Formal Modeling and Verification of CloudProxy

Wei Yang Tan', Rohit Sinha', John L. Manferdelli?, and Sanjit A. Seshia’

1 University of California, Berkeley, CA, USA
2 Intel Science and Technology Center for Secure Computing

Abstract. Services running in the cloud face threats from several parties, including
malicious clients, administrators, and external attackers. CloudProxy is a recently-
proposed framework for secure deployment of cloud applications. In this work, we
present the first formal model of CloudProxy, including a formal specification of de-
sired security properties. We model CloudProxy as a transition system in the UCLID
modeling language, using term-level abstraction. Our formal specification includes
both safety and non-interference properties. We use induction to prove these prop-
erties, employing a back-end SMT-based verification engine. Further, we structure
our proof as an “assurance case”, showing how we decompose the proof into various
lemmas, and listing all assumptions and axioms employed. We also perform some
limited model validation to gain assurance that the formal model correctly captures
behaviors of the implementation.

1 Introduction

With computation shifting to the cloud, security in cloud computing has become a concern.
Providers of Infrastructure as a Service (IaaS) lease data center resources (processors, disk
storage, etc.) to mutually non-trusting users. While [aaS providers use virtualization to
isolate users on a physical machine, even if the virtualization software is assumed to be se-
cure, a malicious user may still exploit misconfigurations or vulnerabilities in management
software to gain complete control over data center networks and machines. Moreover, a
malicious data center administrator can steal or modify unprotected disk storage. This can
be catastrophic because applications may save persistent secrets (e.g. databases, crypto-
graphic key) and virtual machine images (containing trusted program binaries) to disk.
These threats are a challenge for deploying security-critical services to the cloud.

CloudProxy [16] is a recently-proposed framework for securely deploying cloud appli-
cations on commodity data center hardware. It implements a trusted service that is available
to applications to 1) protect confidentiality and integrity of secrets stored on secondary stor-
age, 2) cryptographically prove that they are running unmodified programs, and 3) securely
communicate with other applications over untrusted networks.

We consider the problem of formal specification and verification of CloudProxy. We
are concerned with proving that CloudProxy provides a set of security properties to any
application that uses its API. To that end, we model the internals of CloudProxy in the
presence of arbitrary, non-deterministic applications. Our first challenge is that the secu-
rity guarantees listed above are informal and fairly high-level; it is non-trivial to formulate
these properties for a detailed model of CloudProxy. Therefore, we construct an assurance
case [20] that decomposes our proof into several axioms, assumptions about our trusted
computing base, and lemmas that must be proved. The assurance case argues that our lem-
mas are complete — under our documented assumptions, our lemmas imply the high-level

security goals outlined by the authors of CloudProxy [16]. In formalizing these lemmas,
we use well-known characterizations of non-interference [10] and semantic information
flow [13]. Finally, we build a detailed term-level [5] model of CloudProxy, and prove these
properties using a Satisfiability Modulo Theories (SMT) based theorem prover [3].

In summary, the primary contributions of this paper include:

— a formal model of CloudProxy (see Section 4)

— an assurance case for systematically decomposing our proof into a set of assumptions
made by CloudProxy, and properties that must be proved on the model (see Section 3:
Figure 2 and Table 3)

— a semi-automatic, machine-checked proof of our properties on the formal model (see
Section 5)

2 Background

2.1 CloudProxy’s Threat Model

We outline CloudProxy’s threat model, which is described in greater detail in [16]. The ad-
versary controls everything outside of the protected application’s trusted computing base
(TCB): hardware and OS/hypervisor that is running CloudProxy. That is, the adversary
has physical access to all data center hardware and infrastructure, except the hardware (i.e.
CPU, memory, chipset, backplane, disks) on which the protected application is currently
running — there is no direct access to the hardware during operation and for a few minutes
thereafter (to prevent cold boot attacks [12]). In practice, providers of Infrastructure as a
Service (IaaS) may enclose racks of processors in cages to prevent physical access. How-
ever, a malicious administrator can remove, examine, modify the disk, and later re-install
the modified disk on a CloudProxy machine. The adversary also controls all data center
networks. In this threat model, CloudProxy protects the protected application’s secrets that
1) reside locally on the machine, and 2) are communicated to other trusted applications
over an untrusted network channel.

2.2 Overview of CloudProxy Architecture

Figure 1 gives a structural overview of the CloudProxy architecture. CloudProxy assumes
that it runs on trusted hardware, which includes a trusted CPU, and a trusted motherboard
containing a secure co-processor called the TPM [17]. The TPM serves as a root of trust
for secure boot, cryptographic sealing/unsealing of secrets, and attestation of applications.
Sealing encrypts the secret, and also binds it to the measurement of the application in-
voking the API; unsealing decrypts the sealed secret if and only if the measurement of the
caller matches the bound measurement of the ciphertext. A measurement is a cryptographic
hashing on the state of the entity of concern. The TPM protects the sealing keys within its
hardware, thereby protecting the keys from software attacks. Attestation is a mechanism
by which a remote party can verify that the local platform has a desired measurement, and
then provision secrets to the local platform. The TPM-enabled boot eventually launches
the operating system, which is also trusted by CloudProxy— section 3 describes what guar-
antees we require from a trusted OS. At the time of writing, CloudProxy uses a hardened
Linux kernel. The crux of CloudProxy is the TCService process which exposes an API (see

Malicious |
App |
APl call

(seal, unseal,
attest,...)

