with a non-symmetric measure as long as only one of the two choices,
d(x,w’) or d(w7,x), is used consistently. Distances between different prototypes
or between two data points are never considered explicitly in the scheme.

A large variety of distance measures can be employed for classification tasks.
Discretized data, for instance, can be compared by means of the Hamming dis-
tance or more general string metrics. Specific measures have been devised for
functional data where the order of the observed features is relevant, see [25, 26]
for examples.

In the following we outline how, quite generally, differentiable distance mea-
sures can be made use of in LVQ schemes. Then we briefly discuss three example
families of measures which constitute important alternatives to the standard Eu-
clidean choice.



Incorporation of differentiable distances in LVQ schemes

In the working phase of kNN or prototype based classification, essentially any
meaningful distance measure can be employed which is appropriate for the prob-
lem at hand. An important restriction applies, however, if gradient based training
schemes like LVQ1 or GLVQ are used which require that the underlying distance
is differentiable. Under this condition, a general LVQ1-like update can be written
as

w* — W' —n (", y) %d(w*,x) (13)
in analogy with Eq. (7).
Similarly, the Euclidean distance in the GLVQ cost function (8) can be re-

placed by a more general, differentiable measure, yielding the update

2d 0
J T K d(w”
WS e w +77 (6) (dj+dK)2 ow (W 7X)
2
wi Wi —n &/(e) ds 0 d(w’,x) (14)

(dy+dg)? owE

where the winners and all other quantities are defined as in (10). In the following
we highlight a few families of differentiable distance measures which can be
incorporated into LVQ in a straightforward way.

Minkowski distances
A prominent class of distances corresponds to the so-called Minkowski measures

1/p

N
dp(,y) = | D |y —yyl” (15)
j=1

with p > 0 which includes the standard Euclidean distance for p = 2 or the
so—called Manhattan metric for p = 1. Note that (15) is a metric only for p > 1,
while it violates (12) for p < 1. However, in the latter case, (d,(x,y))” becomes a
metric [27]. Note that the Euclidean distance can be determined using the inner
product

N
(x,y) = Zj:l Tj-Yj (16)
by computing

d(x,y) =/ (6,%)7 = 2 (x,y) + (y.5)" (17)

For p # 2 and p > 1, an analogous calculation can be done using semi-inner
products [28,29]. The use of Minkowski metrics with p # 2 has proven advanta-
geous in several practical applications, e.g. [30, 31], which can be accompanied by
appropriate dimensionality reduction schemes, e.g. principal component analysis
(PCA) [32,33]. Minkowski distances are either differentiable or can be replaced
by differentiable approximations, see [27] and references therein. Figure 3.1 il-
lustrates the influence of the parameter p in (15). It displays the unit circles in
two dimensions corresponding to different Minkowski distances.
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Fig. 2. Unit circles corresponding to Minkowski metrics, Eq. (15), in two dimensions
with, from left to right, p = 0.5, p = 1 (Manhattan), p = 2 (Euclidean), and p = 10.

Divergences

In many practical problems, properties of the data are represented by histograms.
Prominent examples are the characterization of images by color histograms or
the bag of words representation for texts. In other domains, intensity spectra
or other non-negative and normalizable functional data represent the objects
of interest [34]. A large variety of statistical divergences are tailored for the
comparison of positive measures or probability densities. Arguably, the non-
symmetric Kullback-Leibler divergence is the most prominent example [35]. Here
we exemplify the concept in terms of the symmetric Cauchy-Schwarz divergence

dos(x,y) = 5 log [(6,%) - y,y)] — log[(x. )] (18)

which is obviously differentiable [36]. Figure 3.1 illustrates how d¢g differs from
the standard Euclidean distance: Three normalized 50-bin histograms are dis-
played which satisfy (x® —x%)? = (x¢—x")2. However, according to the Cauchy-
Schwarz measure, dcs(x?%,x%) ~ 1/2dcs(x¢,x%), implying that the single peak
x% is considered to be closer to the broad unimodal x® than the double peak
histogram x°.

The incorporation of symmetric and non-symmetric, differentiable diver-
gences into GLVQ training and classification is introduced in [37]. As an ap-
plication example, the detection of Mosaic Disease in Cassava plants based on
various image histograms is discussed there.

