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Abstract. Traditional link prediction techniques primarily focus on the
effect of potential linkages on the local network neighborhood or the
paths between nodes. In this article, we study both supervised and unsu-
pervised link prediction in networks where instances can simultaneously
belong to multiple communities, engendering different types of collabo-
rations. Links in these networks arise from heterogeneous causes, limit-
ing the performance of predictors that treat all links homogeneously. To
solve this problem, we introduce a new supervised link prediction frame-
work, Link Prediction using Social Features (LPSF ), which incorporates
a reweighting scheme for the network based on nodes’ features extracted
from patterns of prominent interactions across the network.

Experiments on coauthorship networks demonstrate that the choice for
measuring link weights can be critical for the link prediction task. Our
proposed reweighting method in LPSF better expresses the intrinsic re-
lationship between nodes and improves prediction accuracy for super-
vised link prediction techniques. We also compare the unsupervised per-
formance of the individual features used within LPSF with two new
diffusion-based methods: LPDP (Link Prediction using Diffusion Pro-
cess) and LPDM (Link Prediction using Diffusion Maps). Experiments
demonstrate that LPDP is able to identify similar node pairs, even far
away ones, that are connected by weak ties in the coauthorship network
using the diffusion process; however, reweighting the network has little
impact on prediction performance.

Keywords: link prediction · social features · random walk · collabora-
tion networks

1 Introduction

In many social media tools, link prediction is used to detect the existence of
unacknowledged linkages in order to relieve the users of the onerous chore of
populating their personal networks. The problem can be broadly formulated as
follows: given a disjoint node pair (x, y), predict if the node pair has a relation-
ship, or in the case of dynamic interactions, will form one in the near future [1].
Often, the value of the participant’s experience is proportional to the size of their



personal network so bootstrapping the creation of social networks with link pre-
diction can lead to increased user adoption. Conversely, poor link prediction can
irritate users and detract from their initial formative experiences.

Although in some cases link predictors leverage external information from
the user’s profile or other documents, the most popular link predictors focus on
modeling the network using features intrinsic to the network itself, and mea-
sure the likelihood of connection by checking the proximity in the network [2, 3].
Generally, the similarity between node pairs can be directly measured by neigh-
borhood methods such as the number of shared neighbors [4] or subtly measured
by path methods [5].

One weakness with network-based link prediction techniques is that the links
are often treated as having a homogeneous semantic meaning, when in reality
the underlying relationship represented by a given link could have been engen-
dered by different causal factors. In some cases, these causal factors are easily
deduced using user-supplied meta-information such as tags or circles, but in
other cases the provenance of the link is not readily apparent. In particular, the
meaning of links created from overlapping communities are difficult to interpret,
necessitating the development of heterogeneous link prediction techniques.

In the familiar example of scientific collaboration networks, authors usually
have multiple research interests and seek to collaborate with different sets of
co-authors for specific research areas. For instance, Author A cooperates with
author B on publishing papers in machine learning conferences whereas his/her
interaction with author C is mainly due to shared work in parallel computa-
tion. The heterogeneity in connection causality makes the problem of predicting
whether a link exists between authors B and C more complicated. Additionally,
Author A might collaborate with author D on data mining; since data mining is
an academic discipline closely related to machine learning, there is overlap be-
tween the two research communities which indicates that the linkage between B
and D is more likely than a connection between B and C. In this article, we de-
tect and leverage the structure of overlapping communities toward this problem
of link prediction in networks with multiple distinct types of relationships.

Community detection utilizes the notion of “structural equivalence” which
refers to the property that two actors are similar to one another if they partic-
ipate in equivalent relationships [6]. Inspired by the connection between struc-
tural equivalence and community detection, Soundarajan and Hopcroft proposed
a link prediction model for non-overlapping communities; they showed that in-
cluding community information can improve the accuracy of similarity-based
link prediction methods [7]. Since community information is not always read-
ily available, community detection techniques can be applied to partition the
network into separate groups [8]. In this article, we present a new link predic-
tion framework for networks with overlapping communities that accounts for the
hidden community information embedded in a set of heterogeneous connections.

When a person’s true affiliations are unknown, our proposed method, LPSF [9],
models link heterogeneity by adding weights to the links to express the similar-
ities between node pairs based on their social features. These social features



are calculated from the network topology using edge clustering [10] and implic-
itly encode the diversity of the nodes’ involvements in potential affiliations. The
weights calculated from the social features provide valuable information about
the true closeness of connected people, and can also be leveraged to predict the
existence of the unobserved connections. In this article, different similarity-based
prediction metrics were adapted for use on a weighted network, and the corre-
sponding prediction scores are used as attributes for training a set of supervised
link prediction classifiers. Experiments on a real-world scientific collaboration
dataset (DBLP) demonstrate that LPSF is able to outperform homogeneous
predictors in the unweighted network.

In Section 5, we further compare the performances of unsupervised link pre-
diction benchmarks used in LPSF with two proposed diffusion-based link predic-
tors (LPDP and LPDM ). Recently, the use of random walk models for solving
link prediction problems in coauthorship networks has attracted interest due
to the finding that researchers are more interested in establishing long-range
weak ties (collaborations) rather than strengthening their well-founded interac-
tions [11]. By capturing the underlying proximities of long distant node pairs,
LPDP demonstrates its superior link prediction performance on DBLP datasets.

2 Related Work

The link prediction problem has drawn increased attention over the past few
years [12–14]. A variety of techniques for addressing this problem have been
explored including graph theory, metric learning, statistical relational learning,
matrix factorization, and probabilistic graphical models [1, 15–17]. This chapter
is an extended version of our prior work on supervised link prediction models [9].

Most link prediction models assume that the links in the network are ho-
mogeneous. In this work, we focus on predicting links in link-heterogeneous
networks such as coauthorship collaboration networks, which can be modeled
as networks that contain different types of collaboration links connecting au-
thors. From a machine learning point of view, link prediction models can be
categorized as being supervised or unsupervised. Hasan et al. studied the use
of supervised learning for link prediction in coauthorship networks [18]. They
identify a set of link features that are key to the performance of their supervised
learner including (1) proximity features, such as keywords in research papers,
(2) aggregated features, obtained from an aggregation operator, and (3) topo-
logical features. The combination of these features showed effective prediction
performance on two collaborative network datasets. Popescul et al. introduced
an alternate approach to generating features. First, they represent the data in a
relational format, generate candidate features through database queries, select
features using statistical model selection criteria, and finally perform logistic re-
gression using the selected features for classification [19]. Unlike these methods,
in this work, our proposed LPSF only utilizes network information and does
not use document properties; we believe that our proposed social features could



be used in conjunction with node features, when they are available, to improve
classification performance.