. T
CloudClient TLS over TCP/IP

App i<

CloudServer
App

&/
Malicious
App

AP call
seal, unseal,
attest,...)

TPM TPM
Driver Driver
Attestation Attestation
Trusted OS / Hypervisor \ / Trusted OS / Hypervisor

Q7 Trusted Trusted J;‘r’s\tf;e TPM B
Hardware Keyserver :
Datacenter Machine Datacenter Machine

Fig. 1. Overview of CloudProxy architecture

Section 2.4) to its mutually trusting applications. The application uses this API to 1) seal
its secrets before saving them to disk storage, 2) measure itself and the underlying OS to
prove that it is running unmodified code, and 3) authenticate itself to remote CloudProxy
applications via the attest API.

We briefly describe how this architecture protects us from an adversary with capabili-
ties as described in the threat model above. First, CloudProxy uses a trusted OS/hypervisor
layer for isolating the protected application’s execution from other adversarial applica-
tions. We argue that apart from vulnerabilities in the application logic (which is beyond
our scope), the TCService API is the only remaining means of attack from adversaries. In
this paper, we prove that TCService prevents any application’s API request from interfer-
ing with another application’s API response. Secondly, to protect from insider attacks that
steal or modify disks, TCService provides a seal (and corresponding unseal) API to add
cryptographic confidentiality and integrity protection before writing secrets to disk. Since
disks also store binaries within an application’s TCB, TCService uses the TPM to mea-
sure the entire software stack (OS, TCService, CloudClient) before executing it. Lastly, to
protect from attacks that observe or tamper messages sent over network, TCService pro-
vides an attest API that an application can use to authenticate itself to a KeyServer. If the
application has the expected measurement, TCService will return a certificate (signed by
KeyServer) containing the application’s public key. The application uses this certificate to
establish a secure channel with another CloudProxy application over the network, thereby
preventing network attacks. We use an assurance case in Section 3 to make a systematic
argument for why CloudProxy provides sufficient defense against this threat model.

2.3 Deploying and Initializing CloudProxy

CloudProxy is deployed in two parts: 1) a virtual machine image containing the trusted
OS and all CloudProxy applications, and 2) the trusted KeyServer. The KeyServer is de-
ployed with the desired measurement of TCService, and desired measurements of each
application. When the machine boots up and starts TCService, TCService uses the TPM
to measure its trusted computing base (the OS and TCService binary), and sends a TPM’s
attestation to this measurement along with TCService’s public key to the KeyServer. If
the measurement matches the expected value, the KeyServer returns a certificate binding

TCService to its public key. This establishes trust between the KeyServer and TCService
for all future communication. Next, TCService starts the application, e.g. CloudClient in
Figure 1. To establish trust with the KeyServer, CloudClient uses TCService to measure
its trusted computing base (the OS, TCService, and CloudClient binary), and sends the
TCService’s attestation to this measurement along with the CloudClient’s public key to the
KeyServer. In response, the KeyServer produces a signed certificate binding CloudClient to
its public key. From hereon, CloudClient uses this certificate for establishing secure con-
nections with other applications such as the CloudServer. The application also generates
a private attestation key, which it seals using TCService and saves to disk for future use.
Note that the TPM acts as a hardware root of trust in this entire process.

2.4 CloudProxy API

Once the applications have been initialized, they may invoke any of the following Cloud-
Proxy API, in any order. We now briefly describe the semantics of each API function
(details found in [16]).

1. GetHostedMeasurement(): computes the measurement of the calling application.

2. Attest(data): returns a certificate (signed by TCService) binding data to the caller by
including the caller’s measurement in the certificate.

3. GetAttestCertificate(): returns a certificate (signed by KeyServer) binding the caller’s
public key.

4. Seal(secret): encrypts the concatenation of secret and the caller’s measurement. Then
the message authentication code (MAC) of this ciphertext is attached to the ciphertext.

5. Unseal(sealed_secret). performs integrity check on the MAC, and decrypts the input
data if the integrity check succeeds. Next, TCService checks if the caller’s measure-
ment is equal to the measurement field in the plaintext. If this check succeeds, the
plaintext is returned to the caller.

6. GetEntropy(n): returns a cryptographically-strong random number of size n bits.

3 Assurance Case

We prove that CloudProxy protects its client applications from the threats allowed in our
threat model. However, the description of the threat model and desired properties in the
original CloudProxy paper are quite informal. Our first contribution in this work is to for-
malize these high-level security properties into a set of axioms, assumptions, and lemmas
that are expressible within a model of CloudProxy. Although we formalize our assumptions
and lemmas, we rely on an informal assurance case as a meta-level argument for why our
lemmas and assumptions fulfill the high-level security properties. In Section 4, we build a
formal model of CloudProxy, and in Section 5, we prove a set of lemmas on this model.
An assurance case is a documented body of evidence that provides a systematic, al-
beit informal, argument that a system satisfies a set of properties [20]. An assurance case
first starts with a goal, and then iteratively decomposes it into constituent goals and as-
sumptions, until all goals are supported by direct evidence. We follow the Goal Structuring
Notation (GSN) as described in the GSN Community Standard [2]. A goal or a claim
(marked by box labeled G) is a lemma we would like to prove. An assumption (marked by

oval labeled A) represents an assumption or an axiom in our proof. A context (labeled Ct)
is used to limit scope of our work. An evidence (marked by circle labeled E) refers to a
proof and is used to support a goal. We use circles with dashed lines to indicate proofs that
are in progress.

