
Structural parameterizations for boxicity

Henning Bruhn, Morgan Chopin, Felix Joos and Oliver Schaudt

Abstract

The boxicity of a graph G is the least integer d such that G has an
intersection model of axis-aligned d-dimensional boxes. Boxicity, the
problem of deciding whether a given graph G has boxicity at most d, is
NP-complete for every fixed d ≥ 2. We show that Boxicity is fixed-
parameter tractable when parameterized by the cluster vertex deletion
number of the input graph. This generalizes the result of Adiga et al.,
that Boxicity is fixed-parameter tractable in the vertex cover number.

Moreover, we show that Boxicity admits an additive 1-approximation
when parameterized by the pathwidth of the input graph.

Finally, we provide evidence in favor of a conjecture of Adiga et al. that
Boxicity remains NP-complete when parameterized by the treewidth.

1 Introduction

Every graph G can be represented as an intersection graph of axis-aligned boxes
in Rd, provided d is large enough. The boxicity of G, introduced by Roberts [18],
is the smallest dimension d for which this is possible. We denote the correspond-
ing decision problem by Boxicity: given G and d ∈ N, determine whether G
has boxicity at most d.

Boxicity has received a fair amount of attention. This is partially due to the
wider context of graph representations, but also because graphs of low boxicity
are interesting from an algorithmic point of view. While many hard problems
remain so for graphs of bounded boxicity, some become solvable in polynomial
time, notably max-weighted clique (as observed by Spinrad [20, p. 36]).

Cozzens [9] showed that Boxicity is NP-complete. To cope with this hard-
ness result, several authors [1, 3, 14] studied the parameterized complexity of
Boxicity. Since the problem remains NP-complete for constant d ≥ 2 (Yan-
nakakis [22] and Kratochv́ıl [16]), boxicity itself is ruled out as parameter. In-
stead more structural parameters have been considered. Our work follows this
line. We prove:

Theorem 1. Boxicity is fixed-parameter tractable when parameterized by clus-
ter vertex deletion number.

The cluster vertex deletion numberis the minimum number of vertices that
have to be deleted to get a disjoint union of complete graphs or cluster graph.
As discussed by Doucha and Kratochv́ıl [11] cluster vertex deletion is an in-
termediate parameterization between vertex cover and cliquewidth. A d-box
representation of a graph G is a representation of G as intersection graph of
axis-aligned boxes in Rd.

1

ar
X

iv
:1

40
2.

49
92

v1
 [

m
at

h.
C

O
]

 2
0

Fe
b

20
14

Vertex Cover [3] Bandwidth
Maximum

leaf number [3]

Twin cover [14]
Pathwidth

(Th. 2)
Feedback

vertex set [3]

Cluster vertex
deletion (Th. 1) Treewidth

Cliquewidth

Figure 1: Navigation map through our parameterized complexity results for
Boxicity. An arc from a parameter k2 to a parameter k1 means that there
exists some function h such that k1 ≤ h(k2). A rectangle means fixed-parameter
tractability for this parameter and a dashed rectangle means an approximation
algorithm with running time f(k) · nO(1) is known.

Theorem 2. Finding a d-box representation of G such that d ≤ box(G) + 1 can
be done in f(pw(G)) · |V (G)| time where pw(G) is the pathwidth of G.

A natural parameter for Boxicity is the treewidth tw(G) of a graph G,
in particular as Chandran and Sivadasan [7] proved that box(G) ≤ tw(G) + 2.
However, Adiga, Chitnis and Saurabh [3] conjecture that Boxicity is NP-
complete on graphs of bounded treewidth. Our last result provides evidence in
favor of this conjecture. For this, we mention the observation of Roberts [18]
that a graph G has boxicity d if and only if G can be expressed as the intersection
of d interval graphs.

Theorem 3. There is an infinite family of graphs G of boxicity 2 and bandwidth
O(1) such that, among any pair of interval graphs whose intersection is G, at
least one has treewidth Ω(|V (G)|).

Why do we see the result as evidence? An algorithm solving Boxicity
on graphs of bounded treewidth (or even stronger, of bounded bandwidth) is
likely to exploit the local structure of the graph in order to make dynamic pro-
gramming work. Yet, Theorem 3 implies that this locality may be lost in some
dimensions, which constitutes a serious obstacle for any dynamic programming
based approach. We discuss this in more detail in Section 5.

Figure 1 summarizes previously known parameterized complexity results on
boxicity along with those obtained in this article. Adiga et al. [3] initiated
this line of research when they parameterized Boxicity by the minimal size

k of a vertex cover in order to give an 2O(2kk2) · n-time algorithm, where n
denotes the number of vertices of the input graph, as usual. Adiga et al. also
described an approximation algorithm that, in time 2O(k2 log k) ·n, returns a box
representation of at most box(G) + 1 dimensions. Both results were extended
by Ganian [14] to the less restrictive parameter twin cover. Our Theorem 1
includes Ganian’s.

