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A Survey of Evaluation
in Music Genre Recognition

Bob L. Sturm

Audio Analysis Lab, AD:MT, Aalborg University Copenhagen
A.C. Meyers Vænge 15, DK-2450 Copenhagen SV, Denmark

bst@create.aau.dk

Abstract. Much work is focused upon music genre recognition (MGR)
from audio recordings, symbolic data, and other modalities. While re-
views have been written of some of this work before, no survey has been
made of the approaches to evaluating approaches to MGR. This paper
compiles a bibliography of work in MGR, and analyzes three aspects of
evaluation: experimental designs, datasets, and figures of merit.

1 Introduction

Despite much work [1–467], music genre recognition (MGR) remains a com-
pelling problem to solve by a machine. In addition to many background chapters
of master’s theses [39, 79, 113, 132, 153, 154, 188, 193, 239, 361, 367, 371, 418] and
doctoral dissertations [9,141,146,280,284,290,320,341,342,381,427,447] at least
five reviews are devoted specifically to MGR [23,85, 123,241,373], and 19 other
reviews discuss related aspects [24, 25, 51, 71, 84, 100, 101, 152, 181, 198, 224, 233,
270, 282, 315, 398, 423, 441, 442]. Many of these reviews compile the variety of
feature extraction methods and classification algorithms that have been applied
to MGR, and some compare system performance using specific figures of merit
(FoM) on particular benchmark datasets. There have also been no fewer than
10 campaigns to formally evaluate and compare state-of-the-art algorithms for
MGR [170, 171, 293–299, 316]. However, the variety of approaches used for eval-
uating performance in MGR has yet to be surveyed. How does one measure the
capacity of a system — living or not — to recognize and discriminate between
abstract characteristics of the human phenomenon of music?

There currently exists at least eleven works [77, 78, 116, 117, 246, 320, 404,
409, 410, 433, 449] that address the difficult but clearly relevant question of how
to evaluate the performance of MGR systems, not to mention how to properly
create a dataset from which a machine is to learn an abstract and high-level
concept such as genre [468, 469]. A few works critically address evaluation in
MGR. For instance, [77, 78, 409, 410] argue for more realistic approaches than
having a system apply a single label to music, and comparing against a “ground
truth” — which itself can be quite wrong [404,408]. Furthermore, [77,78,246,449]
argue for measuring performance in ways that take into account the natural
ambiguity arising from genre.
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Fig. 1. Annual numbers of publications in this survey.

In this paper, we take a different direction to answer the question we pose
above. We review a significant portion of published research touching upon as-
pects of evaluation in MGR. We consider all work that is based upon recorded
music, and/or symbolic representations of the music, e.g., MIDI, and/or other
modalities, e.g., lyrics, album covers, user tags, movie scenes, etc. We do not,
however, consider work addressing the more general problem of “tagging,” e.g.,
[470]. While we consider both “genre” and “style,” and make no attempt to
differentiate them, we do not include “mood” or “emotion,” e.g., [471]. We are
herein interested only in the ways systems for MGR are evaluated, be they al-
gorithms, humans [79,169,201,258,261,262,278,290,366,367,370,381,383,460],
pigeons [347], sparrows [439,440], koi [58], primates [278] or rats [317]. To facili-
tate this survey, we created a spreadsheet summarizing every relevant paper we
found in terms of its experimental design, details of the datasets it uses, and the
figures of merit it reports. This resource provides a simple means to delimit sets
of references sharing particular aspects of evaluation.1

Figure 1 shows how the number of the works we reference is distributed since
the 1995 work of Matityaho and Furst [271] — before which we have only found
the 1984 work of Porter and Neuringer [347]. Many papers allude to the 2002
article of Tzanetakis and Cook [426] as the beginning of research in automatic
MGR. We find their manuscript (received Nov. 2001 and growing from [425]) is
preceded by seventeen works [44,53,83,89,91,132,148,204,270,271,346,348,350,
401,443,472,473], and is contemporary with nine works [22,79,176,193,202,218,
351,385,448]. The dataset created by Tzanetakis and Cook for [426], however, is
the first “benchmark” MGR dataset to have been made publicly available, and
as a result continues to be the most used public dataset for MGR.

In our analysis, we do not include [474–479] as they are written in Turkish,
and [472] as it is written in German, and we can read neither. We could not
obtain [473, 480, 481], and so do not include them in the analysis. Finally, we
neither analyze nor cite seven published works because of plagiarism.