Fig. 2. CloudProxy assurance case.

As shown in Figure 1, CloudProxy relies on several components: a trusted hardware, a
trusted OS/hypervisor layer, to-be-verified TCService, and a trusted remote key server. In
this work, we only verify TCService, and assume that properties about other components
hold. This is encoded as assumption A1 in Figure 2: the hardware, the hypervisor, and the
OS (including the TPM driver) are trusted.

For ease of exposition, we use the term “protected application” to refer to a Cloud-
Proxy application whose secrets we seek to protect, and the term “malicious application”
to refer to any other CloudProxy application or program running on the same machine.
Proving that CloudProxy protects the protected application’s secrets (G1) is decomposed

Table 1. Node refers to the the assurance case node in Figure 2. Proof Obligations are either nodes
in the assurance case, or property number(s) in Section 5.

Node |Description Proof Obligation
Al |Hardware, hypervisor and OS are trusted.
A2 |Adversary cannot physically access computers that are running Cloud-
Proxy.
A3 |KeyServer is trusted.
A4 |Hypervisor and OS layers enforce separability.
AS |Unique pid to all CloudProxy apps during TCService’s lifetime.
A6 |Cryptographic primitives seal, unseal, SHA are implemented perfectly.
A7 |TPM driver does not leak TCService’s secrets.
Ctl |Verifying app logic is out of scope.
E1 |Verify measured launch mechanism.
E2 | Verify remote attestation protocol.
E3 |Use verified TLS implementation for network communication.
E4 |Prove G12 on UCLID model. Ppty (1), (2)
ES |Validate UCLID model.
E6 |Prove G13 on UCLID model. Ppty (6)
E7 |Prove G15 on UCLID model. Ppty (7)
E8 |Prove G22 on UCLID model. Ppty (9)
E9 |Prove G19 on UCLID model.
G1 |[CloudProxy API secures protected app’s secrets. Al, G2-G4
G2 |Secure against malicious programs running on same machine. G5-G9
G3 |[Secure against malicious physical access of disk storage. A2, G5-G7
G4 |Secure against network attacks. G7-G9
G5 |Executions of any app do not affect other apps. G11-G12
G6 |[Sealed secrets on disk have confidentiality and integrity protection. G10,G13-G16
G7 |Protected app and TCService are launched from unmodified code. E1l
G8 |Remote attestation via untrusted channels. A3, E2, G10
G9 |Use TLS for establishing cryptographically secure channels. E3
G10 |Protected app and TCService do not reveal attestation and sealing keys. |G17-G20
G11 |Isolation of address space belonging to TCService and apps. A5
G12 |Non-interference: Applications cannot affect each other through TCSer-|A4, E4-ES
vice APL
G13 |TCService seal API provides data confidentiality. A4-A5, ES-E6
G14 |Cryptographic library’s seal() provides data confidentiality. A6
G15 |TCService seal API provides data integrity. A4-AS5, ES, E7
G16 |Cryptographic library’s seal() provides data integrity. A6
G17 |TCService does not reveal keys during initialization. A7, G21
G18 |Protected app does not reveal keys during initialization. A6, G21
G19 |TCService does not leak keys within responses to API calls. E5, E9
G20 |Protected app does not reveal keys after initialization.
G21 |CloudProxy initialization process does not reveal keys. G22
G22 |Arguments of system calls do not leak keys. E5, E8

into 3 goals G2 - G4, one for each ability granted to our adversary by the threat model. It
must be noted that CloudProxy does not prevent an application from erroneously leaking

its secrets to the adversary; it only exports an API that, if used correctly, enables the appli-
cation to protect its secrets. As a result, verifying application logic is out of scope (Ctl).
Each goal in G2 - G4 is defined in terms of one or more goals in G5 - G9. G7 protects
the application from attacks that change the application’s binary or TCService’s binaries
on disk before the machine boots up. G7 is supported by a proof of correctness of the
measured launch sequence (E1), which uses the TPM to compute a cryptographic hash of
the binaries before launching TCService and applications. We need not measure binaries
after they launch because 1) we trust the OS/hypervisor to enforce memory protections,
and 2) our threat model prevents an insider from physically accessing the memory chip of
a machine running CloudProxy (A2). Note that all high-level goals G2 - G4 depend on G7
because successfully mounting a compromised TCService binary will nullify all security
guarantees. In addition to G7, we need G5 and G6 to guarantee G2: a protected applica-
tion’s secrets are not observable in plaintext by malicious programs on that machine. G5
enforces that a malicious program does not observe a protected application’s execution.
Our notion of execution only considers application’s state updates and side-effects via sys-
tem calls; we do not consider information leaks via side channels. G6 enforces that the
protected application’s secrets have cryptographic confidentiality and integrity protections
before being saved to disk. G8 and G9 together protect an application’s secret that is sent
over the network. G8 relies remote attestation to prove to a third-party that each protected
application and TCService are running unmodified binaries. Following remote attestation,
G9 enforces that future communication takes place over a cryptographically secure chan-
nel. CloudProxy uses TLS (E3) for secure communication — we do not verify the TLS
implementation in this work (this problem is explored in [4]).