Unsupervised prediction methods, due to their simplicity, have remained pop-
ular in the link prediction literature but have been shown to be very sensitive to
underlying network properties, such as imbalance in the size of network commu-
nities, and experience difficulty adapting to dynamic interdependencies in the
network [17].

Davis et al. proposed an unsupervised extension of the common Adamic/Adar
method to predict heterogeneous relationships in multi-relational networks [20].
Specifically, the proposed multi-relational link prediction (MRLP) method ap-
plies a weighting scheme for different edge type combinations. The weights are
determined by counting the occurrence of each unique 3-node sub-structure in
the network, traditionally termed a triad census. Supervised link prediction is
employed after converting the heterogeneous network into a feature representa-
tion.

Sun et al. proposed a path-based relationship prediction model, PathPredict,
to study the coauthorship prediction problem in heterogeneous bibliographic
networks [13]. First, the meta path-based topological features are symmetrically
extracted from the network using measures such as path count and random
walk, around the given meta paths. The meta path captures the composition
relation over the heterogeneous networks. Logistic regression is then used to
learn the weights associated with different topological features that best predict
co-author relationships. Lee and Adorna proposed a random walk-based link
prediction algorithm on a modified heterogeneous bibliographic network where
all edges across heterogeneous objects in the network are weighted by using
a combination of different importance measures [21]. Different to their work,
our main focus in this article is weighting the heterogeneous collaboration links
between authors.

Relatively few works focus on link prediction tasks in weighted networks. De
Sá and Prudêncio investigated the use of weights to improve the performance
of supervised link prediction [22]. In their work, they extend eight benchmark
unsupervised metrics for weighted networks, and adopt prediction scores as node
pairs’ attributes for a supervised classification model. Murata et al. proposed
a similar unsupervised metric that makes use of the weights of the existing
links [23]; this outperforms traditional unsupervised methods especially when
the target social networks are sufficiently dense. Experiments conducted on two
real-world datasets (Yahoo! Answers and Windows Live QnA dataset) indicate
that the accuracy of link prediction can be improved by taking weights of links
into consideration. In those datasets, the weights of the links in the network are
already available, in contrast to our work where we calculated the link weights
based on node pairs’ social features extracted from an unweighted network.

Recently, some researchers started applying random walk models to solve
the link prediction problem. For instance, Backstrom and Leskovec developed a
supervised random walk algorithm that combines the information from the net-
work structure with node and edge level attributes and evaluated their method



on coauthorship networks extracted from arXiv. The edge weights are learned
by a model that optimizes the objective function such that more strength is as-
signed to new links that a random walker is more likely to visit in the future [11].
However, they only focus on predicting links to the nodes that are 2-hops from
the seed node. Liu et al. proposed a similarity metric for link prediction based on
type of local random walk, the Superposed Random Walk (SRW) index [24]. By
taking into account the fact that in most real networks nodes tend to connect to
nearby nodes rather than ones that are far away, SRW continuously releases the
walkers at the starting point, resulting in a higher similarity between the target
node and the nearby nodes. Apparently this assumption is invalid in DBLP and
other scientific collaboration datasets. Similarly Yin et al. estimated link rele-
vance using the random walk algorithm on an augmented social graph with both
attribute and structure information [25]. Their framework leverages both global
and local influences of the attributes. Different to their model, our diffusion-based
techniques LPDP and LPDM only rely on the network structural information
without considering any node’s local (intrinsic) features. Additionally, the exper-
iments described in [24] and [25] evaluated the problem of recognizing existent
links in the network rather than predicting future ones.

3 Link Prediction in Collaboration Networks

In this article, we aim to predict future collaborations between researchers by
observing the network at an earlier point of time t as the training sample and
predicting the links to be added to the network during the time interval from
time t to a given future time t′. The network we consider consists of the following
information: (1) a set of N individuals: V = {V1, ..., VN}. Each person in the
network can belong toK (K ≥ 1) different affiliations (communities). When K =
1, individuals are partitioned into non-overlapping groups. (2) The connections
between actors are represented by the undirected, network graph G = {V,E}, in
which edge e = (vi, vj) denotes that vi shares certain relationships with vj . We
also assume that the network is unweighted, which means w(vi, vj) = 1 for all
connected node pairs (vi, vj). Given a new pair of nodes in the network, {vm, vn},
our task is to predict whether there exists a relationship between them.

3.1 Problems of Heterogeneity

Unsupervised link prediction methods mainly fall into two categories: neigh-
borhood methods, such as Common Neighbors (CN) and Jaccard’s Coefficient
(JC), which make predictions based on structural scores that are calculated from
the connections in the node’s immediate neighbors, and path methods, such as
PageRank, which predict the links based on the paths between nodes [5]. Es-
sentially, the prediction score represents the similarity between the given pair
of nodes: the higher the score, the more likely that there exists a connection
between them. Using the Common Neighbors (CN) scoring method, two nodes



with 10 common neighbors are more likely to be linked than nodes with only a
single common neighbor.

However, these neighborhood approaches intrinsically assume that the con-
nections in the network are homogeneous: each node’s connections are the out-
come of one relationship. Directly applying homogeneous link predictors to over-
lapping communities can cause prediction errors. A simple example is shown in
Figure 1, where two types of relationships co-exist within the same network. The
solid line represents the coauthorship of a paper in a data mining conference and
the dashed line represents the activity of collaborating on a machine learning
paper. Note that the link types are hidden from the method — only the presence
of a link is known. Author 1 is associated with 2 affiliations since he/she partic-
ipates in both activities. If all interactions were considered homogeneously, the
prediction score for linking authors 2 and 6, CN(2, 6), and that for authors 2
and 3, CN(2, 3), under the Common Neighbors scoring method would be the
same, since both node pairs share only one common neighbor; yet this is clearly
wrong. The question now becomes how can we capture type correlations between
edges to avoid being misled by connection heterogeneity? In the next section,
we describe how edges in the network can be analyzed using edge clustering [10]
to construct a social feature space that makes this possible.

3.2 Edge-based Feature Extraction

The idea of constructing edge-based social dimensions was initially used to ad-
dress the multi-label classification problem in networked data with multiple types
of links [10]. Connections in human networks are often the result of affiliation-
driven social processes; since each person usually has more than one connection,
the involvements of potential groups related to one person’s edges can be uti-
lized as a representation for his/her true affiliations. Because this edge class
information is not always readily available in the social media application, an
unsupervised clustering algorithm can be applied to partition the edges into dis-
joint sets such that each set represents one potential affiliation. The edges of
actors who are involved in multiple affiliations are likely to be separated into
different sets.