1 Upon request we can make available this spreadsheet and bibliography.
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Fig. 2. Annual numbers of publications in this survey having an experimen-
tal component (top number), and which use any form of statistical testing for
making comparisons (bottom number).

2 Evaluation Approaches in Music Genre Recognition

We now catalogue approaches to evaluation in MGR along three dimensions
— experimental design, datasets, and figures of merit (FoM) — and present
summary statistics of each. Experimental design is the method employed to
answer a specific hypothesis, e.g., in the case of MGR, “System A recognizes
‘Blues’.” The dataset is simply the collection of data used in the experiment. A
FoM quantifies the performance of a system in the experiment, e.g., accuracy.
Figure 2 shows how the number of works having an experimental component is
distributed over the years. Compared to Fig. 1, the remaining works are reviews,
or primarily concerning evaluation.

2.1 Experimental Design

Table 1 describes the ten different experimental designs we find, along with their
appearance in the literature. We see that the most common experimental design
to test MGR systems is Classify. More than 91% (397)2 of the referenced work
having an experimental component (435) uses such a design [1–9, 11–21, 26–43,
45,47–50,52–56,58–60,62–65,68–70,72–76,79–83,86–90,92–99,102–106,108–122,
124–135,137–148,150,151,153–165,167–172,174–180,182–197,199–202,204–217,
219–223,225–232,234,235,238–240,242–261,263–269,271–281,283–287,289–301,
303,305–307,309–313,317,319–333,335–349,352–359,361–364,366–372,375–383,
385–393,395–397,399,401–403,405–407,409–412,414,416,418–422,424–433,435–
440,443–445,447,448,450–465,467]. For instance, Matityaho and Furst [271] test
a neural network trained to discriminate between classical and pop music. They
extract features from the audio, input them to the neural network, and compare
the output labels against those they assigned to the excerpts of their dataset.

2 Numbers in parentheses are the number of works in the references.
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Table 1. Ten experimental designs of MGR, and the percentage of references
having an experimental component (435) in which they appear

Design Description %

Classify To answer the question, “How well does the system predict the genres
used by music?” The system applies genre labels to music, which
researcher then compares to a “ground truth”

91.3

Features To answer the question, “At what is the system looking to identify
the genres used by music?” The system ranks and/or selects features,
which researcher then inspects

32.6

Generalize To answer the question, “How well does the system identify genre in
varied datasets?” Classify with two or more datasets having different
genres, and/or various amounts of training data

15.9

Robust To answer the question, “To what extent is the system invariant to
aspects inconsequential for identifying genre?” The system classifies
music that researcher modifies or transforms in ways that do not
harm its genre identification by a human

6.9

Eyeball To answer the question, “How well do the parameters make sense
with respect to identifying genre?” The system derives parameters
from music; researcher visually compares

6.7

Cluster To answer the question, “How well does the system group together
music using the same genres?” The system creates clusters of dataset,
which researcher then inspect

6.7

Scale To answer the question, “How well does the system identify music
genre with varying numbers of genres?” Classify with varying num-
bers of genres

6.7

Retrieve To answer the question, “How well does the system identify music
using the same genres used by the query?” The system retrieves
music similar to query, which researcher then inspects

4.4

Rules To answer the question, “What are the decisions the system is mak-
ing to identify genres?” The researcher inspects rules used by a sys-
tem to identify genres

3.7

Compose To answer the question, “What are the internal genre models of
the system?” The system creates music in specific genres, which the
researcher then inspects

0.7

Almost all of the experimental work that applies Classify employ a single-label
approach, but at least ten employ a multi-labeling approach [31, 255, 258, 280,
367–369, 373, 415, 437]. For instance, McKay [280] looks at how genres at both
root and leaf nodes are applied by his hierarchical approach to classification.