Consider the assurance case for G5. This responsibility is shared between the OS pro-
tections (G11) and the TCService API guarantees (G12). G11 stipulates that our OS 1)
protects an application’s address space from reads or writes by other programs, and 2)
TCService is in full ownership of the TPM device. Both requirements can be fulfilled by a
separation kernel [18]. While separability is a strict and possibly unreasonable requirement
for commodity OS, for this discussion we assume we have a separation kernel via A4. As
a result, TCService interface is the last remaining means by which a malicious application
can interfere with the protected application’s execution. To that end, G12 stipulates a non-
interference property on TCService: responses to the protected application’s API requests
is independent of the malicious application’s API requests. We prove this property (E4) on
our UCLID model, and make an initial attempt of validating this model with respect to the
implementation (ES). Model validation proves that all behaviors in the implementation are
captured by the model (see Section 6).

Consider the assurance case for G6. If secrets are sealed using TCService’s seal API,
then an adversary is unable to observe a secret’s plaintext (confidentiality) and is also un-
able to tamper a secret’s ciphertext without being detected (integrity). The proof for G6
hinges on two sets of lemmas: 1) G13-G16: TCService’s implementation of seal preserves
confidentiality and integrity, and 2) G10: TCService never reveals its sealing key. For G13-
G16, we assume (A6) that we have a Dolev-Yao [9] adversary — analyzing the strength
of cryptographic operations is beyond our scope. In other words, our proof uses axioms
of strong encryption, pre-image resistance of hash functions, second pre-image resistance,
and strong collision resistance of hash functions. TCService performs seal by first encrypt-
ing the secret, and then appending the MAC (implemented using hash function) of the
ciphertext. Goal G14 is fulfilled by the confidentiality assumption about ideal encryption

scheme. Goal G16 is fulfilled by the pre-image resistance, second pre-image resistance,
and the strong collision resistance axiom about hash function used in MAC. We assume
that the cryptographic library satisfies these axioms about encryption and hash functions.
TCService also appends the application’s measurement within the sealed secret. This mea-
surement is used to decide if TCService should return the unsealed secret to the requester
— the requester’s measurement must match the measurement at the time of sealing. To
that end, we also need goals G13 (fulfilled by E6) and G15 (fulfilled by E7) to prove that
TCService does not unseal the protected application’s secret on behalf of a malicious ap-
plication. While building a formal model, we identified a design flaw (presented here as
assumption AS) that the OS does not reuse process identifiers throughout the lifetime of
TCService— TCService uses the process identifier (pid) to identify the application invok-
ing the API call.

Consider the assurance case for G10. We must prove that this property holds during 1)
TCService’s initialization (G17), 2) application’s initialization (G18), and 3) servicing of
API request by TCService (G19). Although verifying application logic is out of scope, the
application’s initialization is handled by CloudProxy. G18 proves that this initialization
process does not leak keys. Both TCService and application use the same initialization
routine, with the exception that the application uses the TCService’s API for cryptographic
operations, while TCService uses the TPM’s API. This allows us to share G21 for fulfilling
both G17 and G18. E8 fulfills G22 by proving that each write (e.g. file write, socket send)
out of the application’s address space is either sealed or the written value is independent
of the keys. Finally, the proof in E9 fulfills goal G19: TCService does not leak its sealing
and attestation key in response to an API request. G19 is necessary even after proving
the non-interference property in G12. This is because TCService may leak the protected
application’s secrets by erroneously revealing its own sealing key.

4 Formal Modeling

Our assurance case in Section 3 allows us to focus our verification effort on the composition
of TCService with the protected and malicious applications. Thus, we do not model the
entire TCB consisting of the OS and hardware, since this TCB is not the focus of our
verification effort. Instead, we use axioms and assumptions about the TCB in our model.
Figure 3 presents the structural overview of our model?, for which we use the UCLID
[5] modeling language. This model is a synchronous composition of four transition sys-
tems: 1) Protected application App, 2) Malicious application Mal_App, 3) Scheduler, and
4) TCService. The model captures the initialization routine (Section 2.3) of TCService and
applications, as well as the semantics of each CloudProxy API. Recall that CloudProxy
does not place any constraints on the application’s behavior; secrets will get compromised
if the application erroneously leaks the plaintext secrets or the private sealing keys. There-
fore, we verify TCService in the presence of an arbitrary App and an arbitrary Mal_App.
When triggered, App and Mal_App non-deterministically choose an API call and arguments
to TCService in each step of execution. The Scheduler non-deterministically triggers ei-
ther App or Mal_App to execute in each step. We choose interleaving semantics because
the TCService implementation serializes all API requests onto a FIFO buffer, and handles
each request atomically. Since Mal_App is completely non-deterministic, our proofs apply

3 The model is available on http://uclid.eecs.berkeley.edu/cloudproxy

‘ Scheduler ‘

=T sym key Mal_App -
private_key
i inMal_App
TCService
running_pid_table[]
measurement_table[]
out* private_key outMelAee
sym_key
R Secondary O —

Storage

Fig. 3. UCLID model is a synchronous composition of App, Mal_App, Scheduler, and TCService.

to CloudProxy executions containing an unbounded number of malicious applications. TC-
Service maintains the following state variables: 1) a private key (private_key) for remote at-
testation, 2) a symmetric key (sym_key) for use in seal and unseal, 3) running_pid_table[]
for process identifiers of all running CloudProxy applications, and 4) measurements mea-
surement_table[] of all running CloudProxy applications. Each API operation may involve
reading and writing to Secondary_Storage, which is modeled as an unbounded memory in
the theory of Arrays.