Kernel distances

Kernel distances [38] can also be incorporated in prototype based learning and
classification approaches, see e.g. [39,40]. The so-called kernel trick consists of
an implicit, in general non-linear, mapping to a potentially infinite dimensional
space. This mapping space is equipped with an inner product which can be
calculated from original data in terms of a so—called kernel « (x,y) [41,42]. The
corresponding kernel distance is calculated as

de(x,y) = /5 (%, %) = 2+ 5 (x,3) + £ (y,5)° (19)
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Fig. 3. Three normalized histograms x?,x®, x° with 50 bins each. The pair-wise com-
parison in terms of Euclidean distance and Cauchy-Schwarz divergence, cf. Eq. (18),
as discussed in Sec. 3.1

in complete analogy to the inner product based Euclidean distance calculation
(17). A famous example is the Gaussian kernel

2
ke (%) = exp <M> (20)

202

with the kernel width o.

The application of kernel distances frequently translates non-linear complex
classification tasks into easier, linearly separable problems [41], as demonstrated
for, e.g., image based face recognition in[43]. For LVQ schemes, the kernel dis-
tance is assumed to be differentiable, which implies that also the kernel x (x,y)
has to be differentiable [44].

4 Adaptive distances and Relevance LVQ

In an ideal situation, insight into the problem suggests the use of a specific,
fixed distance measure. Very often, however, prior knowledge is limited and only
a suitable parametric form of the distance can be specified. In Relevance Learn-
ing, a particularly elegant extension of LVQ, the corresponding parameters are
adapted in the same data driven training process that identifies the prototypes.

4.1 Matrix Relevance LVQ

In the following we discuss Matrix Relevance LVQ as an extension of the basic
Euclidean scheme [20]. An obvious problem of the standard measure is that all
dimensions are taken into account on the same footing. First of all, some of the
features may be very noisy and potentially corrupt the classifier. Furthermore,
features can be correlated or scale very differently. Euclidean or other pre-defined



measures are sensitive to rescaling and more general linear transformations of
the features. Consequently, their naive use can be problematic in practice. Ma-
trix Relevance LVQ in its simplest form addresses these problems by using a
generalized quadratic distance of the form

dx,w)=(x-w) A(x—w) with A=07Q where A,2eRV*N. (21)

Here the specific parameterization of A as a square guarantees that the distance
is positive semi-definite: d(x, w) > 0.

The elements of the matrix (2 are considered adaptive quantities in the train-
ing process. The distance (21) is differentiable with respect to w and (2:

od od

% = 270 (w-x), % —Rw-x)(w-x)" (22
which facilitates gradient based updates of prototypes and distance measure. In
the corresponding extension of LVQ1-like updates, the WTA prototype update
(13) is combined with

0
2+ 0 —np ¥(c,y) a—gd(w*,x). (23)

Generalized Matrix Relevance LVQ (GMLVQ) updates {2 according to

3 , 2dx  9d(w’,x) 3 2d;  9d(wk x)
2 2 =ng¥e) ((dJ+dK)2 a0 () +de )2 o0 (24)

together with the prototype updates (14). Both, (23) and (24) can be followed
by an explicit normalization to enforce ), j ij = 1. The matrix learning rate
N is frequently chosen smaller than that of the prototype updates. We refer the
reader to [20, 45] for details and the full form of the updates and a discussion of
their variants.

Note that the above correspond to only the simplest versions of matrix rele-
vance learning. A number of non-trivial variations have been suggested, including
the use of prototype- or class-specific localized matrices which yield piece-wise
quadratic decision boundaries in feature space [20]. Rectangular matrices {2 can
be employed in order to avoid the adaptation of O(N?) degrees of freedom in
high-dimensional data sets [45]. They facilitate also the discriminative low-dim.
representation or visualization of labeled data sets [45,46]. The restriction to
diagonal matrices {2 and A reduces the scheme to a weighting of single features,
which had been introduced earlier as RLVQ [47] and GRLVQ [48], respectively.
Formally, Euclidean LVQ versions are recovered by setting (2 proportional to
the N-dimensional identity matrix.

Similar parameterized distance measures have been used in the context of
various classification frameworks. For instance, the cost function based opti-
mization of a quadratic distance (21) can be integrated in an extended kNN
approach as introduced in [49], see also references therein. As another example
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Fig. 4. Left: ROC curves as obtained by GLVQ (dashed), GRLVQ (dotted), GMLVQ
(solid line) with respect to the detection of malignant ACC, see Sec. 4.3. Right: Vi-
sualization of the data set, displaying projections on the leading eigenvalues of A. In
addition to malignant ACC (triangles) and benign ACA (circles), healthy control data
(crosses) are displayed. Prototypes for ACA and ACC are marked by filled symbols.

we would like to mention Radial Basis Function networks [1] which, in combina-
tion with relevance learning, have been applied in problems of vital importance
recently [50].

A Matlab toolbox Relevance and Matrixz adaptation in Learning Vector Quan-
tization, including GMLVQ and a number of variants, is available at the website
[51].