One extension of the Classify experimental design is Generalize [1, 2, 9, 13,
15, 16, 19, 30, 31, 38, 45, 55, 58, 62, 66, 75, 82, 94, 97, 128, 137, 146, 153, 161–164, 199,
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200, 209, 214, 218, 222, 223, 225, 226, 231, 238, 240, 249, 262, 268, 269, 285, 287, 289,
290, 302, 303, 307, 312, 313, 319, 320, 327, 335, 341, 347, 349, 361, 364, 374, 378, 426,
427, 435, 439, 440, 461]. For instance, Porter and Neuringer [347] test whether
pigeons trained to discriminate between music by J. S. Bach and Stravinsky
are able to discriminate between music by composers contemporary with J. S.
Bach (Buxtehude and Scarlatti) and Stravinsky (Carter and Piston). Another
extension of Classify is Scale [9,13,14,19,45,48,49,53,62,68,83,94,132,144,199,
225,226,238,261,275,280,303,320,336,337,339–341,390]. For instance, Chai and
Vercoe [53] test their system on various class pairs from their dataset of three
folk music genres, as well as on all three classes together.

The second most-used experimental design is Features [1, 7, 9, 16, 17, 26, 27,
33–35, 37, 43, 48, 49, 53, 68, 69, 72, 93, 95, 102, 103, 105, 109, 115, 122, 126, 127, 139,
141,143,144,146,153,157–160,179,182–184,187–189,192,196,197,199,200,211–
213,219–221, 226–230,232, 236–238,240, 242, 244, 245, 247, 249–252, 272–277,280,
281, 283–287, 289–291, 300–303, 307, 309, 320, 327, 333, 337, 340, 341, 345, 361, 362,
364, 370, 371, 376, 377, 379, 385, 387, 390, 393, 396, 397, 401, 403, 406, 417, 420, 421,
425–427, 430, 432, 434, 436, 438, 443, 447, 451, 454–456, 460, 462, 464, 465, 467]. We
do not include in this experimental design work that performs feature selection
without an interpretation of the results. For instance, Tzanetakis et al. [425]
use Classify in comparing rhythmic features (statistics of an autocorrelation of
wavelet decomposition) and timbral features (spectral centroid, rolloff, etc.).
On the other hand, Yoon et al. [459] explore two different feature selection
approaches using Classify, but do not discuss or list the selected features. Akin to
Features is a fifth design, Rules, which appears in at least sixteen works [3,5,13,
14,26,42,43,70,94,98,139,303,308,340,341,434]. For instance, Bickerstaffe and
Makalic [43] look at a decision stump that discriminates “rock” and “classical”
music. As another example, Abesser et al. [5] provide the details of a decision
tree algorithmically built for discriminating between 13 genres.

Another experimental design is Cluster [22, 33, 66, 67, 72, 107, 126, 136, 189,
196, 218, 236, 237, 242, 253, 261, 301, 302, 304, 318, 320, 334, 350, 351, 365, 415, 417,
430, 438]. For instance, Rauber and Frühwirth [350] employ the self-organizing
map method with features extracted from 230 music excerpts, and analyze the
contents of the resulting groupings. We find that both Classify and Cluster are
used in about 2.6% (12) of the experimental work [33, 72, 126, 189, 196, 242, 253,
261,301,320,430,438]. A seventh experimental design is Retrieve, which appears
in at least 19 works [10,46,57,61,86,118,119,121,203,222,232,262,320,348,384,
388,446,447,466]. For instance, Kuo and Shan [203] incorporate style recognition
into their music retrieval system.

An eighth experimental design is Eyeball, which appears in at least 29 works
[26, 29, 44, 83, 91, 105, 146, 149, 155, 166, 173, 189, 218, 242, 259, 261, 288, 300, 302,
304,310,314,320,358,360,402,403,413,463]. For instance, Dannenberg et al. [83]
visually inspect class separability for a few pairs of features to explore the reason
for a discrepancy in performance in identifying style between an expert approach
and machine learning approach. Bigerelle and Iost [44] visually compare means
of fractal dimensions computed from several musical excerpts of various genres.
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A ninth experimental design is Robust [3,10,21,27,38,48,49,52,55,58,75,79,
131,142,200,235,247,267,268,290,313,320,333,347,387,388,401,409,428,439]. For
instance, Porter and Neuringer [347] test whether pigeons that have been taught
to discriminate between music by J. S. Bach and Hindemith demonstrate their
ability regardless of excerpt content and loudness. Soltau et al. [401] investigate
the variability of their system using Classify by using features computed from
excerpts of several durations. Burred and Lerch [48] consider the effect of noise
and filtering in feature extraction using Classify.