As we are not analyzing the strength of cryptographic operations, we adopt the Dolev-
Yao abstraction [9] in our model. Messages, keys, and state variables are modeled as terms.
Cryptographic operations are uninterpreted functions over terms. The cryptographic opera-
tions are perfect — we apply axioms about strong encryption, pre-image resistance, second
pre-image resistance, and strong collision resistance of hash functions.

The following lists the assumptions on the capabilities of Mal_App in our model:

1. Mal_App is able to execute any cryptographic operations as well as invoke any API of
TCService.

2. Atinitial state, Mal_App does not have the knowledge of either App secrets or TCSer-
vice keys in plaintext.

3. Mal_App is not able to eavesdrop on data returned by TCService to App. This assump-
tion is sound since we assume that the OS is trusted, and the OS controls the response
/ request channel.

4. The malicious application has unlimited storage for data learned from invoking TC-
Service APIs and cryptographic functions at every transition step. In other words,
Mal_App may learn and generate new data from any combination of arbitrary func-
tion call.

During our modeling, we found a bug in the implementation. When a process ter-
minates, the entry for that process pid is not removed from the running_pid_table[] and
measurement_table[]. If the OS spawns a new application with the same pid, then the new
application can start unsealing secrets belonging to the terminated CloudProxy application.

10

Having identified this bug, we introduce an assumption (A5 in assurance case) that the pid
will not be reused throughout the lifetime of TCService.

5 Verification

In this section, we formalize and verify properties on the UCLID model for each evidence
in our assurance case. As mentioned previously, the evidences marked with a dashed line
represent proofs that are currently in progress or left for future work. Each proof was
performed using UCLID’s internal decision procedures [5, 15].

5.1 Non-interference between Applications

G12 in Figure 2 stipulates that the responses to an application’s API requests is inde-
pendent of the malicious application’s API requests. This means that Mal_App’s inputs to
TCService can be removed without affecting TCService outputs to App, and vice versa. In
the context of CloudProxy, this property requires two proofs:

1. non-interference (secrecy): App’s secrets are not leaked to Mal_App when Mal_ App
invokes an API request

2. non-interference (integrity): results of App’s API calls are unaffected by Mal_App’s
API requests

We adopt Goguen and Meseguer’s formalization of non-interference for both checks
[10]. A trace is a sequence of states. Let T' be the set of infinite traces allowed by the
composition of TC Service || App || Mal_App. Also, let inPP(t) and in™*-4PP () be the
sequence of API requests invoked by App and Mal_App, respectively, in a trace ¢. Similarly,
let outPP(t) and out™*-4PP(t) be the sequence of API responses by TCService to App
and Mal_App, respectively, in a trace t. The following property checks non-interference
(secrecy) to Mal_App:

Vi, to €T Z(inApp<t2) =eA @'nl\/lal’App(tl) = inMaLAppug)) =

(OutMal,App(tl) — OutMal,App(h)) (1)

and the following property checks non-interference (integrity) from Mal_App’s API re-
quests:

th,t3 etT Z(Z'TLMal’App(t;g) = inApp(tl) = inApp(t3)) =

(out™PP(t1) = out™PP(t3)) (2

where ¢ denotes no API invocation (modeled as stuttering steps). Note that this defini-
tion only applies if two conditions are met: 1) TCService must be deterministic (App and
Mal_App need not be deterministic), and 2) TCService’s transition function must be total
with respect to inputs.

A hyperproperty is a set of sets of possibly infinite execution traces [7]. As proper-
ties (1) and (2) reason over a pair of traces, they are both are hyperproperties. We can
rewrite them as 2-safety properties [7] and prove them using induction. As Figure 5(a) il-
lustrates, we first construct a 2-fold parallel self-composition of the system, resulting in two

11

Trace t1
inr = it = gt =

(s . Seal /83 :Unseal s | Attest _ / s ’

Trace t,
- I-nMal_App =
'S" & oD\ Unseal D g \
| 2 SZ /) \ SZ sg »
Trace ta
’ i = & _inP=
‘ sg Seal s; \ Sg Attest (§3 L

Fig. 4. The figure shows three traces ¢1, t2 and t3, where trace t2 replaces App API requests in ¢
with €, and t3 replaces Mal_App API requests in ¢, with .

instances Sys; and Sysy of TCService that run synchronously and use the same transition
relation R. Let s; and so be the state of TCService in Sys; and Sys, respectively. Let inq
and in, be the input to TCService in Sys; and Sys, respectively. We also let in/*PP and
inMal-ArP be to App’s input and Mal_App’s input to TCService in Sys,, respectively. Sim-
ilarly, let out“?P(s) and out™*-APP(s) refer to TCService’s output in state s to App and
Mal_App respectively. For non-interference (secrecy), we prove the following inductive
property:

Vsl, SQ.In’it(Sl) A ITLZt(SQ) == @MalApp(Sl, 82) (3)

/ P
Vs1, 587, S2, Sg, 101, ing.

