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Abstract. Recently, ranking-based semantics is proposed to rank-order argu-
ments from the most acceptable to the weakest one(s), which provides a graded
assessment to arguments. In general, the ranking on arguments is derived from the
strength values of the arguments. Categoriser function is a common approach that
assigns a strength value to a tree of arguments. When it encounters an argument
system with cycles, then the categoriser strength is the solution of the non-linear
equations. However, there is no detail about the existence and uniqueness of the
solution, and how to find the solution (if exists). In this paper, we will cope with
these issues via fixed point technique. In addition, we define the categoriser-based
ranking semantics in light of categoriser strength, and investigate some general
properties of it. Finally, the semantics is shown to satisfy some of the axioms that
a ranking-based semantics should satisfy.
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1 Introduction

The field of computational models of argumentation [1] aims at reflecting on how hu-
man argumentation utilizes incomplete and inconsistent knowledge to construct and
analyze arguments about the conflicting options and opinions.

The most popularly used framework to talk about general issues of argumentation
is that of abstract argumentation [2], which provides a unifying and powerful tool for
the study of many formal systems developed for common-sense reasoning. In the past
nearly 20 years, several different kinds of semantics for abstract argumentation system
have been proposed that highlight various aspects of argumentation [3, 4, 5]. Those se-
mantics partition the set of arguments into two classes: extensions and non-extensions.
Each extension is a set of arguments, which is able to “survive together” and represents
a coherent point of view. In order to reason with a semantics one has to take either a
credulous or skeptical perspective. In other words, an argument is ultimately accepted
with respect to a semantics if it belongs to every extension; an argument is rejected
if it dose not belong to any extension; and an argument is undecided if it is in some
extensions and not in others.

? This work is supported by the Funds NSFC61171121, NSFC60973049, and the Science Foun-
dation of Chinese Ministry of Education-China Mobile 2012.
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However, those semantics may exhibit a variety of problematic aspects such as
emptiness, non-existence, multiplicity [6] when encountering cycles, and are not suit-
able for practical applications in some scenarios. Considering an argument system
whose grounded extension is empty, for example, if one must make a choice, then the
grounded semantics is unavailable since all arguments are unacceptable in this case.

Recently, [7] introduces a new family of semantics, which provide a graded as-
sessment to arguments, i.e., it ranks arguments from the most acceptable to the weakest
one(s). In fact, this line of thinking has been mentioned in [8], in which two approaches,
generic local valuation and global valuation, are proposed to evaluate the strength of an
argument, and then a preordering (ranking) on arguments is induced by those strength
values. In particular, the authors show that the approach for local valuation generalizes
the categoriser function [9], and enables to handle cycles, then the strength valuation is
the solution of second-degree equations. However, there is no detail about the follow-
ing questions: Does there exist a solution for these equations? If it exists, is it unique or
multiple and how to find them?

In this paper, we expect to tackle these issues by fixed-point technique. In addition,
a ranking-based semantics, called categoriser-based ranking semantics, is defined in
the light of categoriser valuation, and some of its properties are investigated. Lastly, we
prove that the semantics satisfies some of the axioms, proposed by [7], which a ranking-
based semantics should satisfy. The remainder of this paper is structured as follows.
In Section 2, we briefly recall some backgrounds on abstract argumentation and the
ranking-based semantics for argumentation frameworks. In Section 3, we employ the
fixed-point technique to analyze the categoriser strength valuation for argumentation
system, and the categoriser-based ranking semantics is defined. We relate the semantic
with [7] in Section 4 and conclude in Section 5.

2 Preliminaries

2.1 Abstract Argumentation Framework

Abstract argumentation frameworks [2] convey a very simple view on argumentation
since they do not presuppose any internal structure of an argument. Here, the interac-
tions among arguments are attack relations, which express conflicts between them.