In this article, we construct the node’s social feature space using the scalable
edge clustering method proposed in [10]. However, instead of using the social
feature space to label nodes, in this article our aim is to leverage this information
to reweight links. First, each edge is represented in a feature-based format, where
the indices of the nodes that define the edges are used to create the features as
shown in Figure 1.

In this feature space, edges that share a common node are more similar than
edges that do not. Based on the features of each edge, k-means clustering is used
to separate the edges into groups using this similarity measure. Each edge cluster
represents a potential affiliation, and a node will be considered as possessing one
affiliation as long as any of its connections are assigned to that affiliation. Since
the edge feature data is very sparse, the clustering process can be significantly
accelerated as follows. In each iteration a small portion of relevant instances
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…… 

(a) (b) (c)

Fig. 1: A simple example of a coauthorship network (Figure (a)). The solid line
represents coauthorship of a paper in a data mining conference and the dashed
line represents the activity of collaborating on a machine learning paper. In edge-
based social features (Figure (b)), each edge is first represented by a feature
vector where nodes associated with the edge denote the features. For instance
here the edge “1-3” is represented as [1,0,1,0,0,0,0,0,0,0]. Then, the node’s social
feature (SF) is constructed based on edge cluster IDs (Figure (c)). Suppose in
this example the edges are partitioned into two clusters (represented by the solid
lines and dashed lines respectively), then the SFs for node 1 and 2 become [3,3]
and [0,2] using the count aggregation operator. Employing social features enables
us to score “2-6” (cross-affiliation link) lower than “2-3” even though they have
the same number of common neighbors.

(edges) that share features with cluster centroids are identified, and only the
similarity of the centroids with their relevant instance need to be computed. By
using this procedure, the clustering task can be completed within minutes even
for networks with millions of nodes.

After clustering the edges, we can easily construct the node’s social feature
vector using aggregation operators such as count or proportion on edge cluster
IDs. In [10], these “social dimensions” are constructed based on the node’s in-
volvements in different edge clusters. Although aggregation operators are simply
different ways of representing the same information (the histogram of edge clus-
ter labels), alternate representations have been shown to impact classification
accuracy based on the application domain [26].

4 Proposed LPSF Framework: reweighting the network
+ supervised learning classifier

Most of previous work in link prediction focuses on node-similarity metrics com-
puted for unweighted networks, where the strength of relationships is not taken
into account. However, proximities between nodes can be estimated better by
using both graph proximity measures and the weights of existing links [22, 23].
Much of this prior work uses the number of encounters between users as the
link weights. However, as the structure of the network can be highly informa-
tive, social dimensions provide an effective way of differentiating the nodes in
collaborative networks [10, 27].



In this article, the weights of the link are evaluated based on the user’s
social features extracted from the network topology under different similarity
measures. For our domain, we evaluated several commonly used metrics includ-
ing inner product, cosine similarity, and Histogram Intersection Kernel (HIK),
which is used to compare color histograms in image classification tasks [28].
Since our social features can be regarded as the histogram of person’s involve-
ment in different potential groups, HIK can also be adopted to measure the
similarity between two people. Given the social features of person vi and person
vj , (SFi, SFj) ∈ X × X , the HIK is defined as follows:

KHI(vi, vj) =

m∑
i=1

min{SFi, SFj}, (1)

where m is the length of the feature vector.
The closeness of users can also be evaluated by the total number of common

link clusters they associate with. We call this measure Common Link Clusters
(CLC). Section 4.4 compares classification performance of these similarity met-
rics.

4.1 Unsupervised Proximity Metrics

In order to investigate the impact of link weights for link prediction in collabo-
ration networks, we compare the performances of eight benchmark unsupervised
metrics for unweighted networks and their extensions for weighted networks. The
prediction scores from these unsupervised metrics can further be used as the at-
tributes for learning supervised prediction models. We detail the unsupervised
prediction metrics for both unweighted and weighted networks in the following
sections.

Let N (x) be the set of neighbors of node x in the social network and let
Dx be the degree (the total number of neighbors) of node x. Obviously, in an
unweighted network, Dx = |N (x)|. Let w(x, y) be the link weight between nodes
x and y in a weighted network. Note that in our generated weighted network,
the weight matrix W is symmetric, i.e. w(x, y) = w(y, x).

Number of Common Neighbors (CN)
The CN measure for unweighted networks is defined as the number of nodes
with direct connections to the given nodes nodes x and y:

CN(x, y) = |N (x) ∩N (y)|. (2)

The CN measure is one the most widespread metrics adopted in link prediction,
mainly due to its simplicity. Intuitively, the measure simply states that two nodes
that share a high number of common neighbors should be directly linked [4]. For
weighted networks, the CN measure can be extended as:

CN(x, y) =
∑

z∈N (x)∩N (y)

w(x, z) + w(y, z). (3)



Jaccard’s Coefficient (JC)
The JC measure assumes that the node pairs that share a higher proportion of
common neighbors relative to their total number of neighbors are more likely to
be linked. From this point of view, JC can be regarded as a normalized variant
of CN. For unweighted networks, the JC measure is defined as:

JC(x, y) =
|N (x) ∩N (y)|
|N (x) ∪N (y)|

. (4)

For weighted networks, the JC measure can be extended as:

JC(x, y) =

∑
z∈N (x)∩N (y) w(x, z) + w(y, z)∑

a∈N (x) w(x, a) +
∑
b∈N (x) w(y, b)

. (5)

Preferential Attachment (PA)
The PA measure assumes that the probability that a new link is created from a
node x is proportional to the node degree Dx (i.e., nodes that currently have a
high number of relationships tend to create more links in the future). Newman
proposed that the product of a node pair’s number of neighbors should be used
as a measure for the probability of a future link between those two [4]. The PA
measure for an unweighted network is defined by:

PA(x, y) = |N (x)| × |N (y)|. (6)

The PA measure extended for a weighted network can be defined as:

PA(x, y) =
∑

z1∈N (x)

w(x, z1)×
∑

z2∈N (y)

w(y, z2). (7)

Adamic/Adar Coefficient (AA)
The AA measure is related to Jaccard’s coefficient with additional emphasis on
the importance of the common neighbors [29]. AA defines higher weights for the
common neighbors that have fewer neighbors. The AA measure for unweighted
networks is defined as:

