More Sparse Families of Pairing-Friendly Elliptic
Curves

Abstract. Generating pairing-friendly elliptic curves is a crucial step in
the deployment of pairing-based cryptographic applications. The most
efficient method for their construction is based on polynomial families,
namely complete families, complete families with variable discriminant
and sparse families. In this work we further study the case of sparse
families which seem to produce more pairing-friendly elliptic curves than
the other two polynomial families and also can lead to better p-values
in many cases. We present two general methods for producing sparse
families and we apply them for four embedding degrees k € {5, 8,10, 12}.
Particularly for & = 5 we introduce for the first time the use of Pell
equations by setting a record with p = 3/2 and we present a family
that has better chances in producing suitable curve parameters than any
other reported family for k£ ¢ {3,4,6}. In addition we generalise some
existing examples of sparse families for £ = 8,12 and provide extensive
experimental results for every new sparse family for £ € {5,8,10,12}
regarding the number of the constructed elliptic curve parameters.
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1 Introduction

Over the past few years, pairing-based cryptography has gained much attention
and a variety of pairing-based protocols have been developed (e.g. Joux’s one-
round tripartite key agreement protocol [11], Boneh and Franklin’s identity-
based encryption [3] etc.). All these protocols require the construction of a special
type of elliptic curves that satisfy certain properties and are known as pairing-
friendly elliptic curves [9]. Generating these elliptic curves is a crucial step in
pairing-based applications and even though many methods have been proposed,
it is still an active field.

For a large prime ¢, let E/F, be an ordinary elliptic curve of order #E(F,) =
hr where r is a large prime and h is a small integer called the cofactor. Let also
t =q+1—#E(F,) be the Frobenius trace of the curve. In many pairing-based
protocols, it is required that h = 1 (prime order curves). However such curves
are rare and in most applications a small A > 1 is acceptible. In this latter
case, we define the security parameter p = log(q)/log(r) measuring how close
to the ideal case is the constructed curve. Clearly, p should be as close to 1 as
possible. The embedding degree of the curve E/F, is the smallest positive integer
k > 1, such that E[r] € E(F,), where E[r] is the group of r-torsion points of
E/F,. Equivalently we can say that k is the smallest positive integer such that



7| ¢* — 1 (see [8], [9]). The embedding degree k must be carefully chosen to be
large enough ensuring the hardness of the DLP in F*, and simultaneously small
enough in order to keep an efficient arithmetic in IFZ’“' Current requirements
indicate that a good security level is around 128 bits or more, in which case
3000 < klogg < 5000 [9]. Determining suitable integer triples (g, t,r) satisfying
the above properties, for a specific £ > 1, and requiring at the same time that
p ~ 1, is one of the most demanding tasks in pairing-based cryptography. Once
these parameters are generated, the Complex Multiplication (CM) method [1]
can be used for the construction of the curve equation. The efficiency of the CM
method is closely related to the size of an integer D (called the CM discriminant)
which is the square free positive value satisfying the CM equation DY 2 = 4q —¢t2
for a given pair (g,t). The value of D must be relatively small (e.g. D < 10 or
even smaller) in order to implement the CM method efficiently.

Since 2001 a variety of methods have been proposed for constructing pairing-
friendly elliptic curves, most of which are based on parameterizing the curve
parameters as polynomial families (q(x), t(z),r(z)) in Q[z]. There are three types
of such polynomial families depending on the form of the polynomial 4¢(x)—t2(x)
representing the right hand side of the CM equation expressed in polynomial
field.

Definition 1 ([5],[9]). A polynomial family (q(z), t(x), r(z)) is said to be com-
plete, if there exists an s(z) € Q[x], such that 4¢(x) — t?(x) = Ds?(x), for some
positive, square-free integer D representing the CM discriminant. If the polyno-
mials ¢(z) and t(z) satisfy 4q(x) — t?(z) = g(x)s%(x) for some g(z) € Q[z] with
deg g = 1 then the polynomial family is called complete with variable discrimi-
nant. If deg g > 1, then the family is called sparse.

In this paper we further investigate the construction of sparse families of
pairing-friendly elliptic curves using the solutions of a generalized Pell equation.
We present two methods for generating sparse families for arbitrary k and focus
on four embedding degrees k € {5,8,10,12}. Especially when k = 5 we intro-
duce for the first time the use of Pell equations and set a record with p = 3/2.
Additionally, we produce some new sparse polynomial families for k& € {8, 10,12}
achieving p = 3/2, which is the smallest value reported in the literature for vari-
able discriminant. Furthermore, the proposed methods generate pairing-friendly
elliptic curves with smaller CM discriminant than other existing methods, im-
proving the efficiency of the CM method. Finally, we have conducted extensive
experimental assessments which show that the proposed new polynomial families
lead to the construction of many elliptic curves, achieving at the same time a
relatively small value for the CM discriminant.