Definition 1 (Abstract Argumentation Framework). An argumentation framework
is a pair AF = 〈X ,R〉 where X is a finite set of arguments andR ⊆ X ×X is a binary
relation on X , also called attack relation. (a, b) ∈ R means that a attacks b, or a is a
(direct) attacker of b. Often, we write (a, b) ∈ R as aRb.

We denote by R−(x) (respectively, R+(x)) the subset of X containing those ar-
guments that attack (respectively, are attacked by) the argument x ∈ X , extending this
notation in the natural way to sets of arguments, so that for S ⊆ X , R−(S) , {x ∈
X : ∃y ∈ S such that xRy} andR+(S) , {x ∈ X : ∃y ∈ S such that yRx}.

A set S ⊆ X is conflict-free iff S ∩ R−(S) = ∅. Let F : 2X 7→ 2X be the
characteristic function of an argument system such that F(S) = {x ∈ X : R−(x) ⊆



R+(S)}. We define the defenders of an argument x, denoted by D(x), are the attackers
of the elements ofR−(x). Formally, D(x) = {y ∈ X : y ∈ R−

(
R−(x)

)
}.

To define the solutions of an argument system, we mean selecting a set of arguments
that satisfy some acceptable criteria. Let S ⊆ X be conflict-free, then, S is admissible
iff S ⊆ F(S); S is a preferred extension iff it is a maximal (w.r.t. ⊆) admissible set; S
is a complete extension iff S = F(S); S is a grounded extension iff it is the minimal
(w.r.t.⊆) complete extension (or, alternatively, it is the least fixed point F); S is a stable
extension iffR+(S) = X\S.

Example 1. Let us consider the abstract argumentation framework illustrated in Fig-
ure 1, in which vertices represent arguments and direct arcs correspond to attacks (i.e.
elements of R). For this example, {x1, x3} is the preferred, complete and grounded
extension, however, there exist no stable extensions at all.

x4

x1

x3

x2

x5

Fig. 1. A simple example of argumentation framework

From the above example, it is shown that an abstract argumentation framework can
be represented as a digraph, known as attack graph. One of the often-used ways is to
represent a digraph as 0-1 matrix for computational purposes. For an argumentation
system AF = 〈X ,R〉 with X = {x1, x2, · · · , xn}, we define the attack matrix of AF
as the n× n matrix D = [dij ] such that dij = 1 if xjRxi; otherwise, 0.1 For instance,
the attack matrix of the argument system in Example 1 is

D =


0 0 0 1 0
0 1 0 1 1
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1


Moreover, we denote the i-th row of D by Di?, which can indicate some information
about the direct attackers of argument xi, e.g., the sum of Di∗ shows the number of
attackers of xi.

2.2 Ranking-based semantics for argument system

In order to provide a graded assessment to arguments, [7] proposes ranking-based se-
mantics which rank-order the set of arguments from the most acceptable to the weakest
one(s). This novel approach is distinct from the already existing semantics which assign
an absolute status (accepted, rejected and undecided) for each argument. It compares

1 In fact, the attack matrix of an argumentation framework is the transpose of the adjacency
matrix of its corresponding attack graph.



pairs of arguments in the light of their respective sets of attackers, and states which
arguments is more acceptable than another.

Before proceeding let us first formally characterize what we mean by the statements
“ranking” in light of linear orderings [10].

Definition 2 (Ranking). Let T be some set. A ranking � on T is a binary relation on
T such that:

– � is total (i.e. for all x, y ∈ T , x � y or y � x);
– � is transitive (i.e. for all x, y, z ∈ T , if x � y and y � z, then x � z).

Let R(T ) be the set of all rankings on T .

In this paper, we give x � y the meaning that x is at least as acceptable as y.
This may be more intuitive than that of [7], in which the meaning of x � y is just the
opposite. Formally, x ' y if and only if x � y and y � x, which means x and y are
equally acceptable. Moreover, x � y, means x is strictly more acceptable than y, if and
only if x � y but not y � x.