2

Other structural parameters that were considered by Adiga et al. for pa-
rameterized approximation algorithms are the size of a feedback vertex set – the
minimum number of vertices that need to be deleted to obtain a forest – and
maximum leaf number – the maximum number of leaves in a spanning tree of
the graph. They proved that finding a d-box representation of a graph G such
that d ≤ 2 box(G) + 2 (resp. d ≤ box(G) + 2) can be done in f(k) · |V (G)|O(1)

time (resp. 2O(k3 log k) · |V (G)| time) where k is the size of a feedback vertex
set (resp. maximum leaf number). In [1], Adiga, Babu, and Chandran general-
ized these approximation algorithms to parameters of the type “distance to C”,
where C is any graph class of bounded boxicity. More precisely, the parameter
measures the minimum number of vertices whose deletion results in a graph
that belongs C.

The algorithm of Theorem 2 generalizes the approximation algorithm for
the parameter vertex cover number, and improves the guarantee bound of the
approximation algorithm for the parameter maximum leaf number.

There is merit in studying approximation algorithms from a parameterized
perspective: not only is Boxicity NP-complete, but the associated minimiza-
tion problem cannot be approximated in polynomial time within a factor of
n

1
2−ε for any ε > 0 even when the input is restricted to bipartite, co-bipartite

or split graphs (provided NP6=ZPP). This is a result due to Adiga, Bhowmick
and Chandran [2]. There is, however, an approximation algorithm with factor
o(n) for general graphs; see Adiga et al. [1].

While Roberts [18] was the first to study the boxicity parameter, he was
hardly the first to consider box representations of graphs. Already in 1948
Bielecki [5] asked, here phrased in modern terminology, whether triangle-free
graphs of boxicity ≤ 2 had bounded chromatic number. This was answered af-
firmatively by Asplund and Grünbaum in [4]. Kostochka [15] treats this question
in a much more general setting.

Following Roberts who proved that box(G) ≤ n
2 , other authors obtained

bounds for boxicity. Esperet [13], for instance, showed that box(G) ≤ ∆(G)2+2,
while Scheinerman [19] established that every outerplanar graph has boxicity
at most two. This, in turn, was extended by Thomassen [21], who showed that
planar graphs have boxicity at most three.

In the next section, we will give formal definitions of the necessary concepts
for this article. We prove our main results in Sections 3–5. Finally, we discuss
the impact and limitations of our results in Section 6, where we also outline
some future directions for research.

2 Preliminaries

Graph terminology. We follow the notation of Diestel [10], where also all
basic definitions concerning graphs may be found.

Let X be some finite set. With a slight abuse of notation, we consider a
collection I = ([`v, rv])v∈X of closed intervals in the real line to be an interval
graph: I has vertex set X, and two of its vertices u and v are adjacent if and only
if the corresponding intervals [`u, ru] and [`v, rv] intersect. By perturbing the
endpoints of the intervals we can ensure that no two intervals have a common
endpoint, and that for every interval the left endpoint is distinct from the right

3

endpoint. We always tacitly assume the intervals to be of that form. Fig. 2
shows the family of forbidden subgraphs for the class of interval graphs.

The bandwidth of a graph G, say with vertex set V (G) = {v1, v2, . . . , vn},
is the least number k for which the vertices of G can be labeled with distinct
integers `(vi) such that k = max{|`(vi) − `(vj)| : vivj ∈ E}. Equivalently, it is
the least integer k for which the vertices of G can be placed at distinct integer
points on the real line such that the length of the longest edge is at most k. We
denote the bandwidth of a graph G by bw(G).

We define a path decomposition of a graph G as a set W = {W1, . . . ,Wt} of
subsets of V (G) called bags such that the following conditions are met.

1.
⋃t

i=1Wi = V (G).

2. For each uv ∈ E(G), there is an i ∈ {1, . . . , t} such that u, v ∈Wi.

3. For each v ∈ V (G), if v ∈Wi ∩Wj for some i, j ∈ {1, . . . , t}, then v ∈Wk

with i ≤ k ≤ j.

The width of a path decomposition is maxi |Wi| − 1. The pathwidth pw(G) of
a graph G is the minimum width over all possible path decompositions of G.
Equivalently, pw(G) is the minimum size of the largest clique of any interval
supergraph of G, minus 1.

(e)

(b)

(d)

(a) (c)

(f)

Figure 2: Forbidden induced subgraphs for interval graphs; the dashed paths
may have any length ≥ 1

The treewidth of a graphG, denoted tw(G), is the minimum size of the largest
clique of any chordal supergraph of G, minus 1. For the purpose of our paper it is
important to remark that for every graph G we have tw(G) ≤ pw(G) ≤ bw(G).