The paper is organized as follows. In Section 2 we present some background
related to pairing-friendly elliptic curves as well as some of the most important
methods for generating suitable curve parameters for the three types of families
in Definition 1. We analyze our proposed methods in Sections 3 and 4 and
proceed by demonstrating our experimental results in Section 5. Finally, we
conclude the paper in Section 6.



2 Preliminaries and Previous Work

In this Section, we will give the notion of polynomial families of pairing-friendly
elliptic curves and proceed by analyzing the existing methods for their construc-
tion. Our goal is to find suitable integers (g,¢,r) for a fixed embedding degree
k > 0, such that p ~ 1. The best p-values in the literature are achieved by
representing the parameters (g,¢,7) as polynomials ¢(z),t(z),r(z) € Q[z] re-
spectively.

Definition 2 ([9]). Let ¢(x),t(x),r(z) € Q[z] be non-zero polynomials. Then
the polynomial triple (q(x),t(x), r(x)) parameterizes a family of pairing-friendly
ordinary elliptic curves with embedding degree k and CM discriminant D if the
following conditions are satisfied:

1. the polynomial ¢(x) represents primes,

2. the polynomial r(z) is non-constant, irreducible, integer-valued, with posi-
tive leading coefficient,

3. r(x) divides the polynomials ¢(x) + 1 — t(z) and Py (t(x) — 1), where Py (x)
is the k' cyclotomic polynomial and

4. there are infinitely many integer solutions (z,Y") for the parameterized CM
equation

DY? = 4q(z) — t*(x) = 4h(x)r(z) — (t(z) — 2)°. (1)

The p-value of a polynomial family is measured by the ratio p(q,t,r) =
degq(z)/ degr(x). The condition () | (q(x)+1—t(z)) implies that #E(F ;) =
h(z)r(z), where h(z) € Q] is the cofactor. Our problem now reduces in finding
a suitable solution (zg, Yp) of Equation (1) such that ¢(z¢) and r(x¢) are prime
integers. Then, we can use the CM method to construct an elliptic curve E/F ()
with Frobenius trace t(zo) and order #E(Fy(,,)) = h(zo)r(zo), where h(zg) =
1 is the ideal case. Let f(z) = 4q(z) — t*(z) € Q[z] be the CM polynomial.
Most methods focus on CM polynomials of the form f(x) = g(x)s?(x) for some
g(x),s(x) € Q[z], where degs is arbitrary, but degg < 2. By Definition 1,
when deg g = 0 the polynomial family (¢(z),¢(z),r(z)) is complete with f(z) =
Ds?(x), for some square-free positive D. When degg = 1 we have a complete
family with variable discriminant and finally when degg = 2 but g(x) is not a
square, the family is sparse.

Complete Families: The most well known method in this case is the Brezing
and Weng method [4] and its variants [9], [12], [17], [19]. These methods start
by fixing a £ > 1 and some square-free CM discriminant D. They choose an
irreducible polynomial r(x) € Q[z], such that K = Q[z]/(r(x)), where K is
the field containing a primitive k*"-root of unity (x. Then, let #(z) and s(z) be
the polynomials mapping to (x + 1 and (¢x — 1)/v/—D in K respectively. The
resulting CM polynomial will be of the form f(x) = Ds?(x). The best family in
this case is given in [2] for k = 12 and D = 3, with p(q,¢,7) = 1. Additional
examples appear also in [9], [12], [17], [19].



Complete Families with Variable Discriminant: Such families are con-
structed in the work of Lee and Park [13] and additionally in [5]. The method
of Lee and Park sets the polynomial r(z) to be an irreducible factor of the cy-
clotomic polynomial @ (u(z)), for some u(z) € Q[z]. The challenging part of
the method is to determine a suitable polynomial u(x). This is accomplished by
fixing an embedding degree k and an element 0 = ag+a1(x+- . .—&—a@(k),l(j,f(k)*l
in Q(¢x). Then, the transition matrix P from the set By = {1,0,...,6¥()~11
to the basis B¢, = {1,(,. . .,C;f(k)_l} is constructed, which is a p(k) x ¢(k)

matrix with elements P;; obtained by the relation 67 = Zfz(g)_l P;;¢E, for each
7 €{0,1,...,0(k) — 1}. If det(P) # 0 then P has an inverse P~' = (P};) and
the polynomial u(z) will be equal to u(z) = Zf:(g)_l P! z%. Finally, they set
t(x) =u(z) +1 and f(z) = —(u(z) — 1)? mod r(x).

Propositions 1 and 2 in [13] guarantee that if 8 = ag — 2a1 (s, —|—a1C£ for some
non-zero ag, a1 € Q, then deg f = 1. Several examples of such polynomial families
appear in [13]. However, they all lead to large CM discriminants D > 107.
Clearly, the method of Lee and Park gathers all CM polynomials of the form
f(z) = g(z)s*(z) with degs = 0 and degg = 1, but misses the cases where
degs > 0. Such cases are studied in greater detail in [5]. Additional examples
appear in [9].