Definition 3 (Ranking-based Semantics). Let GX be the set of all argument systems
with finite argument set X . A ranking-based semantics is a function Γ : GX 7→ R(X ).

In other words, for a given argumentation framework AF = 〈X ,R〉, the ranking-
based semantics Γ will transform X into a ranking �AF

Γ ∈ R(X ).
Generally, the ranking on arguments is induced by the strength values of the argu-

ments. One of the most common approaches is categoriser function [9], which assigns
a strength value to each argument. We will discuss it in the next section.

3 Argument ranking with categoriser function

3.1 Categoriser function for strength valuation

“Categoriser” function is originally used for “deductive” arguments, where an argument
is structured as a pair 〈Φ, φ〉, where Φ is a set of formulae, called premise, φ is a
formula, called claim, and Φ entails φ. The attack relation considered here is canonical
undercut and cycles are not allowed. The notion of an “argument tree” captures a precise
and complete representation of attackers and defenders of a given argument, root of
the tree. Then, categoriser function assigns a value to a tree of arguments. This value
represents the relative strength of an argument (root of the tree) given all its attackers
and defenders. The categoriser function, denoted by C, is defined as

C(xi) =

{
1 ifR−(xi) = ∅
1

1+C(x′
1)+···+C(x′

n) ifR−(xi) 6= ∅ withR−(xi) = {x′1, · · · , x′n}
(1)

Intuitively, the larger the number of defeaters of an argument, the lower its value. The
larger the number of defenders of an argument, the larger its value.

Note that, in the work of [9], categoriser function solely handles acyclic graphs.
However, Cayrol et al. reveal that the categoriser function is an instance of their generic



local valuation [8], thus making it possible to cope with cycles. In this case, the strength
values are the solution of non-linear equations. Specifically, let 〈X ,R〉 be an argu-
ment system with X = {x1, x2, · · · , xn}, and its attack matrix be D, and suppose the
strength values of all arguments be column vector v, of which the i-th component, de-
noted by vi or v(xi), represents the strength value of xi, then the strength values are
the solution of the following n equations:

vi = 1/(1 + Di∗ · v), i = 1, 2, · · · , n (2)

Remark 1. (2) exactly expresses the categoriser functions in (1) irrespective of whether
R−(xi) is empty or not, as the item Di∗ · v exactly indicates the sum of the strength
values of all attackers of xi.

Remark 2. We merely consider all strength values as nonnegative real numbers, i.e.,
vi ≥ 0 for all i. Combining with (2), we can easily know vi ∈ [0, 1] (actually vi ∈
(0, 1]). This means that if the solution of (2) exists, it must be in [0, 1]n.

3.2 Fixed point schema for categoriser equations

In [8], the authors show a simple example to evaluate arguments in a isolated cycle with
categoriser valuation by solving second degree equations. For a complex argumentation
system, however, no details are available about these questions: Do these equations al-
ways exist solutions in the reals and how many real solutions exist? If the real solutions
exist, how should we find them? In this subsection, we will address these questions
through fixed-point techniques.

Firstly, let us transform the equations into the fixed-point form [11]:

v = F (v) = [f1(v), f2(v), · · · , fn(v)]T (3)

where function F maps [0, 1]n into [0, 1]n, and the function fi from [0, 1]n to [0, 1],
called the coordinate function of F , is defined by the categoriser function, i.e.,

fi(v) = 1/(1 + Di∗ · v) (4)

Intuitively, F (0) = 1, where the bold 0 (respectively, 1) is an appropriately dimen-
sioned column vector of all 0’s (respectively 1’s). Sometimes, we also write fi(v) as
the function of v and Di∗, i.e.,

fi(v) = f(v,Di∗) (5)

Clearly, the function f(v,Di∗) is a non-increasing function with respect to v and Di∗.
Note that f(v,0) = 1 for any v ∈ [0, 1]n.

We convert the original problem into a fixed point problem. Then, finding the solu-
tions of the categoriser equations is equivalent to finding the fixed-points of F . In other
words, a fixed-point of F is a solution of (2). Now, let us give the following theorem,
which shows that the solution of categoriser equations always exists.