Parameterized complexity. A decision problem parameterized by a problem-
specific parameter k is called fixed-parameter tractable if there exists an algo-
rithm that solves it in time f(k) · nO(1), where n is the instance size. The
function f is typically super-polynomial and only depends on k. One of the
main tools to design such algorithms is the kernelization technique. A ker-
nelization algorithm transforms in polynomial time an instance I of a given
problem parameterized by k into an equivalent instance I ′ of the same problem
parameterized by k′ ≤ k such that the size of I ′ is bounded by g(k) for some
computable function g. The instance I ′ is called a kernel of size g(k). The
following folklore result is well known.

4

Theorem 4. A parameterized problem P is fixed-parameter tractable if and
only if P has a kernel.

In the remainder of this paper, the kernel size is expressed in terms of the
number of vertices.

For more background on parameterized complexity the reader is referred to
Downey and Fellows [12].

Problem definition. We call an axis-aligned d-dimensional box (or d-box) a
cartesian product of d closed real intervals. A d-box representation of a graph G
is a mapping that maps every vertex v ∈ V (G) to a d-box Bv such that two
vertices u, v ∈ V (G) are adjacent if and only if their associated boxes have a
non-empty intersection. The boxicity of G, denoted by box(G), is the minimum
integer d such that G admits a d-box representation. We consider the following
problem.

Boxicity
Input: A graph G and an integer d.
Question: Is box(G) ≤ d?

Given a d-box representation of G, we denote by [`i(v), ri(v)] the interval
representing v in the i-th dimension.

Throughout the article, we make frequent use of the reformulation of boxicity
in terms of interval graphs:

Theorem 5 (Roberts [18]). The boxicity of a graph G is equal to the smallest
integer d so that G can be expressed as the intersection of d interval graphs.

3 Proof of Theorem 1

Theorem 1 follows immediately from the following lemma:

Lemma 6. Boxicity admits a kernel of at most k2
O(k)

vertices, where k is the
cluster vertex deletion number of the input graph.

In the course of this section, we present a sequence of lemmas in order to
prepare the proof of our main lemma above.

Two adjacent vertices u, v in a graph G are true twins if u and v have the
same neighbourhoods in G − {u, v}. As observed by Ganian [14], deleting one
of two true twins does not change the boxicity.

Lemma 7. Let u, v be true twins of a graph G. Then box(G) = box(G− u).

We remark, without proof, that there is also a reduction for false twins
(those that are non-adjacent): if there are at least three of them, then one may
be deleted without changing the boxicity. We will not, however, make use of
this observation.

Recall that a cluster graph is the disjoint union of complete graphs, called
clusters. In what follows, we implicitly identify a cluster with its vertex set.

Let G − X be a cluster graph for some X ⊆ V (G). We call two clusters
C,C ′ of G − X equivalent if there is a bijection C → C ′, v 7→ v′, such that
NG(v) ∩ X = NG(v′) ∩ X. Observe that, if G − X has no true twins, then

5

two clusters C and C ′ are equivalent if and only if {NG(u) ∩ X : u ∈ C} =
{NG(v) ∩X : v ∈ C ′}.

Lemma 8. Let G be a graph without true twins, and let X be a set of k vertices
so that G − X is a cluster graph. Then every cluster in G − X contains at
most 2k vertices.

Proof. Consider a cluster C of G. Then the number of sets NG(v) ∩X, v ∈ C,
is bounded by 2k. As G has no true twins, no two vertices in C may have the
same neighbourhood in X, which implies that |C| ≤ 2k.

We also need the following result.

Theorem 9 (Chandra and Sivadasan [7]). It holds that box(G) ≤ tw(G) + 2
for any graph G.

In particular, box(G) ≤ pw(G) + 2 for any graph G.

Lemma 10. Let G be a graph without true twins, and let X be a set of k
vertices so that G − X is a cluster graph. Moreover, let D be an equivalence

class of clusters with |D| ≥ 2(2k+ 2)2
k+1(2k+k+1). For every C∗ ∈ D, box(G) =

box(G− C∗).

Proof. As deleting vertices may only decrease the boxicity, it suffices to prove
that box(G) ≤ box(G− C∗).

Set H = G− C∗, d = box(H), k = |X| and C = D \ {C∗}. We claim that

d = box(H) ≤ 2k + k + 1. (1)

Indeed, define a path decomposition with a bag WC for every cluster C of H−X
such that WC = X ∪ C. This gives a path decomposition of H with width at
most k + 2k − 1, by Lemma 8. Theorem 9 now implies (1).

