
 

 

A Computer-Guided Approach to                              

Website Schema.org Design 

Albert Tort and Antoni Olivé 

Department of Service and Information System Engineering 

Universitat Politècnica de Catalunya – Barcelona Tech 
{atort,olive}@essi.upc.edu 

Abstract. Schema.org offers to web developers the opportunity to enrich a 

website’s content with microdata and schema.org. For large websites, 

implementing microdata can take a lot of time. In general, it is necessary to 

perform two main activities, for which we lack methods and tools. The first 

consists in designing what we call the website schema.org, which is the 

fragment of schema.org that is relevant to the website. The second consists in 

adding the corresponding microdata tags to the web pages. In this paper, we 

describe an approach to the design of a website schema.org. The approach 

consists in using a human-computer task-oriented dialogue, whose purpose is to 

arrive at that design. We describe a dialogue generator that is domain-

independent, but that can be adapted to specific domains. We propose a set of 

six evaluation criteria that we use to evaluate our approach, and that could be 

used in future approaches. 

Keywords. Schema.org, Microdata, Ontologies, Conceptual Modeling 

1. Introduction 

Google, Bing and Yahoo’s initiative to create schema.org for structured data markup 

has offered an opportunity and at the same time has posed a threat to many web 

developers. The opportunity is to transform the website’s content to use HTML 

microdata and schema.org, so that search engines can understand the information in 

web pages and, as a consequence, they can improve the accuracy and the presentation 

of search results, which can translate to better click through rates and increased 

organic traffic [1,15]. The threat of not doing that transformation is just the opposite: 

not reaping the above benefits that other websites may gain. This is the reason why 

many web developers are considering, or will consider in the near future, the 

schema.org markup of their web pages. 

For large websites, implementing microdata can take a lot of time and require some 

big changes in the HTML source code [1]. In general, that implementation requires 

two main activities. The first consists in designing what we call the website 

schema.org, which is the fragment of schema.org that is relevant to the website. The 



 

  

second consists in adding the microdata tags to the web pages, using the previously 

designed website schema.org.  

In this paper, we describe an approach to website schema.org design. Our approach 

consists in a human-computer task-oriented dialogue, whose purpose is to design a 

website schema.org. The dialogue uses the directive mode, in which the computer has 

complete control. In each dialogue step, the computer asks a question to the web 

developer about the website content. Depending on the answer, a fragment of 

schema.org is or is not added to the website schema.org. The dialogue continues until 

the design is finished. 

The overall framework of our research is that of design science [2]. The problem 

we try to solve is the design of a website schema.org. The problem is significant 

because it is (or will be) faced by many developers and, due to the novelty of the 

problem, they lack the knowledge and the tools required for solving it. In this paper 

we present an approach to the solution of that problem. As far as we know, this is the 

first work that explores the problem of website schema.org design.  

The structure of the paper is as follows. Next section describes schema.org and 

presents its metamodel. Section 3 defines the problem of website schema.org design 

and reviews the relevant previous work for its solution. Section 4 explains our 

approach to the solution of the problem. The approach has been implemented in a tool 

that has been very useful for testing and experimentation1. Section 5 presents the 

evaluation of the approach. Finally, section 6 summarizes the conclusions and points 

out future work. 

2. Schema.org 

In this section, we briefly review schema.org and introduce its UML [3] metamodel, 

which is shown in Fig. 1. As far as we know, this metamodel has not been published 

before (in any formal language).  

Schema.org is a large conceptual schema (or ontology) [4] comprising a set of 

types. A type may be an object type or a property2. Each type has a name and a 

description. An object type may be an entity type, a data type or an enumeration. An 

enumeration consists of a set of literals.  

A property may have one or more entity types as its domain and one or more 

object types as its range. For example, the property creator has as its domain 

CreativeWork and UserComments, and its range may be an Organization or a Person. 

Types are arranged in a multiple specialization/generalization hierarchy where 

each type may be a subtype of multiple supertypes. For example, the entity type 

LocalBusiness is a subtype of both Organization and Place. The top of the hierarchy 

is the entity type Thing. All other object types are a direct or indirect subtype of it. A 

property may also be a subtype of another one, although this is used only in user 

extensions to schema.org. Enumerations may have subtypes. For example, 

MedicalSpecialty is a subtype of Specialty. 