Theorem 1 (Existence of categoriser valuation). For any argumentation framework
AF = 〈X ,R〉 with X = {x1, x2, · · · , xn}, the categoriser valuation defined in (2) has
at least one solution in [0, 1]n.



Proof (Sketch). We prove the equivalence result that function F has at least one fixed
point. The proof uses Brouwer’s fixed point theorem [12, Thm 2.14, pp. 24] and the
observation that [0, 1]n is homeomorphic to a closed ball (closed, bounded, connected
and without holes) and function F is continuous on it. ut

The previous theorem is of utmost importance if we are to widely use categoriser
valuation, since one would be turned away from an argumentation system that is not
capable of assigning meaningful strength values (real solution) to arguments in all case.

Next we focus on the existence of a unique valuation. Assigning multiple solutions
to an argumentation framework may be more interesting from a theoretical perspective,
but we look forward to the kind of users of this framework to expect a unique valuation.
One intuitive application of a unique categoriser valuation is that it may help removing
ambiguity on argument ranking. We will show that for every argumentation system
there always exists a unique categoriser valuation, and the valuation can be calculated
by fixed point iteration.

Theorem 2 (Uniqueness of categoriser valuation). Let AF = 〈X ,R〉 be an argu-
ment system with X = {x1, x2, · · · , xn}. Then, the categoriser equations defined in
(2) has a unique solution v∗ ∈ [0, 1]n, which is the limit of the sequence of {v(k)}∞k=0,
defined from an arbitrarily selected v(0) in [0, 1]n and generated by

v(k) = F (v(k−1)), for each k ≥ 1 (6)

Proof. Let u(0) = 0, u(1) = F (u(0)) = 1 and u(k) = F (u(k−1)) for each k ≥ 2.
Then, we can easily know that

u(0) ≤ u(2) ≤ u(1) (7)

and that there exists 0 < ϕ < 1 such that

ϕu(1) ≤ u(2) (8)

Since F is non-increasing (i.e., for any u,v ∈ [0, 1]n, if u ≤ v then F (u) ≥ F (v)),
by applying F on (7) and by induction, it is easy to see that

0 = u(0) ≤ u(2) ≤ · · · ≤ u(2k) ≤ · · · ≤ u(2k+1) ≤ · · · ≤ u(3) ≤ u(1) = 1 (9)

On the other hand, from (8) and (9), we find ϕu(2k−1) ≤ u(2k) for each k ≥ 1. Letting
πk = sup{π : πu(2k−1) ≤ u(2k)}, then πku(2k−1) ≤ u(2k) and 0 < ϕ ≤ π1 ≤ · · · ≤
πk ≤ · · · ≤ 1. In the following, we prove that limk→∞ πk = 1.

Note that fi(πu) = 1
π+fi(u)(1−π)fi(u) for all i ∈ {1, 2, · · · , n}, then there exists

0 < α < 1 and a continuous function ψ(π) = 1
π+α(1−π) such that

F (πu) ≤ ψ(π)F (u), ∀π ∈ [ϕ, 1),u ∈ [ϕ, 1]n (10)

Then, by (9), (10) and the non-increasing property of F , we have

u(2k+1) = F (u(2k)) ≤ F (πku
(2k−1)) ≤ ψ(πk)u(2k) ≤ ψ(πk)u(2k+2) (11)



Algorithm 1: Fixed-point iteration for categoriser valuation
Input: Dn×n: attack matrix; ε: prescribed tolerance;
Output: v(k): the approximate solution of the categoriser equations

1 begin
2 k ←− 0; v(0) ←− 1;
3 repeat
4 k ←− k + 1;
5 v

(k)
i = f(v(k−1),Di∗) for each i ∈ {1, 2, · · · , n};