4.2 Interpretation of the Relevance Matrix

It is instructive to note that the quadratic distance (21) can be rewritten as
d(w,x) = [2(w — x)]g, implying that plain Euclidean distance is applied after
a linear transformation of feature vectors and prototypes. The transformation
can account for the above mentioned problems of noisy or correlated features by
assigning weights to single dimensions and pairs of features, respectively. Note
that the diagonal element A;; = >, ij quantifies the total contribution of the
original feature dimension j to the linear combinations [2(w — x)];.

The direct interpretation of A;; as the relevance of feature j for the classifi-
cation is only justified if different features are of the same magnitude, typically.
This can be achieved by, for instance, a z-score transformation in a preprocess-
ing step, such that >° z///P = 0 and Zu(x?)Q/P = 1. Additional measures
have to be taken in the presence of strongly correlated or linearly dependent
features, see [12] for a detailed discussion of the interpretation of A and related
regularization techniques.

It is instructive to note that, given A, a continuum of matrices {2 satisfies
27 = A. However, this does not pose a problem, since the ambiguity reflects
invariances of the distance measure with respect to reflections or rotations of



the data. For convenience, e.g. when comparing the results of different training
processes, one can resort to a canonical representation of 2 in terms of the
eigenvectors of A, see [12] for a more detailed discussion.

4.3 Example Application: Classification of Adrenal Tumors

We briefly illustrate the MRLVQ approach in terms of a recent medical ap-
plication [52,53]. Tumors of the adrenal gland occur in an estimated 1-2% of
the population and are mostly found incidentally. The non-invasive differentia-
tion between malignant Adrenocortical Carcinoma (ACC) and benign Adeno-
mas (ACA) constitutes a diagnostic challenge of great significance. To this end,
a panel of 32 steroid biomarkers — produced by the adrenal gland - has been
suggested in [52] where details are given. The 24h excretion of these steroids
has been analysed for a number of example patients with confirmed diagnosis,
retrospectively. Preprocessing and normalization steps are also detailed in [52,
53]. The available data set was analysed by means of GMLVQ in its simplest
setting, employing one 32-dim. prototype per class and an adaptive 2 € R32%32,

Standard validation procedures, for details see [52, 53], were used to demon-
strate that the resulting classifier achieves very good sensitivity (true positive
rate) and specificity (1-false positive rate) with respect to the detection of ma-
lignancy. The obtained Receiver Operator Characteristics (ROC) [54] is shown
in Figure 4.1 (left panel). For comparison, the ROC is also displayed for simple
GLVQ using the plain Euclidean distance in R3? and for a system restricted
to an adaptive, diagonal A, which corresponds to GRLVQ [48]. Evidently, rel-
evance learning and in particular the matrix scheme improves the performance
significantly over the use of the naive Euclidean distance.

The resulting relevance matrix, see [53], shows that a few of the steroid
markers play a dominant role in the classification as marked by large diagonal
elements A;;. Based on these results, a reduced panel of 9 markers was proposed
in [52]. This reduction facilitates an efficient technical realization of the method,
while the performance is essentially retained. The method constitutes a promis-
ing tool for the sensitive and specific differential diagnosis of ACC in clinical
practice [52].

An additional feature of matrix relevance learning becomes apparent in this
application example. Typically, relevance matrices become low rank in the course
of training. Theoretical considerations which support this general, empirical find-
ing are presented in [55]. As a consequence, the dominating eigenvectors of the
relevance matrix can be used for the discriminative visualization of the labelled
examples. Figure 4.1 (right panel) displays the projections of all ACA and ACC
data and the obtained prototypes on the first two eigenvectors of A. In addition,
healthy control data is displayed which was not explicitly used in the training
process. The example demonstrates how the combination of prototype based and
relevance learning can provide novel insight and facilitates fruitful discussions
with the domain experts. For a similar application of GMLVQ in a different
medical context, see [56].



5 Summary

This contribution provides only a first introduction to distance based classifi-
cation schemes. To a large extent, the discussion is presented in terms of two
classical approaches: the k-Nearest-Neighbor classifier and Kohonen’s Learning
Vector Quantization. The latter requires a training phase which tunes the classi-
fier according to available training data. Examples for heuristic and cost function
based training prescriptions are given. Mainly in the context of LVQ the use of
generalized dissimilarity measures is discussed, which go beyond the standard
choice of Fuclidean distance. Relevance Learning is presented as an extension
of LVQ, which makes use of adaptive distances. Their data driven optimization
can be integrated naturally in the LV(Q training process. As an example, matrix
relevance learning is briefly presented and illustrated in terms of an application
example in the medical domain.

This article and the suggested references can merely serve as a starting point
for the interested reader. It is far from giving a complete overview of this fasci-
nating area of ongoing fundamental and application oriented research.
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