AA(x, y) =
∑

z∈N (x)∩N (y)

1

log(N (z))
. (8)

The AA measure extended for a weighted network can be defined as:

AA(x, y) =
∑

z∈N (x)∩N (y)

w(x, z) + w(y, z)

log(1 +
∑
c∈N (z) w(z, c))

. (9)

Resource Allocation Index (RA)
The Resource Allocation Index has a similar formula as the Adamic-Adar Co-
efficient, but with a different underlying motivation. RA is based on physical



processes of resource allocation [30] and can be applied on networks formed by
airports (for example, flow of aircraft and passengers) or networks formed by
electric power stations such as power distribution. The RA measure was first
proposed in [31] and for unweighted networks it is expressed as follows:

RA(x, y) =
∑

z∈N (x)∩N (y)

1

|N (z)|
. (10)

The RA measure for weighted networks can be defined as:

RA(x, y) =
∑

z∈N (x)∩N (y)

w(x, z) + w(y, z)∑
c∈N (z) w(z, c)

. (11)

Inverse Path Distance (IPD)
The Path Distance measure for unweighted networks simply counts the number
of nodes along the shortest path between x and y in the graph. Thus, when two
nodes x and y share at least one common neighbor, then PD(x, y) = 1. In this
article, we adopt the Inverse Path Distance to measure the proximity between
two nodes, where

IPD(x, y) = 1/PD(x, y).

IPD is based on the intuition that nearby nodes are likely to be connected. In a
weighted network, IPD is defined by the inverse of the shortest weighted distance
between two nodes. Since IPD quickly approaches 0 as path lengths increase, for
computational efficiency, we terminate the shortest path search once the distance
exceeds a threshold L and approximate IPD for more distant node pairs as 0.

PropFlow
PropFlow [17] is a new unsupervised link prediction method which calculates the
probability that a restricted random walk starting at x ends at y in L steps or
fewer using link weights as transition probabilities. The walk terminates when
reaching node y or revisiting any nodes including node x. By restricting its
search within the threshold L, PropFlow is a local measure that is insensitive
to noise in network topology far from the source node and can be computed
quite efficiently. The algorithm for unweighted networks is identical to that for
weighted networks, except that all link weights are set equal to 1.

PageRank
The PageRank (PR) algorithm of Google fame was first introduced in [32]; it
aims to represent the significance of a node in a network based on the significance
of other nodes that link to it. Inspired by the same assumption as made by
Preferential Attachment, we assume that the links between nodes are driven
by the importance of the node, hence the PageRank score of the target node
represents a useful statistic. Essentially, PageRank outputs the ranking scores
(or probability) of visiting the target node during a random walk from a source.



A parameter α, the probability of suffering to a random node, is considered
in the implementation. In our experiment, we set α = 0.85 and perform an
unoptimized PageRank calculation iteratively until the vector that represents
PageRank scores converges.

For weighted networks, we adopted the weighted PageRank algorithm pro-
posed in [33].

PRw(x) = α
∑

k∈N (x)

PRw(x)

L(k)
+ (1− α)

w(x)∑N
y=1 w(y)

. (12)

where L(x) is the sum of outgoing link weights from node x, and
∑N
y=1 w(y) is

the total weights across the whole network.

4.2 Supervised Link Predictor

As mentioned in [23], unsupervised link prediction methods exhibit several draw-
backs. First, they can only perform well if the network link topology conforms
to the scoring function a priori. In other words, the assumption is both the
links in the existing network and the predicted links score highly on the given
measure. Second, the ranking of node pairs is performed using only a single
metric, and hence the strategy may completely explore different structural pat-
terns contained in the network. By contrast, supervised link prediction schemes
can integrate information from multiple measures and can usually better model
real-world networks. Most importantly, unlike in other domains where super-
vised algorithms require access to appropriate quantities of labeled data, in link
prediction we can use the existing links in the network as the source of super-
vision. For these reasons, supervised approaches to link prediction are drawing
increased attention in the community [18, 19, 17].

In this article, we follow a standard approach: we treat the prediction scores
from the unsupervised measures as features for the supervised link predictor. We
compare the accuracy of different classifiers on both unweighted and weighted
collaboration networks.

4.3 Experimental Setup

Multi-relational Dataset
Our proposed method is evaluated on two real-world multi-relational collabora-
tion networks extracted from the DBLP dataset1. The DBLP dataset provides
bibliographic information for millions of computer science references. In this
article we only consider authors who have published papers between 2006 and
2008, and extract their publication history from 2000 to 2008. In the constructed
network, authors correspond to nodes, and two authors are linked if they have
collaborated at least once. The link prediction methods are tested on the new

1
http://www.informatik.uni-trier.de/~ley/db/



co-author links in the subsequent time period [2009, 2010]. For the weighted vari-
ant, the number of coauthored publications is used as the weight on each link.
Link heterogeneity is induced by the broad research topic of the collaborative
work.
• DBLP-A: In the first DBLP dataset, we select 15 representative conferences

in 6 computer science research areas (Databases, Data Mining, Artificial Intel-
ligence, Information Retrieval, Computer Vision and Machine Learning), and
each paper is associated with a research area if it appeared in any conferences
listed under that area. The collaboration network is constructed only for authors
who have publications in those areas.
• DBLP-B: In the second DBLP dataset, we select 6 different computer sci-

ence research areas (Algorithms & Theory, Natural Language Processing, Bioin-
formatics, Networking, Operating Systems and Distributed & Parallel Comput-
ing), and choose 16 representative conferences in these areas.

Similar DBLP datasets have previously been employed by Kong et al. to
evaluate collective classification in multi-relational networks [34]. In this article,
we aim to predict the missing links (coauthorship) in the future based on the
existing connection patterns in the network.

Table 1: Data Statistics

Data DBLP-A DBLP-B

Categories 6 6
# of Nodes 10,708 6,251
# of New Links 12,741 5,592
# of Existing Links 49,754 30,130
Network Density 9.78× 10−4 1.7× 10−3

Maximum Degree 115 72
Average Degree 5.2 5.3

Evaluation Framework
In this article, the supervised link prediction models are learned from training
links (all existing links) in the DBLP dataset extracted between 2000 and 2008,
and the performance of the model is evaluated on the testing links, new co-
author links generated between 2009 and 2010. Link prediction using supervised
learning model can be regarded as a binary classification task, where the class
label (0 or 1) represents the link existence of the node pair. When performing
the supervised classification, we sample the same number of non-connected node
pairs as that of the existing links to use as negative instances for training the
supervised classifier.