6 until ‖v(k) − v(k−1)‖ 6 ε;
7 return v(k);
8 end

which implies that πk+1 ≥ 1
ψ(πk) = πk + α(1− πk). So,

1− πk+1 ≤ (1− α)(1− πk) ≤ · · · ≤ (1− α)k(1− π1) ≤ (1− α)k(1− ϕ) (12)

As 0 < α < 1, thus by (12) we have

lim
k→∞

(1− πk+1) = 0 ⇒ lim
k→∞

πk = 1 (13)

Therefore, by (9) we get, for any integer p ≥ 1

0 ≤ u(2k+2p) − u(2k) ≤ u(2k+1) − u(2k) ≤ (1− πk)u(2k+1) ≤ (1− πk)u(1) (14)

Since [0, 1]n is normal, both {u(2k+1)}∞k=0 and {u(2k)}∞k=1 are convergence sequences.
By (13) and (14), thus, there exists u∗ ∈ [0, 1]n such that

lim
k→∞

u(2k+1) = lim
k→∞

u(2k) = u∗ (15)

Hence u(2k) ≤ u∗ ≤ u(2k−1) and u(2k) ≤ F (u∗) ≤ u(2k+1). Letting k → ∞ and
combining with (15), it follows F (u∗) = u∗, i.e., u∗ is a fixed point of F .

Now, for any v(0) ∈ [0, 1]n and for any k ≥ 1, by induction, we have u(2k) ≤
v(2k) ≤ u(2k−1) and u(2k) ≤ v(2k+1) ≤ u(2k+1). Then v(k) → v∗ = u∗ as k → ∞.
In particular, let v(0) = w∗, where w∗ is any fixed point of F in [0, 1]n, then v(k) = w∗

for all k ≥ 1, and we get w∗ = u∗. So, F has a unique fixed point in [0, 1]n. ut

The proof of this theorem mainly refers to [13, Lmm 2.1]. An approximate calcula-
tion of the unique categoriser valuation v∗ is done by using Algorithm 1. In this paper,
we set the initial strength values v(0) = 1 since we assume that each argument is not
attacked at the beginning and has the maximum strength value 1. The iteration termi-
nates when the change of the sequence {v(k)}∞k=0 is under a given tolerance ε. As the
proof of uniqueness suggests, the estimation of convergence rate of this algorithm is

‖v(2k) − v∗‖ ≤ ‖v(2k) − u(2k)‖+ ‖v∗ − u(2k)‖ ≤ 2‖u(2k+1) − u(2k)‖ (16)

By (12) and (14), we have ‖v(2k)−v∗‖ ≤ 2(1−α)k−1(1−ϕ)‖u(1)‖. Similar argument
gives that ‖v(2k+1) − v∗‖ ≤ 2(1− α)k−1(1− ϕ)‖u(1)‖.



Remark 3. In Algorithm 1, we can see that at each iterative step the strength value of
any argument xi is simultaneously recomputed in the light of its direct attackers (repre-
sented by Di∗) and the strength values in the previous step (i.e., v(k−1)). This exactly
embodies the idea of “local approach” (i.e., the value of an argument only depends on
the values of its direct attackers) in [8].

3.3 Categoriser-based ranking semantics

Now, we have shown that for the categoriser equations there always exists a unique
solution for any argumentation framework. The solution assigns a numerical value to
each argument, which can be interpreted as the strength of the argument. The greater
the strength value, the more acceptable the argument. Thus, we can induce a ranking on
arguments from the unique solution.

Definition 4 (Categoriser-based ranking semantics). Let AF = 〈X ,R〉 be an ar-
gumentation framework, and v∗ be the unique solution of (2). The categoriser-based
ranking semantics is a ranking-based semantic and transforms AF into the ranking �
such that ∀xi, xj ∈ X , xi � xj if and only if v∗(xi) ≥ v∗(xj).