. ! . / . App __ . Mal_ App __ . Mal_App
(Puarapp(s1,52) A R(s1,1n1,87) A R(s2,ing, s5) Ning™” = e Ainj =1in,)

= QsMalApp(Slp 3,2) “4)

where

¢Mal,App(Sa, 3b) ivs:l, SZ, in.
R(s4,in,5,) A R(sy,in, sp) = (out™-4PP(s!) = outMe-APP (4})

&)

For any pair of states s, and s;, predicate Dpsq;_app(Sa; Sp) 18 true if and only if those
states are indistinguishable to Mal App — for the same API call, TCService produces
identical output in both s, and s,. We also use a transition predicate R(s, %, s’) which is
true iff the system can transition from state s to s’ under input ¢. Property 3 checks the base
case that Dyz41.4pp holds on any pair of initial states. The inductive step (property 4) proves
that from any pair of states s; and s that is indistinguishable to Mal_ App, TCService
must transition to a pair of states s} and s} (respectively) that are also indistinguishable to
Mal App. We also need an auxiliary invariant to discharge the induction proof: if the App’s
pid entries of the measurement table in TCService in s; and so are the same, then these
entries have the same values in s} and sb.

12

Trace t, Trace t,
S —{ 8§) (8§ — 8§
Trace t, Trace t3
N PP =€ N y jpMaLAP = £ N
S, ——{ §', | LS e 8

.

& S . -

Fig. 5. S denotes the state of TCService in our UCLID model. We prove non-interference (secrecy)
in (a) by proving that M al_App cannot distinguish s} from s5. We prove non-interference (integrity)
in (b) by proving that App cannot distinguish s} from s5.

Proving non-interference (integrity) between App and Mal_App requires a similar in-
ductive proof — the preceding discussion applies verbatim if App is substituted for Mal_App
and vice versa. UCLID took about 5 seconds to prove each property. *

5.2 Data Confidentiality

Here, we describe our proof of G7: Mal_App cannot acquire the plaintext of a sealed secret
belonging to App. Recall from Figure 2 that we split this goal into two lemmas:

— Lemma 1: Mal_App cannot obtain the plaintext by breaking the underlying cryptogra-
phy (goal G14 in Figure 2).

— Lemma 2: Mal_App cannot obtain the plaintext by invoking a sequence of CloudProxy
API calls (goal G13 in Figure 2).

Lemma 1 is simply assumed in our work since we assume a Dolev-Yao adversary [9].
In accordance with the Dolev-Yao model, our model represents data as terms of some
abstract algebra, and cryptographic primitives operate on those terms to produce new terms.
TCService satisfies Lemma 2 by appending measurement to the secret prior to sealing.
During unsealing, if the secret’s measurement does not match the measurement of API
requester, then the request fails. In what follows, we prove that TCService implements this
logic correctly.

Let m be a measurement, 1m 4, be the App’s measurement, and ID be the set of terms
from an abstract algebra. Also, let ENC_M AC' be the authenticated encryption function
that first encrypts the plaintext, and then appends an integrity-protecting MAC of the ci-

phertext. Let inﬁ%ﬁ’AP ? be the API call from the Mal_App to TCService, and let in(]LVT[ZLAW

be the arguments of the API call from the Mal App to TCService. outa-4pp(s) de-
notes whether TCService successfully performed the API request invoked by Mal_App.
out™M*=APP (5) s the return output of TCService to the Mal_App. sKr¢s denotes the sym-

result
metric key used by TCService to seal or unseal. We define Lemma 2 as follows.

P(s) =Vsecret € D, 8", map,, in.
. Mal-App __ - Mal_App __
(ingpr = unseal N ing.g = ENC_MAC(sKrcs, secret, mapp)) A

R(S’ ZnMal’App’ Sl) : ﬁ()’Utj.glf)g)CESS(S/) (6)

* UCLID was running on VirtualBox and the machine was a 2.6GHz quad-core with 2GB of mem-
ory space allocated to this VirtualBox environment.

13

where ENC_MAC (sKrcs, secret, ma,p) is a term encoding any arbitrary sealed secret
that can belong to App, as secret is an unconstrained symbolic constant. This allows us
to only consider API calls whose argument has this form. This property guarantees that
TCService never returns the plaintext secret as a result of calling unseal APL. Lemma 1
guarantees that the adversary cannot obtain the plaintext from a sealed secret by breaking
the underlying cryptography.

We prove Lemma 2 via 1-step induction. UCLID took about 30 seconds to prove this
property. Moreover, we discovered the following necessary assumption to prevent spurious
counter-examples to the inductive proof: Mal_App has a different measurement than App,
i.e. Masal_App 7 Mapp- This is reasonable because they run different binaries, and hash
functions are assumed to be collision free.

5.3 Data Integrity

Similar to confidentiality, we prove that TCService enforces integrity protection: the ad-
versary cannot tamper a sealed secret and still have TCService successfully unseal it on
behalf of App. Again, we assume perfect integrity protection of ENC_M AC (key, ., .),
and hence any modification to ENC_M AC/(key, .,.) should not be able to unseal suc-
cessfully. Only data that was previously sealed by TCService can be successfully unsealed
by TCService— any other data would fail the MAC check since the MAC check uses TC-
Service’s symmetric key sKrcg. This leaves the adversary with only one attack: replace
App’s sealed data with Mal App’s sealed data. Therefore, the following property checks
that TCService does not unseal another application’s sealed data on behalf of App.