In our proposed LPSF model, the edge clustering method is adopted to
construct the initial social dimensions. When conducting the link prediction ex-
periment, we use cosine similarity while clustering the links in the training set.



The edge-based social dimension in our proposed method, LPSF, is constructed
based on the edge cluster IDs using the count aggregation operator, and varying
numbers of edge clusters are tested in order to provide the best performance
of LPSF. The weighted network is then constructed according to the similarity
score of connected nodes’ social features under the weight measure selected from
Section 4. The search distance L for unsupervised metrics Inverse Path Dis-
tance and PropFlow is set to 5. We evaluate the performance of four supervised
learning models in this article, which are Naive Bayes (NB), Logistic Regression
(LR), Neural Network (NN) and Random Forest (RF). All algorithms have been
implemented in WEKA [35], and the performance of each classifier is tested
using its default parameter setting.

In the DBLP dataset, the number of positive link examples for testing is
very small compared to negative ones. In this article, we sample an equivalent
number of non-connected node pairs as links from the 2009 and 2010 period
to use as the negative instances in the testing set. The evaluation measures for
supervised link prediction performance used in this article are precision, recall
and F-Measure.

4.4 Results

This section describes several experiments to study the benefits of augmenting
link prediction methods using LPSF. First, we compare the performance of dif-
ferent weighting metrics used in LPSF. Second, we evaluate how the number
of social features affects the performance of LPSF. Finally, we examine how
several supervised link prediction models perform on unweighted and weighted
networks, and the degree to which LPSF improves classification performance
under different evaluation measures.

Effect of Similarity Measure
A critical procedure in LPSF is reweighting the original networks according to

the similarity of the node pair’s social features. Figure 2 shows the F-Measure
performance of LPSF using different weighting metrics on DBLP datasets. Here
the number of edge clusters is set to 1000 for all conditions, and different clas-
sifiers have been adopted for the purpose of comparison. We observe that in
the DBLP-A dataset, even though the performance of each weighting metric
is mainly dominated by the choice of classifier, Histogram Intersection Kernel
(HIK) and Inner Product perform better than CLC and Cosine in most cases.
HIK dramatically outperforms Cosine in Naive Bayes by about 20% and Inner
in Logistic Regression for 7%. The Cosine measure performs almost equally well
for all classifiers but with a relatively low accuracy unfortunately.

In the DBLP-B dataset, while Inner Product performs well on Random For-
est, HIK outperforms other weighting metrics using the other classifiers. Accord-
ingly, we select HIK as our default weighting metric in LPSF for the remainder
of the experiments.
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Fig. 2: Classification performance of LPSF on the DBLP Dataset using different
similarity measures on node’s social features. The number of edge clusters is set
to 1000, and Histogram Intersection Kernel (HIK) performs the best in both
datasets.

Varying the Number of Social Features
Here, we evaluate how the number of social features (edge clusters) affects the
link prediction performance of LPSF, and Figure 3 shows the corresponding clas-
sification accuracy under the F-Measure metric. In the DBLP-A dataset, Naive
Bayes and Random Forest are relatively robust to the number of social features
while Logistic Regression and Neural Network perform better with a smaller
number of social features (less than 500). Similarly in the DBLP-B dataset,
LPSF demonstrates better performance with fewer social features. Therefore we
set the number of social features to 300 and 500 for the DBLP-A and DBLP-B
datasets respectively.
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Fig. 3: Classification performance of LPSF using HIK on the DBLP Dataset
with varying number of social features, using different supervised classifiers.

Supervised Link Prediction: LPSF Reweighting
Figure 4 and 5 display the comparisons between LPSF and the baseline methods
on the DBLP datasets using a variety of supervised link classification techniques,
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Fig. 4: Comparing the classification performance of supervised link prediction
models on unweighted and weighted DBLP-A networks using Precision, Recall
and F-Measure. The proposed method (LPSF ) is implemented using 300 edge
clusters and the HIK reweighting scheme. Results show that LPSF significantly
improves over both unweighted and weighted baselines, especially under Recall
and F-Measures.

against both the unweighted and weighted supervised baselines. The same fea-
tures are used by all methods, with the only difference being the weights on the
network links. In this article, we compare the proposed method LPSF with alter-
nate weighting schemes, such as the number of co-authored papers, as suggested
in [22]. We see that in both DBLP datasets, Unweighted, Weighted and LPSF
perform almost equally under Precision, though LPSF performs somewhat worse
for some classifiers (Random Forest and Naive Bayes). When considering the
number of collaborations between author pairs, the Weighted method slightly
improves upon the performance of the Unweighted method.

The proposed reweighting (LPSF ) offers substantial improvement over both
the Unweighted and Weighted schemes on Recall and F-Measure in both datasets.
In the DBLP-A dataset, LPSF outperforms the unweighted baseline the most
dramatically on Logistic Regression, with about 23% improvement and 40% on
Recall and F-Measure respectively. In the DBLP-B dataset, LPSF shows the
best performance using Neural Network with accuracy improvements over base-
lines for 13% on Recall and 30% on F-Measure.

LPSF calculates the closeness between connected nodes according to their
social dimensions, which captures the nodes’ prominent interaction patterns em-
bedded in the network and better addresses heterogeneity in link formation. By
differentiating different types of links, LPSF is able to discover the possible link
patterns between disconnected node pairs that may not be determined by the
Unweighted and simple Weighted method, and hence exhibits great improvement
on Recall and F-Measure. Since LPSF can be directly applied on the unweighted
network, without considering any additional node information, it is thus broadly
applicable to a variety of link prediction domains.

Supervised Link Prediction: Choice of Classifier
Figures 4 and 5 compare the performance of different supervised classifiers for
link prediction. We found that the performance of the classifiers varies between
datasets. Logistic Regression, Naive Bayes and Neural Network exhibit compara-
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Fig. 5: Comparing the classification performances of supervised link prediction
models on unweighted and weighted DBLP-B networks using Precision, Recall
and F-Measure. The proposed method (LPSF ) is implemented using 500 edge
clusters and the HIK reweighting scheme. Results show that LPSF significantly
improves over both unweighted and weighted baselines, especially under Recall
and F-Measures.

ble performance. Somewhat surprisingly, Random Forest does not perform well
with LPSF. We also observe that LPSF using Naive Bayes will boost the Re-
call performance over baseline methods at the cost of lower Precision. Therefore
Logistic Regression and Neural Network are a better choice for LPSF in that
they improve the Recall performance without decreasing the Precision. Using
the traditional weighted features [22] does not help supervised classifiers for link
prediction to a great extent. As discussed above, reweighting the unweighted
collaboration network using our proposed technique, LPSF, performs the best.