Obviously, the categoriser-based ranking semantics satisfies that for any x ∈ X ,
v∗(xi) = 1 if R−(xi) = ∅; else v∗(xi) < 1, i.e., non-attacked arguments are more
acceptable than attacked ones. Non-attacked arguments are supported by extension-
based semantics. They are part of any extension under complete, preferred, stable and
grounded semantics. Therefore, it is naturel to believe that an argument which has no
attackers is ranked higher than another argument which has attackers.

In addition, we give other properties of the categoriser-based ranking semantics:

Proposition 1. Let xi, xj ∈ X . The categoriser-based ranking semantics satisfies:

[P1]: IfR−(xi) = R−(xj), then xi ' xj .
[P2]: IfR−(xi) ⊆ R−(xj), then xi � xj .

Proof. By (6), the categoriser strength of any argument xi can be written as

v∗(xi) = lim
k→∞

v(k)(xi) = lim
k→∞

fi(v
(k−1)) = lim

k→∞
f(v(k−1),Di∗) (17)

For [P1],R−(xi) = R−(xj) implies that Di∗ = Dj∗, which implies f(v(k−1),Di∗) =
f(v(k−1),Dj∗). By (17), we have v∗(xi) = v∗(xj), i.e., xi ' xj . For [P2],R−(xi) ⊆
R−(xj) means that Di∗ ≤ Dj∗. Since f(v,Di∗) is a non-increasing function of Di∗,
we have f(v(k−1),Di∗) ≥ f(v(k−1),Dj∗). Thus, v∗(xi) ≥ v∗(xj), i.e., xi � xj . ut

This proposition states that two arguments with the same direct attackers have the same
ranking, and an argument, whose direct attackers pertain to the set of direct attackers of
another argument, is at least as more acceptable than the argument.

Let us show an example of how the semantics works:

Example 2. Consider again the argument system in Fig. 1. Let ε = 10−3 and v(0) = e.
Then, the valuation sequence {v(k)}∞k=0, calculated by Algorithm 1, is shown in Fig. 2.
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Fig. 2. Categoriser valuation sequence of Example 1

When k = 0, all arguments have the maximum strength value 1 as we presuppose
each argument is not attacked at the beginning.

When k = 1, then the strength value of each argument merely depends on the
number of its direct attackers since the strength values of all argument from the previous
step are 1. Thus, x3 has the maximum strength value 1 since it has no attacker, followed
by x1 with one attacker, and followed by x4 and x5 with two attackers, and followed
by x2 with three. From another perspective, since R−(x3) ⊂ R−(x1) ⊂ R−(x5) ⊂
R−(x2), then by Proposition 1 we have x3 � x1 � x5 � x2.

When k = 2, after a new round of calculation, the strength value of each argument
is recomputed. But, sinceR−(x3) ⊂ R−(x1) ⊂ R−(x5) ⊂ R−(x2) always holds, the
ranking among them will not be changed. Note that the ranking on x2 and x4 is altered
as the sum of the strength values of the attackers of x2 is greater than that of x4.

......
After finitely many iterations, the valuation sequence gradually tends to be stable

and converge to an approximative solution v∗ = [0.72, 0.43, 1.00, 0.40, 0.51]T within a
tolerable range. Actually, the valuation sequence reflects how argument strength values
change with iterations. Note that x1 has a maximum strength value 1, since it is not
attacked, and all other arguments have the strength values less than 1 since they are
attacked by at least one argument. With the solution v∗, the categoriser-based ranking
semantics gives: x3 � x1 � x5 � x2 � x4.

4 Relating with ranking axioms

In [7], the authors set up a set of axiom (postulates) that ranking-based semantics should
satisfy. In this section, we will formally show that the categoriser-based ranking seman-
tics meets some of these postulates.