Sparse Families: In this case f(z) = (ax? + bx + ¢)s*(z), where a,b,c € Q.
Substituting into Equation (1) and excluding the perfect square term s%(z), we
get DY? = g(x) = ax? + bx + c. Multiplying by 4a and completing the squares
yields a generalized Pell equation of the form

X2 —aD(2Y)? = b* —4ac, where X =2ax+b. (2)

If Equation (2) is solvable for some square-free D, then it has an infinite number
of integral solutions (X;,Y;) (see [15]). In order to generate the elliptic curve, we
firstly check if X; = 2axg + b, for some xg € Z. If this is the case, then we check
if g(x¢) and r(xg) are primes and if ¢(x) satisfies the Hasse’s bound.

The first method for generating sparse families is due to Miyaji, Nakabayashi
and Takano [14] (MNT method) for k € {3,4,6}. In their method they describe
polynomial families (q(z),t(z),r(z)) such that h(z) = 1 (ideal case) and so
p(g,t,7) = 1. Several generalizations and extensions of the MNT method have
been proposed in [6], [7], [10], [18] allowing h(z) > 1. Particularly, in [6] and [7]
the notion of effective polynomial families is introduced. These are sparse poly-
nomial families leading to CM polynomials of the form f(z) = g(x)s?(z) with
g(x) quadratic and factorable. In this case, the constructed Pell equations have
the advantage that they are always solvable for every square-free D and so the
sparse family has better chances in producing suitable curve parameters. For
k ¢ {3,4,6}, the best known result is reported in [8] for k = 10 and achieves a
value p(g,t,7) = 1. Another method for constructing sparse families is discussed
in [5], where the author starts by fixing an embedding degree & > 1 and con-
structing a number field K containing a primitive k' root of unity. Then, an



irreducible polynomial r(z) € Q[z] is chosen so that K = Q[z]/(r(z)) and the
algorithm searches for a quadratic polynomial g(z) € Q[z] so that —g(z) is a
square in K. Finally, ¢(z) and s(z) are set as polynomials mapping to (; + 1 and
(Ck—1)/+/—g(x) respectively. The constructed CM polynomial is not necessarily
quadratic, but has a perfect square factor s?(z) with degs > 1. An alternative
method is described in [6] which starts by fixing a & > 1 and chooses an ir-
reducible polynomial r(z) € Q[z]. Then searches for a trace polynomial ¢(z),
such that r(x) | §r(t(x) — 1). Once these polynomials are determined, the CM
polynomial is equal to f(z) = —(t(x) — 2)? mod r(z).

Our Contribution: Summarizing, Brezing-Weng like polynomial families pro-
duce the best p-values in the literature for k ¢ {3,4,6,10}. However, they work
for a fixed and very small discriminant D which according to the German In-
formation Security Agency may lead to vulnerable elliptic curves. On the other
hand, polynomial families with variable discriminant provide some flexibility
on D, but result in large CM discriminants which make the CM method very
inefficient. In this paper, we argue that sparse families using solutions of gen-
eralized Pell equations are more attractive in applications that require variable
but relatively small CM discriminants.

We here present two methods for the generation of sparse families of pairing-
friendly elliptic curves. The first method is based on [6] and [13]. It extends the
ideas in [13] by searching for CM polynomials f(x) = g(z)s?(z) with degg =
2 instead of linear polynomials f(z) and it is more efficient compared to the
method in [6]. Using the new method, we obtained for the first time sparse
families based on Pell equations for k = 5, setting at the same time a record with
p = 3/2. Among these families, we found an effective polynomial family for k = 5
leading to a generalized Pell equation that is always solvable for every positive
and square-free D. Based on our new method, we also obtained some sparse
families for &k = 10 with p = 3/2. The second method is more general and can
be implemented for any k > 1 and arbitrary CM polynomials f(z) = g(z)s*(z),
with g(z) € Q[z] quadratic and not a perfect square. Using this method, we give a
generalization of the examples presented in [5] for k = 8,12 and p = 3/2. Finally,
we provide experimental results on the number of suitable curve parameters
obtained from our newly proposed polynomial families. Our experiments indicate
that our effective family for k¥ = 5 produces more curve parameters than any
other polynomial family for k ¢ {3,4,6}.

3 Sparse Families with degf < degr

In this section we present a method for constructing sparse families of pairing-
friendly elliptic curves with embedding degree k > 1, such that the CM poly-
nomial is of the form f(z) = g(x)s*(z) with degg = 2 and g(z) not a perfect
square.