Let M be the set of measurements, and ID be the set of data. We prove that an unseal
request satisfies the property:

¢(s) =Vsecret € D,Vm € M, &', in.

mﬁ’g’l = unseal A inff’gp = ENC_MAC(sKrcs, secret,m)

Am # mapy A R(s,in P, s") = —outAPP (s (7)

success

where ENC_M AC(sKrcs, secret, m) is a term encoding any sealed secret that can be-
long to an application other than App, as secret and m are unconstrained symbolic con-
stants.

UCLID took less than 5 seconds to prove this property. A caveat to note here is that
CloudProxy does not currently have a mechanism to check for the freshness of data. The
adversary may perform a replay attack by replacing the App’s sealed secret on disk with an
older secret sealed by the App.

5.4 Protecting Keys

During initialization, TCService generates a symmetric sealing key sKrcg, and a private
attestation key pKrcgs. Similarly, a CloudProxy application uses TCService to generate
a symmetric key sK 4, and private attestation key pK 4,,. In this section, we prove that
keys sK app and pK 4, are never leaked in writes outsides the App’s address space (goal
G18). We only focus our attention on App’s keys in this section; the property and proof
for TCService is identical. We defer proof for TCService as it uses the same initializa-
tion routine as the application. We express this property in the semantic information flow

14

framework introduced by [13]. For any pair of traces, where the traces start from symbolic
states differing in values of sK 4, and pK 4, (but all other state variables are identical),
the unencrypted outputs along the two traces must be identical — the keys will affect the
values of encrypted data. In other words, values written to disk are not a function of the
keys. Once again, this is a 2-safety property of T'C'Service || App || Mal_App. We use a
1-step induction to prove this property.

First, we define a specification state variable S that gets updated each time App invokes
TCService seal API on some data or during initialization.

true iny%, = seal Ao = ENC_MAC(sKrcs,in, mayp)
next(S(z)) = < true init PP = true Aw = ENC_MAC (sK app, PK app, M App)
S(x) otherwise

®)

where init“PP is a boolean value that indicates whether App is at the initialization phase.
In addition, Vx.Sy(x) = false where Sy is the initial state of S.

Let s1 and sy be a pair of states, where pK 4,51 and pK 4, 2 are App’s private keys
in s, and sy respectively. sK 4p,p1 and sK 4pp 2 are App’s symmetric keys in s; and sp
respectively. s1 \ {pK app,1, K app,1} denotes the set of all state variables in s; excluding
the two keys. Finally, out?***(s;) denotes the output to disk in state sy, and out?*(s,)
denotes the output to disk in state so. We formulate this property as follows:

Vs1, 82,81, 85, in.
(s1 \ {pKapp,1, sKapp,1}) = (52 \ {pK app,2, sKapp,2})
A R(s1,inPP, s)) A R(sq,in"YPP, sb)
A (=S (out®=*1(sh)) v =S (out?*2(sh))) =

(out™*"(s1) = out™*(s})) ©)

UCLID took about two seconds to prove this property. An important caveat is that we
only prove this property for writes that the CloudProxy initialization code of App makes
via the system call interface (e.g. file write to disk). The soundness of this proof relies on
the model validation proof that we have captured all possible writes to disk in our model.

6 Model Validation

Although we have proved the security properties of CloudProxy on the formal UCLID
model, we are left with an important question: is the model a sound abstraction of the
original system? A valid model must encode all behaviors that are allowed in the original
system. We make first steps in using KLEE [6] to validate our UCLID model against the
C++ implementation, using techniques proposed by Sturton et al. [21].

Since we do not precisely model all computation within TCService (e.g. messages are
abstracted away as terms), we need to show that the unmodeled code does not affect the
subset of TCService state that we have modeled. Let V' denote the state variables that are
present in our UCLID model. We manually identify code paths that will be pruned away
from our modeling. Then, we prove that the pruned code does not affect any state variable

15

within V. This proof uses the Data-Centric Model Validation (DMV) technique from [21].
Once we have validated our pruning, we must further prove that the model correctly ab-
stracts the pruned program. This is termed as Operation-Centric Model Validation (OMV)
in [21]. Both validation steps are a work in progress.

The entire TCService has about 58k lines of code (LoC), of which about 8k LoC is
used to build our model. The cryptographic keys, measurement table, and the pid table in
TCService are our V set, and only approximately 1k LoC modifies V . After the DMV
step, we model in UCLID the remaining 1K LoC. We encountered several challenges in
performing OMYV, and delay that to future work.

7 Related Work

There has been some use of formal methods for building trustworthy cloud infrastructure.
CertiKOS [11] is a verified hypervisor architecture that ensures correct information flow
between different guest users. They use a compositional proof technique to decompose
their proof into individual lemmas that can be proved using different proof engines. Klein et
al. [14] provide a machine-checked verification of the seL.4 microkernel in Isabelle. These
efforts are especially relevant since CloudProxy needs a trusted OS/hypervisor layer. While
both efforts use interactive theorem proving for building machine checked proofs, we use
a more automated methodology based on model checking. Another alternative approach is
to directly prove the implementation code by inserting annotations and assertions, and then
run a verifier on the code. VCC has been developed to verify the Hyper-V implementation
using this approach [8]. More importantly, a carefully constructed model can raise the level
of abstraction enough to prove such properties efficiently.