The final experimental design we consider is Compose, which appears in only
three works [80,82,409]. For instance, Cruz and Vidal [80,82] invert their music
style identification system to compose music in the styles it has learned, which
the authors then qualitatively evaluate. While Cruz and Vidal do not directly
use this as a means to assess the extent to which their system has learned a
style, [409] shows by a formal listening test that excerpts composed to be genre-
representative by two high-accuracy MGR systems embody little in common
with what is commonly held to be characteristic of those genres.

The bias that results from training and testing MGR systems using music
data from the same artist and/or excerpted from the same album are well-
documented, e.g., [117–119,319]. Among the 435 works that include experimental
work, we find that only 8.3% (36) explicitly mention the use of an artist or album
filter [30,57,74–76,117–119,153,174,187,194,209,222,225,239,254,262,266,319,
320,349,353,355,367–369,376,378,381,383,384,401,418,447,461], or attempt to
apply one to datasets without known artists [382]. The earliest article applying
an artist filter is from 1998 by Soltau et al. [401].

We find that at least twelve works use human evaluation in the analysis of the
experiment [22, 46, 80, 82, 83, 260, 320, 347, 409, 410, 434, 447]. For instance, Dan-
nenberg et al. [83] discuss the performance of their system in a live-performance
context. Cruz and Vidal [80] rate the quality of the melodies composed by their
style recognition system. And Pampalk [320] uses a formal listening test to show
genre labels are strongly correlated with perceptual similarity.

Figure 1 shows the number of experimental works employing formal statistics
over each year. Only 16.5% (72) of the experimental work we survey contains
formal statistical testing [9,15,25,27,37,44,46,58,68,75,79,114–117,121,122,124,
131, 132, 145, 146, 169, 174, 201, 221, 252, 258, 272, 273, 275, 277, 278, 283–285, 289–
291, 295–299, 304, 308–310, 314, 317, 320, 333, 337, 341, 349, 357, 377, 384, 395, 397,
409–412,422,434,439,440,444,447,457,466]. For instance, Flexer [116] provides
excellent argumentation for the need for statistical testing in music information
research, and provides a demonstration of its use in comparing the performance
between two MGR systems. We find half of the work using living subjects (11
of 22) employ formal statistical tests [58, 79, 131, 169, 201, 258, 278, 290, 317, 439,
440]. For instance, Chase [58] uses a one-tailed paired t-test of percentages of
non-responses of koi fish to test the null hypothesis that the koi are unable to
discriminate between music that uses Blues or Classical genres.

Nearly half (213) of the experimental work we survey employs only one
experimental design from Table 1. For instance, in several formal MGR chal-
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lenges [170, 171, 293–299], performance is evaluated only by Classify. We find
about 32% (142) of the work we survey employ two experimental designs. For
instance, Golub [132] uses Classify to test his MGR system for a three-genre
problem, and then uses Scale to observe how its behavior changes when he aug-
ments the dataset with four other genres. More than 18% (80) employ more than
two experimental designs. For instance, the only two experimental designs not
used by Pampalk [320] are Rules and Compose.

2.2 Datasets

We find that of the works we survey having experimental components (435)
over 58% (253) use private data [1–5, 7–11, 13–16, 18, 19, 22, 26, 28–31, 34, 40, 43–
49, 53, 56–58, 62–70, 72, 73, 79–83, 87–89, 91–99, 104, 105, 109–111, 118–120, 125–
128, 130–138, 142–146, 148–151, 154, 156–160, 163, 164, 166, 169, 172, 173, 175, 176,
178–180,184–188, 190, 191, 193, 196, 197, 199–205,207, 209–211,217–221, 225, 226,
228, 229, 231, 232, 242, 243, 245–253, 255, 257–261, 266, 271–275, 277, 281, 287–292,
300–305,308, 312, 313, 317–320,327–331, 334–342,344, 346–348, 350, 358, 360, 361,
363–365,372, 374, 385–387, 389, 390, 401, 413, 416, 418, 425–435, 437–440,443–448,
452, 453, 455, 458, 459, 462–465, 467]. Of those works that use private data, we
find over 75% (191) exclusively use private data. Some work provides a detailed
description of the composition of the data such that one can recreate it. For
instance, Tsatsishvili [418] lists the 210 names of the albums, artists, and songs
in his dataset. Schedl et al. [374] provide a URL for obtaining the list of the
artists in their dataset, but the resource no longer exists. Mace et al. [258] also
provide a list, but since they only list the song and artist name uncertainty
arises, e.g., which recording of “The Unanswered Question” by Ives do they use?
It is impossible to recreate the dataset used in [48,49] since they only state that
they assemble 850 audio examples in 17 different genres. We find that about
51% (224) of the works we survey having experimental components use datasets
that are publicly available. Of these, over 79% (177) only use public data.