Our method starts by choosing an arbitrary embedding degree & > 1 and
fixing an element 6 € Q((x) of the form

9:a0—|—a1§k—|—a2§,§—|—...—|—a¢(k)_1 ;:(k)_l (3)

such that w(0) = (¢, in Q(¢;) for some u(z) € Q[z]. We then construct the
transition matrix P from the set B(6) to the basis B((x) using the relation
o el -1 _
0= > Pyci, for j=0,1,...,0(k - L (4)
i=0

Since P (u(x)) should contain an irreducible factor of degree @(k), we need
to ensure that ag,a1,...,a,x)—1 are chosen so that det(P) # 0. Then, the
coefficients of the polynomial u(x) are given by the second column of the inverse
matrix P~ = (P;;) of P using the relation:

e(k)—1

(@)= 3 Phal. (5)
=0

Setting the polynomial u(z) as
u(z) = uw(k)_lx“"(k)_l + oot ugr? +urr + ug € Q[ (6)

Equation (5) implies that the coefficients of u(z) are actually multivariate poly-
nomials in Q[ag, a1, ..., auk)—1]. Once the polynomial u(z) is created, then we
set t(z) = u(x)+ 1 to find the polynomial representing the Frobenius trace. The
polynomial r(x) is set to be the irreducible factor of @ (u(z)) with degr = (k)
and it is the minimal polynomial of 8 over Q({). Thus, we set

T(IL‘) = Tw(k)$¢(k) + ...+ 7’2$2 +rix+rg € Q[I‘] (7)

The coefficients of r(z) are multivariate polynomials in Q[ag, a1, . . ., ay(x)—1] and
can be obtained by solving the system r(6) = 0.

Algorithm 1 Families of Pairing-Friendly Elliptic Curves with degg = 2

Input: The embedding degree k
Output: Suitable polynomials ¢(z), t(z), r(z), h(z), f(z) € Qlx]

Step 1: For each ao,a1,az2,...,a,k)-1 € Q do

Step 2: Calculate the transition matrix P from B() to B((x) by Equation (4)

Step 3: If det(P) # 0 compute the coefficients of the polynomials u(z) and r(x)
using the Equation (5) and r(0) = 0 respectively; else return to Step 1

Step 4: Set the CM polynomial to f(z) = —(u(z) — 1)? mod r(x)

Step 5: If f(x) = g(z)s*(z) with g(z) quadratic and not a perfect square, with
positive leading coefficient, then set h(z) = (f(x) + (u(z) — 1)?)/4r(z), q(z) =
h(z)r(z) + u(z) and ¢(z) = u(z) + 1; else return to Step 1

Step 6: If g(z) is irreducible over Q[z] and ¢(zo) € Z for some z¢ € Z, output the
polynomials (¢(z),r(x), q(x), h(z), f(x)); else return to Step 1




After obtaining u(x) and r(z), we set the CM polynomial as f(z) = —(u(z) —
1)2 mod r(z) and we also require that degg = 2. Additionally, we must also
ensure that the leading coefficient of g(x) is positive and that g(x) is not a
perfect square. The corresponding generalized Pell equation can be constructed
by setting DY? = g(z) and following the procedure described in Section 2.

The above method is summarized in Algorithm 1. The proposed algorithm
differs from the work of Lee and Park [13] in that we are actually searching for
CM polynomials of the form f(z) = g(x)s?(x), for some quadratic and non-
square polynomial g(z). On the other hand, our method is faster than the one
proposed in [6], since in this work the authors start by randomly choosing an
irreducible polynomial r(z) and then search for a trace polynomial ¢(z), such
that r(z) | P (¢t(x) — 1). Clearly, this is a very demanding and time consuming
step.

3.1 Families with Embedding Degree k = 5

The 5*-cyclotomic polynomial is represented by @5(x) = 2% + 23 + 22 + 2 + 1.
Set the element 6 € Q({5) to be of the general form in Equation (3), for some
ag, a1, az,a3 € Q such that det(P) # 0, where P is the 4 x 4 transition matrix
from By to B¢,. This choice will ensure that ®5(u(z)) has a quartic irreducible
factor 7(x) € Q[z]. Based on Algorithm 1 and setting f(z) = —(u(z) — 1)? mod
r(x), we will get a CM polynomial f(z) of degree 3. Since we are searching
for sparse families we add the condition deg f = 2. Based on our extensive
experimental assessments, we realized that 6 can be of a special form that leads
to quadratic CM polynomials. This special form depends only on the choice of ag
and a1 (in an analogy to Proposition 1 of Lee and Park [13]). Randomly choosing
integer pairs (ag,a1) € Q% we can produce different polynomial families.

Family 1 Let 6 = ag + 7a1(s — 2a1¢2 + 4a1(3, for ag,a1 € Q and a; # 0. The
transition matrix has det(P) = 55%a$. We then obtain the polynomials:
u(z) = (42% — (12a0 — 62a1)z? — (124apa; — 12a3 — 887a?)x
— (4a3 — 62a3a; + 887aga?l — 1104a}))/55%a3
r(z) = z* + (9a1 — 4ag)x® + (6a3 — 27apa; + 121a?)x?
+ (27a3a; — 4aj — 242apa] — 31a})x
+ (ag — 9apay + 121a2a? + 3laga’ + 1231a})
(= + ag — 21a1)(—x + ag — a1)) /5503

f(z)

with p(q,t,r) = 3/2. This is an effective polynomial family, since the polynomial
f(z) factorizes in Q[z]. Therefore, this family will lead to a larger number of
suitable curve parameters compared to other sparse families.