                                                           
1 A public preliminary version of the tool can be found at http://genweb.upc.edu/mpi/gmc-

grup/eines/schemaorg/introduction 
2 At the time of writing, there are 428 object types and 581 properties, with a significant increase over time. 



 

 

 
 Fig. 1. The UML metamodel of Schema.org 

3. Website Schema.org Design 

In this section, we formalize the concept of website schema.org (3.1), we define the 

problem of designing that schema (3.2), and we review the relevant previous work 

(3.3). Our approach to the solution of that problem will be presented in the next 

section. 

3.1 Website Schema.org 

In general, the web pages of a website include the representation of many facts, some 

of which are an instance of concepts defined in schema.org while others are an 

instance of concepts that are not defined in schema.org. We call website schema.org 

of a website the set of concepts of schema.org that have (or may have) instances 

represented in its web pages.  

However, a website schema.org is not simply a subset of the schema.org concepts, 

because there are facts of a concept that are represented in a context of the website, 

but not represented in another one of the same website. For example, consider a 

website that represents instances of the entity type Offer, including values for the 

properties seller and itemOffered, among others. The value of seller is an 

Organization, for which the website shows only its name, address an email. On the 

other hand, the value of itemOffered is a Product, for which the website may show its 

manufacturer, which is also an Organization. However, for manufacturing 

organizations the website only shows their name, and not their address and email. The 

website schema.org of this example must indicate that the address and email of an 

organization are shown only for sellers. 

Figure 2 shows the metamodel in UML of a website schema.org. As far as we 

know, this metamodel has not been published before (in any language). A website 

schema.org has one or more roots, which are instances of Item. We use here the term  



 

  

Fig. 2. The UML metamodel of a website schema.org 

 

item with the same meaning as in the microdata model: a group of name-value pairs 

(that we call property-value pairs). An Item has a type, which is an EntityType. For 

example, the root of a restaurant website schema.org is an Item whose type is the 

EntityType Restaurant. An Item consists of an ordered set of at least one 

PropertyValuePairs.  

Each instance of a PropertyValuePair has a property and a value. The property is 

an instance of Property and it must be one of the direct or indirect relevant properties 

of the type of the item. The value is an instance of the abstract class ValueType, which 

is an Item, a Datatype or an Enumeration. If the value is an Item then its type must be 

an EntityType that is in the range of the property, or a subtype of one of the ranges of 

the property. 

We use a textual notation for defining a website schema.org (that is, an instance of 

the metamodel shown in Fig. 2). Figure 3 shows the example corresponding to the 

restaurant presented in "schema.org/Restaurant". There are three Items, with types 

Restaurant (the root), AggregateRating and PostalAddress. The first, has eight 

property-value pairs, two of which have as value an Item, and the other six have as 

value a Datatype  (Text or Duration). AggregateRating has two property-value pairs, 

whose values are Datatypes (Text and Number). PostalAddress has three property-

value pairs, whose values are also Datatypes (Text). 

<Restaurant,name,Text> 

<Restaurant, aggregateRating, AggregateRating> 
     <AggregateRating, ratingValue,Text> 
     <AggregateRating, reviewCount,Number> 

<Restaurant, address, PostalAddress> 

     <PostalAddress, streetAddress,Text> 

     <PostalAddress, addressLocality,Text> 
     <PostalAddress, addressRegion,Text> 
<Restaurant, telephone,Text> 
<Restaurant, url,Text> 
<Restaurant, openingHours, Duration> 
<Restaurant, servesCuisine,Text> 
<Restaurant, priceRange,Text>  

Fig. 3. A website schema.org example, using a textual notation 

 



 

 

 
Fig. 4. Example of microdata markup using the website schema.org of Figure 3. 

Once the website schema.org is known, the web developer can add the 

corresponding microdata to the webpages. Figure 4 shows an example (an excerpt 

from the example shown in schema.org/Restaurant). 

3.2 Problem definition 

Once we have defined what we mean by website schema.org, we can now state the 

problem we try to solve in this paper: the design of the website schema.org of a given 

website. The problem can be formally defined as follows: 

 

Given: 

− A website W consisting of a set of web pages. The website W may be fully 

operational or under design. 

− The current version S of schema.org 

Design: 

− The website schema.org WS of W. 