Table 2 lists 18 publicly available datasets used in the work we survey.
GTZAN appears in 23% (100) of the work having an experimental compo-
nent [6, 12, 15, 17, 19, 27, 33, 35–39,41, 46, 55, 59–61, 94, 103, 121, 122, 124, 129, 146,
147, 153, 155, 161, 162, 182, 183, 195, 200, 206, 214, 222, 223, 226, 227, 230–232, 234,
235, 238–240, 243, 244, 249, 263–265, 269, 276, 303, 306, 321–326, 352, 356, 357, 361,
362, 364, 371, 377, 379–382, 384, 387, 388, 405–407, 409–412, 416, 419–422, 426, 427,
450,451,454,456,457,461,466]. This dataset has only recently been analyzed and
shown to have faults [408]. The second most-used publicly available dataset is
that created for the 2004 Audio Description Contest of ISMIR [170], which ap-
pears in 76 works [15,32,45,50,75,94,114,116,117,161,162,167,170,174,189,208,
209,212–216,222,223,225,238–240,242,243,256,264–268,276,290,303,311,319–
327, 332, 342, 343, 345, 357, 359, 366, 367, 370, 377, 379, 381, 382, 384, 395–397, 402,
403,412,417,424,436,450,457,460,461]. Datasets derived from Magnatune, e.g.,
Magnatagatune [485] but excepting ISMIR2004 [170], appear in at least 5.7%
(25) of the references having an experimental component [16,28–31,38,112,113,
146,225,269,290,293,319,320,342,349,353,355,367–369,414,446,447].
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Table 2. Datasets used in MGR, the type of data they contain, the references
in which they are used, and the percentage of experimental work (435) that use
them. All datasets listed after Private are public.

Dataset Description %

Private Constructed for research but not made available; used in: see text 58.2

GTZAN
Audio; http://marsyas.info/download/data_sets;
used in: see text

23.0

ISMIR2004
Audio; http://ismir2004.ismir.net/genre_contest;
used in: see text

17.4

Latin [394]
Features; http://www.ppgia.pucpr.br/~silla/lmd/;
used in [74–76,97,102,242,254,267,268,295–299,377,391–397]

5.1

Ballroom
Audio; http://mtg.upf.edu/ismir2004/contest/tempoContest/;
used in [115,139–141,163,164,333,345,378,381,382,384,419–421]

3.4

Homburg [165] Audio; http://www-ai.cs.uni-dortmund.de/audio.html; used in
[20,21,46,108,165,302,303,307,345,353,355,378,381,382,384]

3.4

Bodhidharma
Symbolic; http://jmir.sourceforge.net/Codaich.html;
used in [52,86,128,192,279–281,284,285,293,399]

2.5

USPOP2002
[482]

Audio; http://labrosa.ee.columbia.edu/projects/musicsim/

uspop2002.html; used in [38,42,239,262,290,293,349,354]
1.8

1517-artists
Audio; http://www.seyerlehner.info;
used in [378,381–384]

1.1

RWC [483]
Audio; http://staff.aist.go.jp/m.goto/RWC-MDB/;
used in [106,107,153,353]

0.9

SOMeJB
Features; http://www.ifs.tuwien.ac.at/~andi/somejb/;
used in [177,236,237,351]

0.9

SLAC Audio & symbols; http://jmir.sourceforge.net/Codaich.html;
used in [283–286]

0.9

SALAMI [400]
Features; http://ddmal.music.mcgill.ca/research/salami;
used in [309,310,400]

0.7

Unique
Features; http://www.seyerlehner.info;
used in [381,382,384]

0.7

Million
Song [484]

Features; http://labrosa.ee.columbia.edu/millionsong/;
used in [90,168,376]

0.7

ISMIS2011
Features; http://tunedit.org/challenge/music-retrieval;
used in [171,194,375]