Family 2 Let 6 = ag + a1(5 — 8a1¢Z + 20a1(3, with ag,a; € Q and a; # 0.
The transition matrix has det(P) = —52151%a$ and we obtain the following



polynomials p(q,t,r) = 3/2:

u(z) = (—4a® + (12ag + 264a;)2* — (1202 + 528apa; + 1931a?)x
+ (4ad + 264a2a; + 1931aga? + 81040a3))/5 - 151243

r(z) = 2* + (13a; — 4ag)2® + (6a3 — 39apa; + 969a7)x>
+ (1217703 — 4a3 + 39aZa; — 1938a¢a?)x
+ (ag — 13a3a; +969a3a? — 12177apa’ + 246341a7)

f(x) = (2? + (6a; — 2a0)x + (ag — 6aga; + 273a?))/151a?

3.2 Families with Embedding Degree k = 10

For embedding degree & = 10 we have an ideal polynomial family given by
David Freeman [8] with p(q,t,r) = 1. It may be useful in applications that do
not require p = 1, to use families that provide larger p-value. Such examples are
obtained by our method with p(g,t,7) = 3/2. When k = 10, the 10*"-cyclotomic
polynomial is given by ®1(x) = 2* — 23 + 2% — 2 +1. We set 0 € Q((10) to be of
the form in Equation (3), for some (ag, a1, as,as) € Q*, such that det(P) # 0.
As in the case k = 5 we obtained certain special forms for § depending only on
ap, a1 € Q, that lead to quadratic CM polynomials.

Family 3 (Freeman [8]) Let 6 = ag+a1(10—2a1(%,, for some ag,a; € Q, with
aj # 0. The transition matrix has det(P) = —25a$ and we obtain the following
polynomials with p(q,t,r) = 1:
u(z) = (22% — (4ap + 3a1)x + (203 + 3apa; + 8a?))/5a3
r(z) = x* — (4ag + 3a1)x® + (642 + 9apa; + 9a?)z?
— (4a3 — 9akay — 18aga? — 7a3)x + (af + 3aja; + 9a2a? + Tara3 + 11af)
f(x) = (32% — (6ag + 2a1)z + (3a3 + 2apa; + 7a}))/5a3
Family 4 Let 0 = a0+7a1(10—6a1C120 +4a1(f0, with ag,a; € Q and a; # 0. The
transition matrix has det(P) = 313a$ and we obtain the following polynomial
family with p(q,t,r) = 3/2:
u(z) = (42 — (12a0 + 38a1)z? + (12a3 + T6apa; + 391ai)x
— (4a3 + 38a2a; + 391apa? + 80a3))/31%a3
r(z) = 2* — (dag + 17ay)2® + (643 + 5laga; + 169a7)x>
— (4a3 + 5la2a; + 338apa? + 633a3)x + (ag + 17a3a; + 169a2a? + 1111a7)
f(x) = (42* — 2(ap + a1)z + (af + 2apa1 + 13a3))/31a}

4 Sparse Families for Arbitrary CM polynomials

In this section we present a more general method for the construction of polyno-
mial families of pairing-friendly elliptic curves. This approach can be applied for



CM polynomials of any form, but as in the previous section we focus on cases
where f(x) = g(z)s?(z) for some quadratic, non-square polynomial g(x) (sparse
families). The proposed method is based on the remarks in [10], [13].

We start by fixing an element 6 € Q(() such that det(P) # 0, where P is the
transition matrix form B(6) to the basis B((). The polynomials u(z) and r(z)
are determined in the same way as described in Algorithm 1 where the coefficients
of u(x) and r(x) are all multivariate polynomials in Q[ag, a1, ...,aux)—1]. We
compute these polynomials according to Equations (6) and (7) and we set the
trace polynomial to ¢(z) = u(z) + 1. The next step is to construct the cofactor
h(z) by setting

h(z) = htp(k)f2xcp(k)_2 + ...+ hoz? + hyz + ho € Q[x]. (8)

We require that degh = (k) — 2 or smaller, because in this case p = (2p(k) —
2)/p(k) < 2 (since deg(u — 1)? = 2¢(k) — 2, while degr = o(k)). Substituting
the polynomials h(x),r(z) and ¢(x) into the parameterized CM equation (1) we
will get a degree 2p(k) — 2 CM polynomial of the form

F(@) = fopr)—22®? P72 + fou_32® BB 4 Lt o + fiz+ fo. (9)

The only unknown values are the coefficients of the cofactor which must be
determined. Suppose that we are searching for CM polynomials with deg f = i,
for some even i = 2,4,...2p(k) — 2. Then the first 2¢(k) — i — 2 coefficients of
f(z) in Equation (9) must satisfy fo,)—2 = fopk)—3 = ... = fix1 = 0. Using
this system we can calculate some, or all the coefficients of the cofactor h(z). If
we set deg f < degr = p(k), then all coefficients of h(x) can be determined by
the above system. Otherwise, for the remaining coefficients of h(z) we will have
to do some additional search.