A variant of the problem occurs when the input includes a database D that is the 

source of the data displayed in W. A subvariant occurs when the database is not fully 

operational yet, and only its schema DS is available. Usually, DS will be relational. 

All web developers that want to markup the web pages with schema.org microdata 

are faced with this problem. Once WS is known, the developers can add the 

corresponding markup in the web pages. Tools that illustrate how to add microdata 

once WS is known start to appear in the market3. 

3.3 Related Work 

The task of web information extraction (WIE) could be seen as similar to website 

schema.org design, and therefore the work done on WIE systems [5] could be relevant 

to our problem. However, there are a few differences that make WIE systems 

inappropriate for website schema.org design. The input to a WIE system is a set of 

online documents that are semi-structured and usually generated by a server-side 

                                                           
3 For example http://schema-creator.org/ or http://www.microdatagenerator.com/  



 

  

application program. The extraction target can be a relation tuple or a complex object 

with hierarchically organized data. In our case, the target is a fragment of a schema, 

without the facts, and if the website is under design, the online documents are not 

available. On the other hand, in these systems users must program a wrapper to 

extract the data (as in W4F [6] or DEQA [7]) or to show (examples of) the data to be 

extracted (as in Thresher [8]). In our case, this is unfeasible because web developers 

do not know what to extract. 

The table interpretation problem is a specialization of WIE focused on extracting 

data from HTML tables [9]. [10] describes one of the more recent systems, which is 

an example of the ontology-guided extraction approach. In this case, the ontology is 

the universal probabilistic taxonomy called Probase, which contains over 2.7 million 

concepts. The system uses that ontology to determine the concepts corresponding to 

the rows of a table, and to its columns, from the names of the table headers and the 

values of the columns. This approach cannot be used in our case because in general 

web pages display many facts in a non-table format, and on the other hand the web 

pages may not be available. 

Another related problem is schema matching, which deals with finding semantic 

correspondences between elements of two schemas or ontologies [11, 12]. Schema 

matching may be relevant to our problem when the source of the website is a database 

and we know its schema [13]. Assuming the database is relational, in our context the 

correspondences are between table attributes and schema.org properties. There exist a 

large spectrum of possible matchers (see [14] for a recent review) but in our context 

they would require the involvement of users who know both the database schema and 

schema.org. 

4. Our Approach to Website Schema.org Design 

In this section we describe our approach to the design of a website schema.org. We 

start with an overview of the approach (sect. 4.1) and then we continue with a detailed 

explanation of its main components (sect. 4.2-4.4). Throughout this section we use 

examples from the websites allrecipes.com and food.com, which deal with cooking 

recipes [15]. Users publish their recipes in those websites, including for each of them 

its name, a description, the ingredients, nutritional information, cooking time, 

preparation videos, and so on.   

4.1 Overview 

Our approach to the design of a website schema.org is based on a computer-controlled 

dialogue (see Fig. 5). The dialogue is automatically generated (see sect. 4.4) from 

schema.org, enriched with domain knowledge by domain experts (as indicated in 

sections 4.2 and 4.3). In most cases, the dialog asks simple yes/no questions in natural 

language to the web developer. Figure 6 shows a fragment of that dialogue in our 

example. The answer to a question requires the web developer to know only the 

contents of the website. Prior knowledge on schema.org is not needed. Note that in 



 

 

our approach the website could be under design and that we do not need to know the 

schema of the website source database (if it exists). 

4.2 Enriching Schema.org 

The dialogue generator can generate dialogues from the content of schema.org. 

However, if domain experts can provide additional knowledge then the generated 

dialogues can be more understandable (by improving the phrasing of the questions) 

and more selective (by asking only the most relevant questions). Figure 7 shows the 

enrichment of the metamodel of schema.org that allows defining that additional 

knowledge. 

The dialog generator deals with a property P always in a context. The context is an 

entity type that has P as a direct or indirect relevant property. In absence of additional 

knowledge, the dialog generator deals with P taking into account only the “official” 

names and descriptions of the involved types. 

However, domain experts may add new knowledge by means of instances of 

PropertyInContext (PIC). An instance of that type has a few attributes and links that 

are useful when the dialog generator deals with a property in a particular context. 