We structure our proof of correctness as an assurance case. Assurance cases have been
applied in practice to present the support for claims about properties or behaviors of a
system. ASCAD [1] presents safety cases (a slight variant of assurance case) for safety
critical systems such as military systems. Shankar et al. [19] use Evidential Tool Bus to
construct claims, and to integrate different formal tools to provide evidence for each claim.

8 Conclusion

We present the first formal model of CloudProxy, and an assurance case to systematically
construct a proof that CloudProxy protects an application’s secrets in our threat model.
The assurance case lists practical assumptions we make about the trusted computing base
of CloudProxy applications. During our modeling and verification of CloudProxy, we have
uncovered a flaw and few unintended assumptions in the design (e.g. no reuse of pid during
TCService’s lifetime). Security properties and lemmas derived from the assurance case
(e.g. non-interference) are formalized and proved in our model. In ongoing work, we are
exploring a model validation technique to prove that our model encodes all the behaviors
allowed by CloudProxy’s implementation.

Acknowledgments We sincerely thank David Wagner and Petros Maniatis for their valuable
feedback. This work was funded in part by the Intel Science and Technology Center for
Secure Computing, and SRC contract 2460.001.

16

References

1.
2.
3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Adelard: ASCAD The Adelard Safety Case Development (ASCAD) Manual., 1998.

GSN Community Standard Version 1, 11 2011.

C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability modulo theories. In A. Biere,
M. J. H. Heule, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications, chapter 26, pages 825-885. 10S Press, Feb.
20009.

. K. Bhargavan, C. Fournet, R. Corin, and E. Zilinescu. Verified cryptographic implementations

for tls. ACM Trans. Inf. Syst. Secur., 15(1):3:1-3:32, Mar. 2012.

. R. Bryant, S. Lahiri, and S. Seshia. Modeling and verifying systems using a logic of counter

arithmetic with lambda expressions and uninterpreted functions. In Computer Aided Verification,
volume 2404 of Lecture Notes in Computer Science, pages 78-92. 2002.

. C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic generation of high-coverage

tests for complex systems programs. OSDI’08, pages 209-224, Berkeley, CA, USA, 2008.

. M. Clarkson and F. Schneider. Hyperproperties. In Computer Security Foundations Symposium,

2008. CSF °08. IEEE 21st, pages 51-65, 2008.

. E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte,

and S. Tobies. Vcc: A practical system for verifying concurrent c. In Theorem Proving in Higher
Order Logics, 22nd International Conference, TPHOLs 2009.

. D. Dolev and A. C. Yao. On the security of public key protocols. Information Theory, IEEE

Transactions on, 29(2):198-208, 1983.

J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE Symposium on
Security and Privacy, pages 11-20, 1982.

L. Gu, A. Vaynberg, B. Ford, Z. Shao, and D. Costanzo. Certikos: A certified kernel for secure
cloud computing. In Proceedings of the Second Asia-Pacific Workshop on Systems, APSys ’11,
pages 3:1-3:5, New York, NY, USA, 2011. ACM.

J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino, A. J.
Feldman, J. Appelbaum, and E. W. Felten. Lest we remember: Cold-boot attacks on encryption
keys. Commun. ACM, 52(5):91-98, may 2009.

R. Joshi and K. M. Leino. A semantic approach to secure information flow. Science of Computer
Programming, 37(1 - 3):113 — 138, 2000.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engel-
hardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. sel4: Formal verification
of an os kernel. In Symposium On Operating Systems Principles, pages 207-220. ACM, 2009.
S. Lahiri and S. Seshia. The uclid decision procedure. In R. Alur and D. Peled, editors, Computer
Aided Verification, volume 3114 of Lecture Notes in Computer Science, pages 475-478. Springer
Berlin Heidelberg, 2004.

J. Manferdelli, T. Roeder, and F. Schneider. The cloudproxy tao for trusted computing. Technical
Report UCB/EECS-2013-135, University of California, Berkeley, 07 2013.

B. Parno. Bootstrapping trust in a “trusted” platform. In Proceedings of the 3rd Conference on
Hot Topics in Security, HOTSEC’ 08, pages 9:1-9:6, Berkeley, CA, USA, 2008.

J. Rushby. Proof of Separability—A verification technique for a class of security kernels. In
Proc. 5th International Symposium on Programming, volume 137 of Lecture Notes in Computer
Science, pages 352-367, Turin, Italy, Apr. 1982. Springer-Verlag.

N. Shankar. Building assurance cases with the evidential tool bus.
http://chess.eecs.berkeley.edu/pubs/1061.html, 03 2014.

J. Stephen Blanchette. Assurance cases for design analysis of complex system of systems soft-
ware. Technical report, Software Engineering Institute, Carnegie Mellon University, 04 2009.
C. Sturton, R. Sinha, T. H. Dang, S. Jain, M. McCoyd, W.-Y. Tan, P. Maniatis, S. A. Seshia,
and D. Wagner. Symbolic software model validation. In Proceedings of the 10th ACM/IEEE
International Conference on Formal Methods and Models for Codesign, 10 2013.