0.4

Over 79% (344) of the experimental work we survey approaches MGR using
audio data or features of audio [1–3, 6–10, 12, 13, 15–22, 27–32, 35–39, 42, 44–50,
52,55–58,60–64,68,73–76,79,88–93,96,97,99,102–119,121,122,124,127,129–141,
143–151,153–155,161–165,167–179,182,183,186–191,193–195,200,201,204–217,

http://marsyas.info/download/data_sets
http://ismir2004.ismir.net/genre_contest
http://www.ppgia.pucpr.br/~silla/lmd/
http://mtg.upf.edu/ismir2004/contest/tempoContest/
http://www-ai.cs.uni-dortmund.de/audio.html
http://jmir.sourceforge.net/Codaich.html
http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
http://www.seyerlehner.info
http://staff.aist.go.jp/m.goto/RWC-MDB/
http://www.ifs.tuwien.ac.at/~andi/somejb/
http://jmir.sourceforge.net/Codaich.html
http://ddmal.music.mcgill.ca/research/salami
http://www.seyerlehner.info
http://labrosa.ee.columbia.edu/millionsong/
http://tunedit.org/challenge/music-retrieval
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Fig. 3. The number of experiments in this survey employing datasets with spe-
cific numbers of labels.

222,223,225–228,230–232,234–240,244,246–250,252,254–256,258,260–269,271,
273–277,283,285–307,309–313,317–320,327–334,341–345,347–353,355–362,364–
372,375,376,378–384,386–397,401–403,405–407,409–412,414,416–422,424–433,
436–440, 443–448, 450–457, 459–467]. The use of symbolic data, e.g., MIDI and
humdrum, appears in over 18% (81) of these references [1–5, 11, 13–15, 26, 34,
43,52,53,65–67,69,70,72,80–83,86,87,94,95,120,128,156–160,166,180,184,185,
192, 196, 197, 199, 202, 203, 218–221, 229, 240, 243, 245, 251, 253, 257, 259, 261, 279–
281, 283–286, 293, 335–341, 346, 363, 385, 399, 413, 428, 434, 435]. We find about
6% (27) of the work having an experimental component approaches MGR using
other kinds of data, e.g., lyrics, co-occurrances on the WWW, album covers, and
so on [25,40,62,98,125,142,272–277,283–286,308,309,354,374,381,415,438,448,
458,464,465].

Figure 3 shows the number of experiments in the evaluative work we survey
using datasets with specific numbers of labels. We can clearly see the influence of
the GTZAN (10 genre labels) and ISMIR2004 (6 genre labels) datasets. We find
16 works using datasets having 25 or more labels [25,30,31,40,106,107,153,199,
228, 232, 280, 309, 353, 376, 434, 437], and only two using datasets having more
than 100 labels [40, 437]. Over 72% (316) of the papers with an experimental
component uses only a single dataset, at least 20% (90) use two datasets, and
6.2% (27) use more than two datasets. Three references provide no details about
the dataset used [54,145,331].

We find a majority of the works with experimental components involves
datasets that consist primarily of Western music. For instance, the label “classi-
cal” is part of GTZAN, ISMIR2004, and RWC, and exists in the private datasets
used in [22, 125, 144, 146, 173, 209, 225, 246, 266, 313, 341, 342, 344, 360, 363, 387].
The label “blues” is in GTZAN, ISMIR2004, and Homburg, and exists in the
private datasets used by [4, 5, 19, 22, 125, 313, 342, 344, 358, 387]. And the label
“jazz” is in GTZAN, ISMIR2004, Homburg, and RWC, and exists in the private
datasets used by [19,22,57,125,144,146,173,209,225,229,266,303,313,341,342,
344,358,360,387,389]. However, we find that only about 10% (48) of the private
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datasets used include music from around the world, such as Asia, Africa, and
South America [3–5,11,19,22,57,96–98,125,133–135,137,163,164,173,179,187,
202, 205, 209, 225, 229, 242, 243, 247–250, 255, 257, 266, 303, 308, 312, 313, 342, 344,
358, 360, 363, 385, 389, 430, 462, 463]. Finally, we find only 5% (22) of the work
with experimental components perform human validation of the “ground truth”
labels in the public and/or private datasets used [8, 9, 34, 45, 79, 246, 247, 287,
289–291, 301, 346, 366, 367, 370, 383, 387, 394, 401, 408, 434]. For instance, Soltau
et al. [401] validate the labels in their private four-class dataset with a human
listening experiment.