A PIC contextualizes a property (contextualizedProperty). The context in which a 

PIC is applicable is a set of one or more EntityTypes (type). If there is only one type 

and it is Thing, then the context is any entity type. For any given pair of 

contextualizedProperty and type there must be at most one PIC.  

The three first attributes of a PIC are the specific name form, normalized name and 

description of the contextualized property. The specific name form indicates the 

grammatical form of the name, which may be a noun in singular form or a verb in 

third-person singular form. By default, it is assumed to be a noun. The specific 

normalized name and description may be used in the cases where the original name 

and description defined in schema.org can be improved in a given context. Such 

improvements allow the dialog generator to generate “better” questions. For example, 

CreativeWork includes the property inLanguage. A PIC could specify a better name 

for this contextualizedProperty.  The specific name form could be  verb,  and the 

 

Fig. 5. Our approach to website schema.org design 



 

  

Fig. 6. Fragment of a dialogue in the allrecipes.com example 

 

 

specific name could be “isWrittenInTheLanguage”. In this case, the type would be 

Thing. 

The last attribute of a PIC is isApplicable. The attribute may be used to indicate 

that a property is not applicable in a given context. For example, a domain expert can 

define that the property genre of CreativeWork is non-applicable for Recipe. 

The applicableRange of a PIC may be used to restrict the set of ranges for the 

contextualized property. For example, the property author of CreativeWork has as 

range {Organization, Person}. If we want to specify that for Recipes the author must 

be a Person, then we create a link between the corresponding PIC and Person as its 

applicableRange. 

 Finally, there are properties that cannot be defined in a particular context if 

another one has previously been defined. For example, author is a property of 

CreativeWork, and creator is a property of CreativeWork and UserComments. 

However, in the context of CreativeWork only one of the two should be defined. We 

can then indicate in the corresponding PICs that author and creator are incompatible 

with each other in the context of CreativeWork (type). 

 
Fig. 7 Enrichment of the schema.org metamodel 



 

 

 

Fig. 8. Schema of reference exemplars 

4.3 Reference exemplars 

A basic approach to website schema.org design could be that the web developer first 

defines the root of the website (such as Recipe), then the dialogue generator 

automatically determines the schema.org properties that could be relevant, and finally 

the system asks the web developer which of those properties are relevant for the 

website.   

However, that approach would not be practical, for two main reasons. The first is 

that there can be many schema.org properties for a given root, but not all of them are 

actually used in practice. For example, Recipe (a subtype of CreativeWork, which in 

turn is a subtype of Thing) has 67 properties (7 for Thing, 50 for CreativeWork and 10 

for Recipe), but a representative website such as allrecipes.com only shows 13 of 

those properties. Clearly, if the dialog generator were able to select the subset of 

properties that might be of interest for a given website, the system would ask much 

less questions to the web developer. 

The second reason why the simple approach described above would not be 

practical is that the system would ask questions without any particular order, mixing 

questions belonging to different topics. For example, the system could ask about the 

presence of property prepTime (of Recipe), followed by aggregateRaing (of 

CreativeWork), name (of Thing) and then cookTime (again of Recipe). Clearly, such 

approach would confuse the web developer. Ideally, the questions posed by the 

system should be grouped by topic and unfold in a logical order, as required in, for 

example, questionnaire design [16]. 

Our solution to those problems is what we propose to call reference exemplars. 

Figure 8 shows their schema. There are two kinds of reference exemplars: root and 

dependent. A root reference exemplar of a given type (which is an EntityType) is an 

ordered set of one or more properties that are shown in recommended websites of the 

given root. The order of the properties of the set is the order in which those properties 

are usually displayed in those websites. A root reference exemplar can be seen as a 

recommended practice for the schema.org markup of websites of a given root.  

There must be a reference exemplar for the type Thing, which is used when other 

more specific exemplars are not available. 

Root reference exemplars are defined by domain experts. In the simplest case, a 

domain expert indicates a recommended website, from which the properties and their 



 

  

order can be automatically extracted using tools such as the Google Rich Snippet 

tool4. Another possibility is to just adopt the recommendations from search engines5. 

An even better possibility, not explored further here, is to integrate the properties 

shown in several recommended websites. For example, if a domain expert 

recommends food.com as a reference exemplar for Recipe, the root reference 

exemplar of Recipe would comprise 16 properties in a given order. The properties 

shown by allrecipes.com are 12 of those, and only one new (video). 