5 Unsupervised Diffusion-based Link Prediction Models

Traditional unsupervised link prediction methods aim to measure the similarity
for a node pair and use the affinity value to predict the existence of a link be-
tween them. The performance of link predictor is consequently highly dependent
on the choice of pairwise similarity metrics. Most widely used unsupervised link
predictors focus on the underlying local structural information of the data, which
is usually extracted from the neighboring nodes within a short distance (usually
1-hop away) from the source. For instance, methods such as Common Neighbors
and Jaccard’s Coefficient calculate the prediction scores based on the number of
directly shared neighbors between the given node pair. However, a recent study
of coauthorship networks by Backstrom and Leskovec shows that researchers are
more interested in establishing long-range weak ties (collaborations) rather than
strengthening their well-founded interactions [11]. Figure 6 shows the distance
distribution of newly collaborating authors between 2009 and 2010 in the DBLP
datasets. We discover that in both datasets the majority of new links are gen-
erated by a node pair with a minimal distance equal to or greater than two.
This poses a problem for local link predictors which ignore information from the
intermediate nodes along the path between the node pair.

In the past few years, the diffusion process (DP) model has attracted an in-
creasing amount of interest for solving information retrieval problems in different
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Fig. 6: Probability distribution of the shortest distance between node pairs in
future links (between 2009 and 2010) in the DBLP datasets. Distances marked
as “0” are used to indicate that no path can be found that connects the given
node pair.

domains [36–38]. DP aims to capture the geometry of the underlying manifold in
a weighted graph that represents the proximity of the instances. First, the data
are represented as a weighted graph, where each node represents an instance
and edges are weighted according to their pairwise similarity values. Then the
pairwise affinities are re-evaluated in the context of all connected instances, by
diffusing the similarity values through the graph. The most common diffusion
processes are based on random walks, where a transition matrix defines proba-
bilities for walking from one node to a neighboring one, that are proportional to
the provided affinities. By repeatedly making random walk steps on the graph,
affinities are spread on the manifold, which in turn improves the obtainable re-
trieval scores. In the context of social network data, the data structure naturally
leads to graph modeling, and graph-based methods have been proven to perform
extremely well when combined with Markov chain techniques. In the following
sections, we will explore the effectiveness of diffusion-based methods on solv-
ing link prediction problems. The next section introduces the diffusion process
model (DP) and an embedding method based on diffusion processes, diffusion
maps (DM). Our proposed diffusion-based link prediction models (LPDP and
LPDM ) are discussed in 5.1 and 5.2.

5.1 Diffusion Process

We begin with the definition of a random walk on a graph G = (V,E), which
contains N nodes vi ∈ V , and edges eij ∈ E that link nodes to each other. The
entries in the N × N affinity matrix A provide the edge weights between node
pairs. The random walk transition matrix P can be defined as

P = D−1A (13)



where D is a N ×N diagonal matrix defined as:

dij =

{
deg(i) if i = j

0 otherwise
(14)

and deg(i) is the degree of the node i (i.e., the sum over its edge weights). The
transition probability matrix P is a row-normalized matrix, where each row sums
up to 1. Assuming f0, a 1×N dimensional vector of the initial distribution for
a specific node, the single step of the diffusion process can be defined by the
simple update rule:

ft+1 = ftP (15)

Therefore, it is possible to calculate the probability vector ft after t steps of
random walks as

ft = f0P
t (16)

where Pt is the power of the matrix P. The entry f tj in ft measures the proba-
bility of going from the source node to node j in t time steps.

The PageRank algorithm described in Section 4.1 is one of the most successful
webpage ranking methods and is constructed using a random walk model on
the underlying hyperlink structures. In PageRank, the standard random walk
is modified: at each time step t a node can walk to its outgoing neighbors with
probability α or will jump to a random node with probability (1−α). The update
strategy is as follows:

ft+1 = αftP
t + (1− α)y (17)

where y defines the probabilities of randomly jumping to the corresponding
nodes. The PageRank algorithm iteratively updates the webpage’s ranking dis-
tribution (f) until it converges. One extension of the PageRank algorithm is
random walk with restart (RWR) [39], which considers a random walker starting
from node i, who will iteratively move to a random neighbor with probability α
and return to itself with probability 1−α. In the RWR update, y in Equation 17
is simply a 1×N vector with the ith element equal to 1 and others to 0.

The diffusion process can further be extended to different independent in-
stances by updating the probability matrix as follows:

Wt+1 = αWtP
t + (1− α)Y (18)

where W is a N × N matrix that represents the local relationships (weights)
between different instances. For networked data, the adjacency matrix A can be
directly used as W, and P can be formed by normalizing matrix W such that
its rows add up to 1. Similarly, the N ×N matrix Y consists of N personalized
row vectors y.

In the literature, a number of diffusion models have been proposed by tuning
the functions for W for different application domains [39, 36, 38]. Our studies
also reveal the choice of diffusion scheme has a substantial impact on the link
prediction accuracy. In this article, we adopt the updating scheme used for Ran-
dom Walk with Restart in Equation 18. To apply the diffusion model on the link



prediction problem, we calculate the prediction score for a given node pair (i, j)
based on the corresponding entries in the final diffusion matrix:

LPDP (i, j) = W
(t)
ij ×W

(t)
ji (19)

where W
(t)
ij is the corresponding (i, j) entry in Wt. Note that Wt is not neces-

sarily a symmetric matrix, meaning W t
ij 6= W t

ji.

5.2 Diffusion Maps

The diffusion maps technique (DM), first introduced by Coifman and Lafon,
applies the diffusion process model toward the problem of dimensionality reduc-
tion; it aims to embed the data manifold into a lower-dimensional space while
preserving the intrinsic local geometric data structure [40]. Different from other
dimensionality reduction methods such as principal component analysis (PCA)
and multi-dimensional scaling (MDS), DM is a non-linear method that focuses
on discovering the underlying manifold generating the sampled data. It has been
successfully used on problems outside of social media analysis, including learning
semantic visual features for action recognition [41].