For example, when ¢(k) = 4, (i.e. k € {5,8,10,12}) the polynomials f(x)
and h(z) will have deg f = 6 and degh = 2 respectively. For CM polynomials
of the form f(z) = g(z)s?(x), with g(z) quadratic and non-square, the possible
values for the degree of f(x) are deg f € {2,4,6}. Setting deg f = 2, we have
fo=fs=fa= f3=0.From fs = f5 = f4 = 0 we determine h(z) and we must
also guarantee that f3 = 0. When deg f = 4, we require some search for hg, while
when deg f = 6 we need to search for all coefficients of h(z). We applied this
idea for k = 8,12 and we obtained a generalization of Drylo’s examples given
in [5], by representing 6 in two variables ag,a; € Q.

Family 5 Let 0 = ag + a1(s + a1<82 — algg, with ag,a; € Q and a; # 0. The
transition matrix has det(P) = —24a$ and setting h(x) = (x—ao—3a1)?/(576a$)
we obtain the next polynomial family with p(q,t,r) = 3/2:

(=% + 3(ao + a1)2* — (3a3 + 6apa; — 5a3)xw
+ (ad + 3aday — bagai — 3a3))/12a3
r(z) = x* — dapx® + (6a3 — 2a3)x? — (4aj — 4apa?)z + (ag — 2a2a? + 9a})

f(z) = (2 — 2apz + a2 — a2)(z — ap — 3a1)*/18a}
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Family 6 Let 0 = ag + 2a1(12 —|—a1C122 — alcin’z, with ag,a; € Q and ay # 0. The
transition matrix has det(P) = —45a$ and setting h(z) = (x—ag—3a1)?/(900a$)
we obtain the next polynomials with p(q,t,7) = 3/2:
u(z) = (=2 + (3ag + 4a;1)x® — (3aj + 8apa; — 5a3)x
+ (a3 + 4aia; — 5aga? — 9a?))/15a3
r(z) = 2* — (4ag — 2a1)2® + (6a3 + 6aga; — 3a3)z?
— (4a3 + 6aka; — 6agat — 4a?)x + (aj + 2a3a; — 3a3a? — 4aga? + 13a})

f(@) = (42® — 4(2a0 + a1)x + 4ad + 4apar + 17a3)(x — ag — 3a1)?/75a]

5 Experimental Results

We demonstrate some experimental results obtained by every polynomial family
described in Sections 3 and 4. Recall that each representative comes of a ran-
dom choice ag,a; € Q. For each polynomial family, different ag,a; will result
in different polynomials ¢(z),¢(x),r(x), producing the same curve parameters.
Before constructing the generalized Pell equation, we need to apply a linear
transformation on each family in order to make the polynomials integer valued
(See [12], [13]). Furthermore, evaluating Families 5, 6 at (ag,a1) = (0,1) we get
Drylo’s examples [5].

Example 1 (k =5) Set (ag,a1) = (1,1) in Family 1 and apply the transforma-
tion  — (55 — 20) to obtain the next polynomial family with p(q,¢,r) = 3/2:
t(z) = 22023 + 4702° 4 345z + 87
r(z) = 55x* + 14523 + 14527 4 652 + 11
q(z) = 121002° + 517002° + 931752 4 906452 + 5021522 + 15030 + 1901

with CM polynomial f(z) = 5(z + 1)(11x + 7) and generalized Pell equation:
(552 — 10)* — 55DY? = 100 (10)

Example 2 (k =5) Set (ap,a1) = (0,1) in Family 7 and apply the transfor-
mation z — (755z + 223) to get the polynomial family with p(q,t,7) = 3/2:
t(x) = —151002 — 120602 — 3185z — 276
r(z) = 3775z* + 45252° + 204022 + 410z + 31
q(z) = 570025002° + 910530002° 4 60407650z* + 212893502 4 420128022
+ 440095z + 19129

with CM polynomial is f(z) = 377522 + 22602 + 340 and generalized Pell equa-
tion:
(755 + 226)% — 151DY? = —264. (11)
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Example 3 (Freeman for k = 10) Set (ag,a1) = (0,1) in Family 3 and ap-
ply the transformation « — (5x 4+ 2) to obtain the following polynomial family
with p(g,t,r) = 1:

t(z) = 102® + 5z +3

r(z) = 252* + 2523 + 1522 + 52 + 1

q(z) = 252" + 252 4 252% 4 102 + 3
with CM polynomial f(x) = 152% + 10z + 3 and generalized Pell equation:

(152 +5)? — 15DY? = —20. (12)