A dependent reference exemplar of a given type E and property P (theContext) is 

an ordered set of one or more properties that are usually shown in current websites of 

the given type E when it is the value of the property P. As before, the order of the 

properties of the set is the order in which those properties are usually displayed in 

recommended websites. A dependent reference exemplar can also be seen as a 

recommended practice. The same dependent reference exemplar can have several 

properties in its context meaning that it applies to any of them.  

For example, food.com includes the property nutrition of Recipe, whose value is 

the entity type NutritionInformation. For this type, nine properties are shown 

(calories, etc.). The website allrecipes.com uses all of them, and adds a new one.  

Reference exemplars have the boolean attribute excludesOtherProperties. We use 

it to indicate whether or not the dialog generator should consider other properties of 

the type beyond those indicated by the reference exemplar. For example, Energy has 

seven properties (all of Thing), but when used as a property of calories, only one of 

those properties are likely to be used (a text of the form <Number> <Energy unit of 

measure>). We could define a dependent reference exemplar for the type Energy and 

property calories, consisting of a single property (name) and excluding other 

properties. In this way, the dialogs can be highly simplified. 

4.4 Dialog generation and execution 

In the following, we describe the main steps of the process needed to design the 

schema of a website using our approach (see Fig. 5). The starting point is the creation 

of an instance w of WebsiteDesign (see Fig. 2), followed by the determination (by the 

web developer) of a root entity type e of w, and the invocation of the procedure 

designSchema indicated in Algorithm 1. As can be seen, the procedure creates a root 

item i of w and then invokes (in line 5) the procedure designSchemaForItem i. 

 
Algorithm 1. designSchema 

input: An instance w of WebsiteDesign; an instance e of EntityType. 

output: The complete design of website schema.org for w. 

1. i := new Item; 

2. i.root :=w; 

3. i.parent := w; 

4. i.type := e; 

5. designSchemaForItem(i); 

6. if i.pair -> isEmpty() then destroy i; end; 

                                                           
4 https://www.google.com/webmasters/tools/richsnippets 
5 For example. Google suggests the properties of Recipe indicated in 

https://support.google.com/webmasters/answer/173379?hl=en&ref_topic=1088474 



 

 

 

Note that in line 6 of the above algorithm, the item is deleted if no property-value 

pairs have been found for it. This may happen when the website does not represent 

any fact about the schema.org properties of the root entity type e.  

The procedure for the design of the schema for an item i is indicated in Algorithm 

2. We first determine the (root) reference exemplar ref for i (there is always one), and 

then we generate and execute two dialogs: the reference and the complementary 

dialogs. The first (lines 1-4) is based on the reference exemplar ref and considers only 

the properties of ref, and in their order. The second (lines 6-8) is performed only if ref 

does not exclude other properties and the web developer wants to consider all 

remaining properties. These properties are presented in the order of their position in 

the hierarchy of schema.org. 

 
Algorithm 2. designSchemaForItem 

input: An instance i of Item. 

output: The complete design of the fragment corresponding to i. 

1. ref:= determineReferenceExemplarForItem(i); 

2. for each p in ref.property do 

3.  generatePairsForProperty(i,p); 

4. end;  

5. if not ref.excludesOtherProperties and userWantsAllProperties then 

6. for each p in  

  (i.type.hasProperty() - ref.property->asSet()) ->sortedBy(positionInHierarchy) do 

7.  generatePairsForProperty(i,p); 

8. end 

9.  end 

  

The procedure generatePairsForProperty (algorithm 3) generates the property-

values pairs of a property, if it is applicable and it is not incompatible with previously 

defined ones (see Fig. 7). In line 2, the system asks the user whether or not the 

property p of item i is shown in the website, as illustrated in the examples of Fig. 6. 

The paraphrasing of the question uses the name and description indicated in the 

corresponding property in context, if it exists. If the property is present in the website, 

the system determines its possible ranges, taking into account what is indicated in the 

corresponding PropertyInContext (Fig.7) or, if any, the definition of the property in 

schema.org (Fig. 1). If the range is not unique, then the operation asks the user the 

possible ranges of the property (one or more). If one of the possible ranges of p is an 

instance E of EntityType, then that operation asks whether the range of p is E or one 

of its subtypes. For example, the possible ranges of author are Person and 

Organization. If the user selects Organization as a possible range, then the system 

asks whether the range is Organization or one of its subtypes (there are no subtypes of 

Person in schema.org).  