2.3 Figures of Merit (FoMs)

Table 3 defines several FoMs we find in the work we surveyed. The FoMs most
often reported in the work we survey here are those that accompany the Clas-
sify experimental design: Mean accuracy, Recall, Precision, F-measure, Receiver
Operating Characteristic (ROC), and the Contingency table. We find Mean ac-
curacy in over 82% (385) of the references. For instance, Fu et al. [123] compare
the reported mean accuracies of 16 MGR algorithms using Classify in GTZAN.
This computation can also involve taking into consideration “partial credit” for
labelings in the correct hierarchical branch, e.g., [293,294,296]. When it appears,
Mean accuracy is accompanied by a standard deviation (SD), or standard error
of the mean (SEM), about 25% (96) of the time. For instance, [116] uses these
statistics to test the null hypothesis that the Mean accuracy of two MGR systems
are not significantly different.

We find Recall in over 25% (119) of the references. For instance, this FoM
appears in the MIREX evaluations of MGR algorithms [295, 297–299]. When it
appears, Recall is accompanied by the standard deviation or standard error of
the mean in about 10% (12) of the references. Precision appears in over 10% (47)
of the references. Together, Mean accuracy, Recall and Precision appear in over
6% (31) of the work we survey. The F-measure can be computed in “Micro form”
and “Macro form” [437], but we make no distinction here. This FoM appears
in at least 17 works. For instance, Burred and Peeters [50] cite the F-measure
of their MGR system, as well as its Mean accuracy, Recall, and Precision. We
find the ROC in only 7 references [105,121,245,349,432,440,466]. For instance,
Watanabe and Sato [440] plot the ROC of their sparrows trained to discriminate
Baroque and Modern music.

We find a Contingency table reported in over 32% (150) of the work we survey.
For instance, Soltau et al. [401] show their MGR system often confuses the music
in their private dataset having the labels “rock” or “pop,” and rarely confuses
music labeled “classic” with music labeled “techno” or “rock.” Of those works
that present contingency tables, only 52% (78) of them are accompanied by some
musical reflection of the results. For instance, in the analysis of their Contingency
table, Dixon et al. [93] reason that the high number of confusions produced
between three of eight classes come from the fact that they are indistinguishable
using meter- and tempo-sensitive features employed in their system. When they
expand their feature set, the new Contingency table confirms this hypothesis.
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Table 3. Figures of merit (FoMs) of MGR, their description, and the percentage
of work (467) that cite them

FoM Description %

Mean accuracy Proportion of the number of correct trials to the total number of
trials of the system

82

Contingency
table

Counts of labeling outcomes of the system for each labeled input 32

Recall Proportion of the number of correct trials of the system to the
total number of a specific input label

25

Confusions Discussion of confusions of the system in general or with specifics 24

Precision Proportion of the number of correct trials of the system to the
total number of a specific output label

10

F-measure Twice the product of Recall and Precision divided by their sum 4

Composition Observations of the composition of clusters created by the system,
and distances within and between

4

Precision@k Proportion of the number of correct items of a specific label in
the k items retrieved by the system

3

ROC Precision vs. Recall for several systems, parameters, etc. 1

General discussions about observed confusions without reference to a Contin-
gency table are reported in over 8% (39) of the references. For instance, Matityaho
and Furst [271] note that their MGR system trained to discriminate between mu-
sic labeled “classic” and “pop” classifies as “classic” a signal of complete silence
and a “complex tone,” and as “pop” a signal of white noise. Using Eyeball,
Bigerelle and Iost [44] argue that “Music classification becomes very logical [by
comparing the fractal dimension]. ... Progressive music has the same fractal di-
mension as the electronic one: we could explain this fact by the abundance of
synthesizers used in progressive music.” Only 15 works mention confusions in
detail, e.g., a specific piece of misclassified music [3,68,98,210,228,301,342,366,
367, 370, 407–410, 412]. For instance, [410] notices that one MGR system per-
sistently misclassifies as Hip hop “Kung Fu Fighting” by Carl Douglas, and as
Classical “Why?” by Bronski Beat.

We find over 44% (175) of the 397 works employing Classify report only one
FoM and over 53% (214) report more than one FoM. Only 21 present four or more
FoM [6, 34, 50, 56, 93, 156, 188, 200, 208, 238–240, 333, 353, 355, 367, 368, 410, 412,
418, 433]. For instance, Lidy [239] reports mean accuracies, recalls, precisions,
F-measures, and contingency tables of the systems he tests.