As discussed in the previous section, in diffusion models, each entry W
(t)
ij

indicates the probability of walking from i to j in t time steps. When we increase
t, the diffusion process moves forward, and the local connectivity is integrated
to reveal the global connectivity of the network. Increasing the value of t raises
the likelihood that edge weights diffuse to nodes that are further away in the
original graph. From this point of view, the Wt in the diffusion process reflects
the intrinsic connectivity of the network, and the diffusion time t plays the role
of a scaling factor for data analysis.

Subsequently, the diffusion distance D is defined using the random walk
forward probabilities ptij to relate the spectral properties of a Markov chain (its
matrix, eigenvalues, and eigenvectors) to the geometry of the data. The diffusion
distance aims to measure the similarity of two points (Ni and Nj) using the
diffusion matrix Wt, which is in the form of:

[D(t)(Ni, Nj)]
2 =

∑
q∈Ω

(W
(t)
iq −W

(t)
jq )2

ϕ(Nq)(0)
(20)

where ϕ(Nq)
(0) is the unique stationary distribution which measures the density

of the data points.
Since calculating the diffusion distance is usually computationally expensive,

spectral theory can be adopted to map the data point into a lower dimensional
space such that the diffusion distance in the original data space now becomes
the Euclidean distance in the new space. The diffusion distance can then be
approximated with relative precision δ using the first k nontrivial eigenvectors
and eigenvalues of Wt according to

[D(t)(Ni, Nj)]
2 '

k∑
s=1

(λts)
2 ∗ (vs(Ni)− vs(Nj))2 (21)



Table 2: Algorithm: Diffusion maps on unweighted networked data

Objective: Given a weighted graph W with N nodes,
embed all nodes into a k-dimensional space.

1. Create Markov transition matrix P by normalizing
matrix W such that each row sums to 1.

2. Compute diffusion matrix Wt at diffusion time t us-
ing Equation 18.

3. Perform eigen-decomposition on Wt, and obtain
eigen-value λs and eigenvectors vs, such that Wtvs =
λsvs.

4. Embed data by DM using Equation 22.

where λtk > δλt1. If we use the eigenvectors weighted with λ as coordinates on the
data, D(t) can be interpreted as the Euclidean distance in the low-dimensional
space. Hence, the diffusion map embedding and the low-dimensional representa-
tion are given by

Πt : Ni ⇒ {λt1v1(Ni), λ
t
2v2(Ni), . . . , λ

t
kvk(Ni)}T (22)

The diffusion map Πt embeds the data into a Euclidean space in which the
distance is approximately the diffusion distance:

[D(t)(Ni, Nj)]
2 '‖ Πt(Ni)−Πt(Nj) ‖2 (23)

The diffusion maps framework for the proposed method Link Prediction
using Diffusion Maps (LPDM) is summarized in Table 2. LPDM defines the
link prediction score for a given node pair (Ni, Nj) by the diffusion distance,
D(t)(Ni, Nj), between them.

5.3 Evaluation Framework

In this article, we evaluate the performance of our proposed diffusion-based link
prediction models (LPDP and LPDM ) on the same DBLP datasets mentioned
in Section 4.3, and compare them with the eight unsupervised baselines listed in
Section 4.1. Similar to the LPSF model, LPDP and LPDM can be applied on
the weighted networks constructed with the edge clustering method. In the later
section, we compare the performance of LPDP and LPDM on both unweighted
and weighted DBLP networks. We use cosine similarity while clustering the links
in the training set. Then the edge-based social dimension is constructed based
on the edge cluster IDs using the count aggregation operator. We tested the
algorithms with various numbers of edge clusters, and report the one offering the
best performance of LPDP and LPDM. The similarity scores of the connected



nodes’ social features are measured using the Histogram Intersection Kernel,
which are then used to construct the weighted network. The search distances L
for unsupervised metrics Inverse Path Distance and PropFlow are set to 7 and
11 for the DBLP-A and DBLP-B datasets respectively.

We sample the same number of non-connected node pairs as that of the ex-
isting future links to be used as the negative training instances. The Area Under
the Receiver Operating Characteristic curve (AUROC) is a standard measure
of accuracy that relates the sensitivity (true positive rate) and specificity (true
negative rate) of a classifier. In this article, we report the performance of all
unsupervised link prediction methods using AUROC.

5.4 Results

We conduct several experiments for evaluating the performance of the diffusion-
based link predictors. First, we evaluate the link prediction performance of LPDP
and LPDM on the unweighted DBLP datasets under different model parame-
ter settings, such as the damping factor α and diffusion time t. For LPDM, we
also examine how different sizes of the embedded diffusion spaces affect its link
prediction performance. Additionally, we compare the diffusion-based link pre-
diction models with other unsupervised benchmarks on both unweighted and
weighted networks.

Effects of Diffusion Time on LPDP
As mentioned before, in diffusion processes, the diffusion time t controls the

amount of weight likelihood that diffuses between long distance node pairs. The
higher the value of t is, the more likely the link weights are to diffuse to the nodes
that are further away. Figure 7 shows the effect of varying diffusion time on the
LPDP link prediction accuracy for the DBLP dataset. In this experiment, we fix
the value of α to 0.9 which offers LPDP the best performance. We discover that
setting t to a higher value does not guarantee higher link prediction accuracy.
LPDP performs best when t = 15, yielding an AUROC accuracy 84.61% and
85.49% on DBLP-A and DBLP-B datasets respectively.

Effects of Damping Factor and Embedded Space Size on LPDM
Here, we evaluate how the size of the embedded space and the value of the
damping factor affect the link prediction performance of LPDM. Figure 8 shows
the corresponding classification accuracy measured by AUROC. The diffusion
time t has an insignificant effect on the performance of LPDM, and the results
we report here are based on setting t to 100 and 60 for DBLP-A and DBLP-B
respectively. In both datasets, a lower damping factor α yields higher accuracy,
and LPDM demonstrates the best performance when α equals 0.55 and 0.65 on
DBLP-A and DBLP-B respectively. Note that in Equation 18, a lower α results
in a reduced probability of exchanges between a node and its connected neigh-
bors. Our results reveal that the size of the embedded diffusion space greatly
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Fig. 7: Link prediction performance (AUROC) of LPDP with fixed damping
factor α = 0.9 and varying diffusion time (t) on unweighted DBLP-A and DBLP-
B datasets. LPDP performs best on both datasets when t = 15.
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Fig. 8: AUROC accuracy of LPDM on DBLP datasets with varying damping
factor α and embedded space size. The diffusion time t for LPDM is set to 100
and 60 for DBLP-A and DBLP-B dataset respectively.

affects the performance of LPDM. Here we report experimental results for em-
bedded diffusion space dimensions ranging from 1 and 100. As shown in Figure
8, the diffusion maps technique is able to identify semantically similar nodes by
measuring distance on an embedded space with a much smaller dimensionality.
LPDM exhibits the best performance (79.61% and 79.08%) when the size of the
embedded space equals 25 and 15 on DBLP-A and DBLP-B respectively.