 
Algorithm 3. generatePairsForProperty 

input: An instance i of Item; a property p 

output: The property value pairs of p for item i. 

1. if isApplicable(i,p) and not incompatible(i,p)  

2.  ranges := askQuestion(i,p); 

3.  for each r in ranges do 

4.  pvp := new PropertyValuePair; 

5.  pvp.property := p; 



 

  

6.  pvp.item := i; 

7.  if r is an EntityType then   

8.   inew := new Item; 

9.   pvp.value := inew; 

10.   inew.parent := i.parent; 

11.   inew.type := r; 

12.   designSchemaForItem(inew); 

13.   if inew.pair -> isEmpty() then destroy inew; end; 

14.  else 

15.   pvp.value = r; 

16.  end; 

17. end  

 

For each range, a property value pair is created (line 4), and if its value is an 

instance of EntityType, then the corresponding instance of Item is created (inew, line 

8), and it is requested to generate its design by recursively invoking the operation 

designSchemaForItem in line 12. The execution of this operation now uses dependent 

reference exemplars. The process always ends because the depth of the compositions 

(Fig. 2) is finite in all practical websites. 

5. Evaluation 

As far as we know, ours is the first approach that has been proposed in the literature 

for solving the problem of website schema.org design, and therefore we cannot 

evaluate our proposal with respect to others. We propose in the following a set of six 

evaluation criteria that could be used to evaluate future new approaches to that 

problem, and we provide an evaluation of our approach with respect to those criteria. 

The criteria are: generality, precision, recall, human effort, cohesiveness and 

computation time. 

Solutions may be general or domain specific. A general solution is applicable to 

any website, while a domain specific one is applicable to only one or more domains 

such as, for example, ecommerce or tourism. The approach presented in this paper is 

general. 

Precision and recall are two classical criteria used in information retrieval contexts, 

which can be used here also. Now, instead of documents, we deal with schema.org 

properties that are relevant to a website and the properties that have been found. 

Therefore, in our case precision is the number of properties relevant to the website 

that have been found (true positives) divided by the total number of properties that 

have been found. Similarly, recall is the number of true positives, divided by the total 

number of relevant properties. Ideally, both precision and recall should have the value 

one. 

In our approach, assuming that the web developer correctly identifies the root 

entity types (such as Recipe) of a website, the value of precision is always one, 

because the approach only considers those properties that are relevant and, therefore, 

all properties found are necessarily relevant. The value of recall is also one if the web 

developer chooses the complementary dialog and he correctly identifies the properties 

proposed by the system that are relevant to the website. The value of recall is less than 



 

 

one only when the web developer indicates that one or more proposed properties are 

not relevant to the website when, in fact, they are.  

The human effort criterion evaluates the amount of effort the use of the approach 

requires to the web developers. That effort would be null if an approach were 

completely automated, but it is difficult to see that such approach is possible and, if it 

were, it would not be applicable when the website is under design. In our approach, 

web developers have to answer one question for each potentially relevant property. 

Questions are simple, and their answer should be easy in most cases. 

Approaches that, like ours, are based on a human-computer dialog in a directive 

mode face the problem of dialog cohesiveness. Intuitively, we define cohesiveness as 

the degree in which the questions posed by the system are grouped by topic and 

unfold in a logical order, as required in questionnaire design [16]. The lowest value 

would correspond to dialogs in which questions are randomly selected.  

In our approach, we achieve maximum cohesiveness when the dialog is based only 

on reference exemplars, because then the order of the questions is the same as (or 

based on) the order used in recommended practices. However, if the web developer 

chooses a complementary dialog, then the overall cohesiveness may decrease, 

because the additional properties considered are presented in a top-down order, which 

should be better than random, but not necessarily the most logical.   

The computation time criterion evaluates the amount of time required by the 

computer. We conjecture that this time will normally be small and insignificant, 

because the number of schema properties relevant to a website is normally small, and 

the design must be performed only once. In our tool, the computation time has been 

less than one second per question.   

In summary, we believe that our approach gets reasonable good results in the six 

proposed evaluation criteria. 