The FoM most often reported in the case of the Retrieve experimental de-
sign is Precision@k. This FoM is reported in 12 of the 19 works using Re-
trieve [10,57,61,86,203,222,262,320,384,446,447,466]; and [388] reports “normal-
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ized precision” and “normalized recall,” which takes into account the ranking
of retrieved elements. Of the references using Retrieval, the ROC is reported
in [121,466]. For instance, Fu et al. [121] plot the ROC of four systems to show
their retrieval approach provides statistically significant improvement.

The FoMs most often reported in the case of Cluster experimental design are
based on observations of the cluster compositions. The contents of clusters are
analyzed in over 62% (18) of the Clustering experiments [33,107,136,196,236,237,
253, 301, 302, 304, 318, 320, 334, 350, 351, 365, 415, 430]. For instance, Rauber and
Frühwirth [350] show that one cluster created by the self-organizing map method
consists mainly of music labeled “classical.” Comparisons of cluster distances,
e.g., that within classes to that between classes, are reported in five works [22,
72, 302, 318, 334]. For instance, Aucouturier and Pachet [22] compare average
distances between neighbors of the same class to those between neighbors of
different classes. Visualizations of the clusters, e.g., using self-organizing maps,
are presented in seven works [189, 218, 241, 242, 350, 351, 473]. Both [233, 417]
report the “purity” of a collection of clusters, which measures the mean class
homogeneity of the clusters.

Human-weighted ratings of classification and/or clustering results are re-
ported in at least six works [22,154,203,246,366,370]. Other FoMs include, “stay-
ing time” [278,439] (measuring the time during which the subject stayed in the
presence of musical stimuli for particular classes), “stability measure” [161,162]
(essentially inter-intra class distance), “Hamming loss” [367–369] (describing
instance-label pair misclassifications in a multilabel scenario), and “persistent
misclassifications” [65,342,409,410] (noting instances that a system always mis-
labels).

3 Conclusion

While genre is an inevitable condition of human communication in general [469],
a way to automatically identify it in music remains elusive. In this paper, we
have attempted to present an exhaustive survey of evaluation in MGR, and to
organize it along three dimensions: experimental design, datasets, and figures
of merit. By the sheer size of this task, it is certain that we have missed some
relevant work, misunderstood aspects of evaluation in some of the works we cite,
and committed errors in the bibliography. We will thus continue to maintain this
bibliography, and expand it when new work is published.
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27. Bağci, U., Erzin, E.: Automatic classification of musical genres using inter-
genre similarity. IEEE Signal Proc. Letters 14(8) (Aug. 2007) 521–524

28. Balkema, W.: Variable-size gaussian mixture models for music similarity
measures. In: Proc. ISMIR. (2007) 491–494

29. Balkema, W., van der Heijden, F.: Music playlist generation by assimilating
GMMs into SOMs. Pattern Recog. Lett. 31(1) (2010) 1396–1402

30. Barbedo, J.G.A., Lopes, A.: Automatic genre classification of musical sig-
nals. EURASIP J. Adv. Sig. Process. (2007)

31. Barbedo, Jayme Garcia Arnal; Lopes, A.: Automatic musical genre classifi-
cation using a flexible approach. J. Audio Eng. Soc 56(7/8) (2008) 560–568



15

32. Barbieri, G., Esposti, M.D., Pachet, F., Roy, P.: Is there a relation between
the syntax and the fitness of an audio feature? In: Proc. ISMIR. (2010)

33. Barreira, L., Cavaco, S., da Silva, J.: Unsupervised music genre classifica-
tion with a model-based approach. In: Proc. Portugese Conf. Progress in
Artificial Intell. (2011) 268–281

34. Basili, R., Serafini, A., Stellato, A.: Classification of musical genre: A
machine learning approach. In: Proc. ISMIR. (2004)

35. Behun, K.: Image features in music style recognition. In: Proc. Central
European Seminar on Computer Graphics. (2012)

36. Benetos, E., Kotropoulos, C.: A tensor-based approach for automatic music
genre classification. In: Proc. EUSIPCO, Lausanne, Switzerland (2008)

37. Benetos, E., Kotropoulos, C.: Non-negative tensor factorization applied
to music genre classification. IEEE Trans. Audio, Speech, Lang. Process.
18(8) (Nov. 2010) 1955–1967

38. Bergstra, J., Casagrande, N., Erhan, D., Eck, D., Kégl, B.: Aggregate
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