Example 4 (k = 10) Set (ag,a1) = (0,1) in Family 4 and apply the transfor-
mation x — (31z — 8) to obtain the next polynomial family with p(q,t,r) = 3/2:
t(r) = 12423 — 1342% + 572 — 7
r(z) = 31o* — 492% + 3127 — 9z + 1
q(z) = 38442° — 830825 + 8023z — 425323 + 12892 — 204z + 13
with CM polynomial f(z) = 3122 — 18z + 3 and generalized Pell equation:
(31z — 9)? = 31DY? = —12 (13)

Example 5 (k = 8) Set (ag,a1) = (1,1) in Family 5 and apply the transfor-
mation  — (1224 4) to conclude to the polynomial family with p(q,t,r) = 3/2:
t(x) = —1442> — 7227 — 4o + 2
r(z) = 288z + 2882° 4 10422 + 162 + 1
q(z) = 51842° + 518425 + 18722 4 1442 — 542% — 4o + 1

Setting h(z) = 1822 we get the CM polynomial f(x) = 8x%(1442% + 72z + 7)
and the generalized Pell equation:

(24x +6)> —2DY? =38 (14)

Example 6 (k =12) Set (ag,a1) = (1,1) in Family 6 and apply the transfor-
mation  — (30x+424) to conclude to the polynomial family with p(q,t,r) = 3/2:
t(z) = —1800z> — 390022 — 27962 — 662
r(z) = 3600z* 4+ 108002 + 1213227 + 6048z + 1129
q(z) = 8100002° 4 3510000z° + 6329700z + 6078600z + 3277725z>
+ 9407042 + 112237

Setting h(z) = 25(3z +2)? we get the CM polynomial f(z) = 12(400z2 + 600z +
223)(3z + 2)? and the generalized Pell equation:

(60z 4 45)* —3DY? = 18 (15)
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A different transformation in each example may result in some different curve
parameters. Recall that we are searching for zy € Z such that ¢(zo) and r(xo) are
both primes. However, this condition can be further loosened if we allow r(z)
to contain a small cofactor s [18]. Pell Equation (10) is considered as special
because it is always solvable, for any positive and square free integer D. This
is because the standard Pell equation U2 — 55DV?2 = 1 is always solvable (see
Theorem 4.1 [16]) and if (U;, V;) is a solution of this equation, then (10U;, 10V;)
is a solution for (10). Thus we expect that Family 1 will produce more curve
parameters compared to the other sparse families (see [7] for details). In Table 1

Table 1. Suitable parameters for k € {5,8,10,12} (128 <logq < 960)

Construction k D < 10° D < 10° p(q,t,r)
Example 1 5 12 47 3/2
Example 2 5 0 1 3/2
Example 3 10 2 4 1
Example 4 10 2 5 3/2
Example 5 8 1 5 3/2
Example 6 12 0 1 3/2

we present the number of suitable parameters obtained from Examples 1 to 6.
The field size is between 128 and 960 bits, while for D we set a limit up to 10°
which is a reasonable value in order to keep CM method efficient. For Examples 2
and 6, increasing the bound for D will result in more suitable triples (g, ¢, ). The
table justifies our earlier claim that Family 1 has better chances in generating
suitable curve parameters than any other family reported for k ¢ {3,4,6}. We
also found several examples for k = 5 that improve the examples appeared
in [13] where a 252-bit prime ¢ is constructed using a CM discriminant D with
7 decimal digits. Some examples of suitable parameters (g, ¢, r) are given in the
Appendix A.

6 Conclusion

We presented two different methods for producing sparse families of pairing-
friendly elliptic curves. We focus on the cases k € {5, 8,10, 12}, but our methods
can be applied for every embedding degree. Particularly for k£ = 5, we introduce
for the first time the use of Pell equations and presented an effective polynomial
family leading to a Pell equation that produces more curve parameters than
others. Furthermore our p-value 3/2 sets a record on sparse families with k£ = 5.
We also presented experimental results for the number of suitable triples (g, t, )
obtained by every family of Section 5 for k € {5, 8,10, 12}.
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A Additional Polynomial Families and Parameters of
Proper Cryptographic Size

A.1 Additional Polynomial Families for k € {5, 10}

We present two additional examples of sparse families for £ = 5, 10. The following
families are constructed from elements # which depend only on ag,a; € Q.

Family 7 Let 6 = ag + a1(5 + 2a1(2 + 6a1 (3, with ag,a; € Q and a; # 0. The
transition matrix has det(P) = —11%a$ and we obtain the polynomials:

u(z) = (=62 + (18ag + 22a1)2* + (3943 — 18a2 — 44apar )z
+ (6ap + 22aa; — 39apai — 1328a3))/(11a1)?

r(z) = * + (9a1 — 4ag)x® + (6a3 — 27apa; + 21a3)2?
+ (27aday — 4a3 — 42a9a? + 139a3)x
+ (ap — 9aga; + 21a3a? — 139aga’ + 881af)

f(x) = (2® + (2a1 — 2a0)x + (ad — 2apa; — 19a?))/11a?

with p(q,t,r) = 3/2.