Comparing Unsupervised Link Prediction Methods
In Section 4.4, we evaluate our supervised link classifier LPSF which employs



an ensemble of unsupervised measures as features. These unsupervised measures
can themselves be used for classification, although we do not expect an individual
feature to be competitive with the supervised combination. Here, we compare
these unsupervised measures with our proposed diffusion-based measures LPDP
and LPDM on unweighted and reweighted graphs. Table 3 and Table 4 sum-
marize the link prediction performance (AUROC) of individual unsupervised
features on DBLP. We make several interesting observations.

First, we note that among the individual features, PA is by far the best per-
former. This is because PA’s model for link generation is a particularly good fit
to the DBLP network structure and real-world academic publishing. It is true
that highly published authors generate many more publications than their less
prolific peers and will also seek to collaborate with other highly influential (high
degree) authors in the future. Hence the “richer get richer” phenomenon defi-
nitely exists in coauthorship networks. Since the preferential attachment model
is already a good match for the academic publishing domain, reweighting the
links does not improve link prediction performance; in fact, performance drops
slightly. This highlights the sensitivity of unsupervised classifiers to the link
prediction domain.

Second, we observe that methods that rely on information gathered from
node pairs’ directly connected neighbors, such as CN, JC, AA and RA, perform
poorly with accuracies only slightly above 50%. This result is not unexpected,
given that the authorship distribution shown in Figure 6 reveals that DBLP
authors are more likely to form future collaborations with authors with whom
they share longer range ties. By collecting structural information from all nodes
in the path, IPD, PropFlow, PR, LPDP and LPDM significantly improve the
link prediction performance. Furthermore, in both the DBLP-A and DBLP-B
datasets, the models that incorporate the random walk technique (PR, LPDP
and LPDM ) outperform the other two methods (IPD and PropFlow). LPDP
performs the best among the three with an AUROC accuracy of 85.49% and
84.61% on DBLP-A and DBLP-B datasets respectively. Unfortunately the diffu-
sion maps in LPDM are not able to capture the semantically similar nodes after
the diffusion process which results in inferior performance to LPDP. LPDM ’s
performance is worse than LPDP by around 5%, while still performing better
than IPD and PropFlow. This might be because the diffusion process after t
diffusion time steps is good enough to capture the underlying similarity between
nodes at farther distances using the node similarity extracted from the final
diffusion matrix.

Third, Tables 3 and 4 also include the comparison results of different un-
supervised link predictors on weighted DBLP networks constructed using edge
cluster information. On one hand, we found that in methods such as CN, JC, AA
and RA, the weighting scheme does not affect the corresponding link prediction
accuracy much. On the other hand, the weighting scheme helps to improve the
performance of IPD, PropFlow, PageRank as well as LPDM by around 2%-3%.
On both weighted datasets, PageRank performs best among all unsupervised fea-
tures. It is also surprising that LPDP performs poorly on the weighted network,



Table 3: Link prediction accuracy of individual (unsupervised) classifiers on
the DBLP-A dataset. Performance is evaluated on both unweighted networks
and weighted networks constructed using social context features. Note that the
reweighting scheme does not always improve accuracy at the individual feature
level.

AUROC (%) PA AA CN JC RA IPD PropFlow PageRank LPDP LPDM

Unweighted 86.68 50.95 50.95 50.95 50.20 77.46 77.52 82.54 85.49 79.61
Weighted 85.16 50.95 50.95 50.95 50.20 80.06 79.71 85.61 83.08 80.43

Table 4: Link prediction accuracy of individual (unsupervised) classifiers on
the DBLP-B dataset. Performances are evaluated on both unweighted networks
and weighted networks constructed using social context features. Note that the
reweighting scheme does not always improve accuracy at the individual feature
level.

AUROC (%) PA AA CN JC RA IPD PropFlow PageRank LPDP LPDM

Unweighted 87.97 52.15 52.15 52.14 50.66 77.09 76.98 83.60 84.61 79.08
Weighted 87.11 52.15 52.15 52.15 50.66 76.23 76.66 87.14 80.11 80.09

reducing the accuracy by 2% on the DBLP-A dataset and 4% on the DBLP-B
dataset.

In summary, we observe that the reweighting scheme yields dramatic im-
provements in LPSF which integrates the first eight features listed in Table 3
in a supervised setting; however, it fails to boost the unsupervised performance
of individual features. As mentioned in [42], the utility of using weights in link
prediction is a somewhat controversial issue. Some case studies have shown that
prediction accuracy can be significantly harmed when weights in the relationships
were considered [42]. Our experiments reveal a more nuanced picture: although
link weights (using the proposed approach) may not generate a large improve-
ment for some individual unsupervised feature-level techniques, employing an
appropriate choice of link weights (e.g., using LPSF ) in conjunction with a su-
pervised classifier enables us to achieve more accurate classification results on
the DBLP datasets.

6 Conclusion

In this article, we investigate the link prediction problem in collaboration net-
works with heterogeneous links. Most commonly-used link prediction methods
assume that the network is in unweighted form, and treat each link equally. In
this article, we proposed a new link prediction framework LPSF that captures
nodes’ intrinsic interaction patterns from the network topology and embeds the
similarities between connected nodes as link weights. The nodes’ similarity is



calculated based on social features extracted using edge clustering to detect over-
lapping communities in the network. Experiments on the DBLP collaboration
network demonstrate that a judicious choice of weight measure in conjunction
with supervised link prediction enables us to significantly outperform existing
methods. LPSF is better able to capture the true proximity between node pairs
based on link group information and improves the performance of supervised
link prediction methods.

However, the social features utilized effectively by the supervised version of
LPSF are less useful in an unsupervised setting both with the raw proximity
metrics and our two new diffusion-based methods, (LPDP and LPDM ). We ob-
serve that in the DBLP dataset researchers are more likely to collaborate with
other highly published authors with whom they share weak ties which causes the
random-walk based methods (PR, LPDP and LPDM ) to generally outperform
other benchmarks. Even though the reweighting scheme greatly boosts the per-
formance of LPSF, it does not always have significant impact on its correspond-
ing unsupervised features. In conclusion we note that any weighting strategy
should be applied with caution when tackling the link prediction problem.
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