The first axiom is that a ranking on a set of arguments does not rely on their iden-
tity but only on the attack relations among them. In other words, if two argumentation
system are isomorphic then they should have the same ranking semantics. The isomor-
phisms between argumentation frameworks AF1 = 〈X1,R1〉 and AF2 = 〈X2,R2〉 is
a bijective function τ : X1 7→ X2 such that for all x, y ∈ X1, xR1y if and only if
τ(x)R2 τ(y). Now we define the first axiom, called abstraction, as follows:



Axiom 1 (Abstraction (Ab)) A ranking-based semantics Γ satisfies abstraction iff for
any two argumentation framework AF1 = 〈X1,R1〉 and AF2 = 〈X2,R2〉, for any
isomorphism τ from AF1 to AF2, we have ∀x, y ∈ X1, x �AF1

Γ y iff τ(x) �AF2

Γ τ(y).

The second axiom states the question that whether an argument x is at least as
acceptable as an argument y should be independent of any argument z that is not con-
nected to x or y, i.e., there is no path from x or y to z (neglecting the direction of the
edges). Let C(AF) be the set of weakly connected components of AF. Each weakly con-
nected component of AF is a maximal subgraph of AF in which any two arguments are
mutually connected by a path (neglecting the direction of the edges).

Axiom 2 (Independence (In)) A ranked-based semantics Γ satisfies independence iff
for any AF and for any AFc = 〈Xc,Rc〉 ∈ 2C(AF), ∀x, y ∈ Xc, x �AF

Γ y iff x �AFc

Γ y.

The third axiom, called void precedence, encodes the idea that non-attacked argu-
ments are more acceptable than attacked ones.

Axiom 3 (Void Precedence (VP)) A ranked-based semantics Γ meets void precedence
iff for any AF = 〈X ,R〉, ∀x, y ∈ X , ifR−(x) = ∅ andR−(y) 6= ∅ then x �AF

Γ y.

The fourth axiom states that having attacked attackers is more acceptable than non-
attacked attackers, i.e., being defended is better than not.

Axiom 4 (Defense precedence (DP)) A ranked-based semantics Γ satisfies defense pre-
cedence iff for every AF = 〈X ,R〉, ∀x, y ∈ X , if |R−(x)| = |R−(y)|, D(x) 6= ∅ and
D(y) = ∅ then x �AF

Γ y.

The next axiom says that an argument x should be at least as acceptable as argument
y, when the direct attackers of y are at least as numerous and well-ranked as those of
x. This involves the concept of group comparison: Let �Γ be a ranking on a set of
arguments X . For any S1, S2 ⊆ X , S1 �Γ S2 iff there exists an injective mapping δ
from S2 to S1 such that ∀x ∈ S2, δ(x) �Γ x. Moreover, S1 �Γ S2 is a strict group
comparison iff (1) S1 �Γ S2; (2) |S2| < |S1| or ∃x ∈ S2, δ(x) �Γ x.

Axiom 5 (Counter-Transitivity (CT)) A ranked-based semantics Γ satisfies counter-
transitivity iff for every AF = 〈X ,R〉, ∀x, y ∈ X , ifR−(y) �AF

Γ R−(x) then x �AF
Γ y.

Axiom 6 (Strict Counter-Transitivity (SCT)) A ranked-based semantics Γ satisfies
strict (CT) iff for any AF = 〈X ,R〉, ∀x, y ∈ X , ifR−(y) �AF

Γ R−(x) then x �AF
Γ y.

The following two axioms represent two opinions: give precedence to cardinality
over quality (i.e. two weakened attackers is worse for the target than one strong at-
tacker), or vice versa. In some situations, both choices are reasonable.

Axiom 7 (Cardinality Precedence (CP)) A ranked-based semantics Γ satisfies cardi-
nality precedence iff for arbitrary argumentation framework AF = 〈X ,R〉, ∀x, y ∈ X ,
if |R−(x)| < |R−(y)| then x �AF

Γ y.

Axiom 8 (Quality Precedence (QP)) A ranked-based semantics Γ satisfies quality prece-
dence iff for arbitrary argumentation framework AF = 〈X ,R〉, ∀x, y ∈ X , if ∃y′ ∈
R−(y) such that ∀x′ ∈ R−(x), y′ �AF

Γ x′, then x �AF
Γ y.