Family 8 Let 0 = ag + 4a1(10 — 9a1(%, + 6a1(3y, with ag,a; € Q and a1 # 0.
The transition matrix has det(P) = 52113a§ and we obtain the polynomials:

u(z) = (=323 + (9ag + 72a;1)x? — (9a2 + 144apa; + 490a?)z
+ (3aj + 72a2a; + 490aga? — 324a3))/605b°

r(z) = 2* — (4dag + 19a,)2® + (643 + 57apa; + 91a?)z?
— (4a3 + 57a3a; + 182apa? — 371a})x
+ (ag + 19a3a; + 91ada? — 371apa} + 331a})

f(z) = (22% — (4ag + 19a;)x + (2a3 + 19aga; — 13a3))/55a;

with p(q,t,r) = 3/2.

A.2 Curve Parameters of Proper Cryptographic Size

We give some examples of suitable integer triples (g,¢,r) obtained from the
polynomial families described in Section 5. Recall that we considered cases where
the order r is not necessarily prime but it may contain a small cofactor s, in which
case r = s - T for some large prime 7. We also give some examples obtained by
Freeman’s family again considering r as a nearly prime integer.
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Family of Example 1 (k =5)

D = 107
zg = 1170622244439162529

q = 31137662343827744551142706385896615302997261945942170125424854062898211567553375827328090
441432034923364570532141 (374 bits)
t = 352917340712114878936613350792963264809459350656454770167

7 = 153924325441846702408790989300257953361367647121303724027660177936902261 (237 bits)

s =671

p = 1.5802

D = 141811

zg = —11994919643295

q = 36038725807179632846121982264894020506015116280644554421295633955149244889919168941 (275 bits)
t = —379677367285328888596979964823118201071433

r = 1138549877741377933395022094278669277536945192203801451 (180 bits)

p = 1.5272
D = 227715
g = —6451333850566315667727

q = 87233333991933520436364492086029196902705342851777194616867647955622986668808024860010894
0348738715309158652494135718896119867350695181 (449 bits)
t = —59070579476397053688101033517360218652807824815338621499478343551033

r = 95271007237162045789384923633955286139031806991393577973739432727800408780288403427388411
(296 bits)

p = 1.5165

D = 383259

xg = —4133570859843463005

q = 60358396257221629182345603319603709624185200112850740092554000742162689307714418757327712
558715354305776137285883341 (385 bits)

t = —15538133254316186251355289076376868368098140548317354327583

7 = 517967539003274709960997568423373862586544447314877703857401093284827959671 (249 bits)

s =31
p = 1.5496
D = 584915

xg = 923586152635579344325

q = 75101713820205889762723839841611970090249093111475504738731273047109345166689007527938953
26903475129355677294315246233807405985141 (432 bits)

t = 173322489966196700451126893215802355630442497676479648477965499867

7 = 629525458436623677361367527688019566219283592204259776270209146137288982600232581 (269 bits)

s = 63571

p =1.6074

D = 879515

g = —44614321100137293687

q = 95418174239059772134251115900324243294147299645849145168155742349228224690584734518526584

469902051743344078888187791164381 (406 bits)

t = —19536445351092892419034920540489034583449754390490653292958433

r = 217901311512235692233368368115403359841826330176190408953014913308137507745536211 (267 bits)
p=1.5183
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Family of Example 3 (k = 10)

D = 35707

g = 18496897600565332717798

g = 29264127335801009923075618730398332208277331379369690762853077974906042604288972945954982
83 (301 bits)

t = 3421352208457995627824074565002131557723277033

7 = 572606078821846398521757991833165656234691773483393315664616031308981446036703400161

(279 bits)

s = 5110691

p=1.08

Family of Example 4 (k = 10)

D = 203547

xg = 22135059892867860

q = 45213443809488309090269664562338678320921402080888190758160941573203714103166816660827656
4827307572973 (338 bits)

t = 1344818854857237775934665018462083587567592383545613

7 = 950314324394168276687704680443726100035400288573930051829637131 (210 bits)

s = 7831

p =1.6141

Family of Example 5 (k = 8)

D = 123998

xzp = —4905703988594849146021

q = 72255852307496602190358838372039620872388857865993606551782283905685268613721698290007633
186373043500929463962638466668310049924398799 (445 bits)

t = 1344818854857237775934665018462083587567592383545613

r = 166800690696195508912807274002584741056682578896316371026683908097448317598808893213388889

(279 bits)

p = 1.5003

D = 249614

@ = —12121921090938970

q = 16447265702239232230524893751417864688297201974229296032271581948519955327250225227613898
691712275281 (333 bits)

t = 256493787076718349353650951939281473598462227483082

7 = 10486332031231303372764054074012739342556761692856009203286692017 (213 bits)

s = 593

p = 1.5654