6. Conclusions 

We have seen that the creation of schema.org for structured data markup has posed a 

problem to the (many) developers of websites that want to implement it in their web 

pages. We have formally defined that problem, which we call the problem of 

designing the website schema.org of a given website. 

We have presented an approach to that design, consisting in a human-computer 

dialogue. The dialogue is automatically generated from schema.org, possibly enriched 

with domain knowledge by domain experts. In the dialogue, the system asks simple 

questions in natural language to the web developer. The answer to a question requires 

the web developer to know only the contents of the website. Prior knowledge on 

schema.org is not needed. In our approach the website could be under design, and we 

do not need to know the schema of the website source database (if it exists). For the 

purposes of testing and experimentation, we have implemented our approach in a 

prototype tool.  

We have proposed a set of six criteria for the evaluation of possible solutions to the 

design of website schema.org, and we have evaluated our approach with respect to 

those criteria. Due to the novelty of the problem, there are not comparable alternative 



 

  

solutions yet. We believe that our approach will be useful to web developers because 

–among other things- it is easy to use, and it provides a systematic method to discover 

all schema.org microdata that could be added to the web pages. 

The work reported here can be extended in several directions. First, the approach 

should be tested in the development of several industrial websites in order to 

experimentally confirm its usefulness in practice. The experiment should be 

performed using our tool (or a professional version of it), fully loaded with relevant 

domain knowledge (properties in context and reference exemplars). Second, the 

approach could be extended to automatically generate examples of microdata markup 

from the design. Those examples could be useful to the web developers. Third, when 

the website is operational, it could be interesting to analyze the existing web pages in 

order to guess the presence of potential schema.org properties, which could then be 

suggested to the web developer. Finally, it would be interesting to develop a (semi-

)automatic way of obtaining reference exemplars by integrating several recommended 

websites. 

References  

1. Seochat: Schema.org and microdata markups for SEO (May 2013)  

http://www.seochat.com/c/a/search-engine-optimization-help/schema-org-and-microdata-

markups-for-seo/. 

2. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems 

research. MIS Quarterly (2004) 75-105 

3. OMG. UML Superstructure v.2.4.1 (2011) http://www.omg.org/spec/UML. 

4. Olive, A.: Conceptual Modeling of Information Systems. Springer, Berlin (2007) 

5. Chang, C.H., Kayed, M., Girgis, R., Shaalan, K.F.: A survey of web information extraction 

systems. IEEE Transactions on Knowledge and Data Engineering 18(10) (2006) 1411-1428 

6. Sahuguet, A., Azavant, F.: Building intelligent web applications using lightweight wrappers. 

Data & Knowledge Engineering 36(3) (2001) 283-316. 

7. Lehmann, J., Furche, T., Grasso, G., Ngomo, A.C.N., Schallhart, C., Sellers, A.,Unger, C., 

Buhmann, L., Gerber, D., Honer, K.: DEQA: Deep web extraction for question answering. In: 

ISWC 2012, Springer (2012) 131-147. 

8. Hogue, A., Karger, D.: Thresher: Automating the unwrapping of semantic content from the 

World Wide Web. In: WWW2005, ACM (2005) 86-95. 

9. Embley, D.W., Hurst, M., Lopresti, D., Nagy, G.: Table-processing paradigms: A research 

survey. IJDAR Journal 8(2-3) (2006) 66-86. 

10. Wang, J., Wang, H., Wang, Z., Zhu, K.Q.: Understanding tables on the web. In: ER 2012, 

Springer (2012) 141-155. 

11. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB 

Journal 10(4) (2001) 334-350. 

12. Bellahsene, Z.: Schema Matching and Mapping. Springer (2011) 

13. An, Y., Borgida, A., Mylopoulos, J.: Discovering the semantics of relational tables through 

mappings. Journal on Data Semantics VII (2006) 1-32. 

14. Shvaiko, P., Euzenat, J.: Ontology matching: State of the art and future challenges. IEEE 

Transactions on Knowledge and Data Engineering 25(1) (2013) 158-176. 

15. Krutil, J., Kudelka, M., Snasel, V.: Web page classification based on schema.org collection. 

In: CASoN 2012, IEEE (2012) 356-360 

16. Pew Research  Center. Question Order. http://www.people-press.org/methodology 

/questionnaire-design/question-order/ 