The last axiom focuses on the way arguments are defended. The main idea is that an
argument which is defended against more attackers is more acceptable than an argument
which is defended against a smaller number of attacks. There are two types of defense:
simple and distributed. The defense of an argument x is simple iff each defender of x
attacks exactly one attacker of x, formally, ∀y ∈ D(x) such that |R+(y)∩R−(x)| = 1.
The defense of an argument x is distributed iff every attacker of x is attacked by at least
one argument, i.e., ∀y ∈ R−(x) such that |R−(y)| ≥ 1.

Axiom 9 (Distributed-Defense Precedence (DDP)) A ranked-based semantics Γ sat-
isfies distributed-defense precedence iff for any AF = 〈X ,R〉, ∀x, y ∈ X such that
|R−(x)| = |R−(y)| and |D(x)| = |D(y)|, if the defense of x is simple and distributed
and the defense of y is simple but not distributed then x �AF

Γ y.

In addition, [7] provides some relationships between these axioms: if a ranking-
based semantics Γ satisfies (SCT) then it satisfies (VP); if Γ satisfies both (CT) and
(SCT), then it satisfies (DP); Γ can not satisfy both (CP) and (QP). Now, we show
which axioms are or are not compatible with the categoriser-based ranking semantics.

Theorem 3. The categoriser-based ranking semantics satisfies (Ab), (In), (VP), (DP),
(CT) and (SCT), and does not satisfy (CP), (QP) and (DDP).

From the definition of the categoriser function, it can be easily seen that categoriser-
based ranking semantics satisfies (Ab) and (In). To some extent, Proposition 1 is a
special case of (CT). In particular, when R−(xi) ⊂ R−(xj) then the semantics gives
xi � xj , which is a special case of (SCT). The (VP) and (DP) can be implied from
(CT) and (SCT). Now, let us give a counter example to show that the semantics does
not satisfy (CP) and (QP):

Example 3. Consider the argument system in Fig. 3, in which R−(x) = {x1, x2, x3}
andR−(y) = {y1, y2, y3, y4}. Clearly, |R−(x)| < |R−(y)|. However, the categoriser-
based ranking semantics gives y � x (since v∗(x) = 0.40 and v∗(y) = 0.43), which
conflicts with (CP). Note that y1 � xi for all i ∈ {1, 2, 3} (since y1 = 0.60 and
xi = 0.50). From (QP), x � y should hold, but it is not true for the semantics.

0.50

1.00 1.00 1.00 1.00 0.50 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.50 0.50

0.60 0.25 0.25 0.25

0.40 0.43
x y

x1 x2 x3 y1
y2 y3 y4

Fig. 3. A counter-example of axiom (CP) and (QP)

The main reason of the counter situation in the above example is that these two
axioms represent two extreme: one treats all attackers equally, and one merely focuses
on some attacker (with highest rank with respect to the set of attackers of the argument)
of an argument. In categoriser valuation, however, the value of an argument (represented



by f(v,Di∗)) depends on both the number and quality (i.e., the strength values) of its
attackers, the attackers of its attackers, etc.

Another reason that (CP) is not satisfied by the categoriser valuation is that (CP)
concentrates too much on quite local topological aspects of an argumentation frame-
work, but ignores the global topology [14]. However, the categoriser valuation is a
global approach since the strength value of an argument depends on the strength values
of its attackers, which is a recursive definition. For the same reason, the categoriser-
based ranking semantics does not satisfy (DDP).

5 Conclusion

In this paper, we firstly investigated the existence and uniqueness of the categoriser
strength valuation via fixed-point technique. On this basis, we then defined a new
ranking-based semantics, called categoriser-based ranking semantics, for abstract ar-
gumentation framework. We analyzed some general properties of the semantics, and
prove that it satisfies some of the postulates that a ranking-based semantics should sat-
isfy. Our ongoing work is about a deeper analysis of the approach and its relationships
to other approaches.
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