For the sake of simplicity, let us introduce the following notions. Fix a
d-box representation of H. The set of corners of a box of a vertex is the
cartesian product ×d

i=1{`i(v), ri(v)}. By rescaling every dimension (compare
Lemma 12), we can ensure that every endpoint of an interval of a vertex in X lies
in {1, 2, . . . , 2k}. Thus every corner of a box of X lies in the grid {1, 2, . . . , 2k}d.
We may moreover assume that every other box of H is contained in [0, 2k+ 1]d.
Points of {0, 1, . . . , 2k + 1}d we call grid points, and any set [z1, z1 + 1]× . . .×
[zd, zd + 1], where zi ∈ {0, . . . , 2k}, is a grid cell. In each dimension i we say
that the grid induces the grid intervals [0, 1], [1, 2], . . . , [2k, 2k+ 1]. A box of a
vertex in H −X is a cluster box.

By perturbing the boxes slightly we may always assume that

if s is a corner of a cluster box of a cluster C of H −X, and if
t is a corner of the box of any vertex z ∈ V (H −C) then si 6= ti
for all dimensions i = 1, . . . , d.

(2)

Moreover, we may assume that any corner of a cluster box lies in the interior
of a grid cell. A cluster box that does not contain any grid point we call a thin
box.

We concentrate on thin clusters, that is, clusters that consist of thin boxes
only. We claim that

at least (2k + 2)2
k+1(2k+k+1) clusters in C are thin. (3)

6

A

B

C

D

F

Figure 3: Boxes A,B are in the same position, as are C and D; F is not thin.

To prove this claim, observe that no grid point lies in a cluster box of two
different clusters as then two vertices in distinct clusters would be adjacent.
Thus, there is at most one cluster per grid point so that one of its cluster boxes

contains the grid point. As, by (1), there are (2k + 2)d ≤ (2k + 2)2
k+2k+1 grid

points, it follows that C has at least |C|− (2k+2)2
k+2k+1 ≥ (2k+2)2

k+1(2k+k+1)

thin clusters.

We say that two cluster boxes B and B′ are in the same position if every
grid cell containing a corner of B also contains a corner of B′ and vice versa
(see Figure 3). Note that if two vertices v, v′ ∈ V (H) − X have boxes in the
same position then NH(v)∩X = NH(v′)∩X. (Here we use the fact that cluster
boxes have their corner strictly in the interior of grid cells.)

For every cluster C ∈ C we fix a point p(C) that lies in every cluster box
of C: such a point exists by the Helly property for boxes in Rd. We claim that,
using this Helly point, we can modify our box representation of H so that

for all thin clusters C ∈ C and for each dimension i ∈ {1, . . . , d}
holds the following: if p(C) and a corner t of a box of C lie in
the same grid interval in dimension i, that is, if there is a j so
that pi(C), ti ∈ [j, j + 1], then ti = pi(C).

(4)

To achieve (4), we proceed as follows. Let v be a vertex of any thin clus-
ter C ∈ C. Consider a dimension i where `i(v) or ri(v) lie in the same grid
interval as pi(C). Note that `i(v) ≤ pi(C) ≤ ri(v). In dimension i, we shrink
the box of v in the following way: if `i(v) lies in the same grid interval as pi(C),
we replace `i(v) by pi(C). Similarly, if ri(v) lies in the same grid interval
as pi(C), we replace `i(v) by pi(C). This procedure is illustrated in Fig. 4.

Since by shrinking a box we may only lose edges of the corresponding graph,
it suffices to show that every edge is still present. Since the new box of v still
contains p(C), the vertex v is still adjacent to every other vertex in C. As we
change the box of v only within a grid interval, the old and the new box of v are
in the same position. Thus, we do not lose any edge from v to X. Performing
this transformation iteratively for every box of C in every dimension, and for
every thin cluster C ∈ C, we obtain a box representation of H satisfying (4).

7

p

B

A
p A

B

Figure 4: Shrinking the boxes

Next, we claim that

there is a pair of distinct thin clusters C,C ′ ∈ C such that for
every v ∈ C and v′ ∈ C ′ with NH(v) ∩ X = NH(v′) ∩ X, the
boxes of v and v′ are in the same position.

(5)

Note that, as C and C ′ are equivalent, there is indeed a bijection between the
vertices of C and C ′ that maps a vertex v to v′ ∈ C ′ with NH(v) ∩ X =
NH(v′) ∩X.

Observe that for the endpoints `i(v), ri(v) of the interval representing a
vertex v ∈ V (H) in the i-th dimension, there are at most (2k + 1)2 many
choices to select the grid intervals they lie in. Thus, any set of thin boxes,
pairwise not in the same position, has size at most (2k + 1)2d. Because G is
devoid of true twins, no cluster has two vertices whose boxes are in the same
position.

Recall that every cluster has at most 2k vertices. Thus, among any choice of

more than (2k + 1)2d·2
k

thin clusters there are two thin clusters satisfying (5).

As (2k + 1)2d·2
k ≤ (2k + 1)2(2

k+k+1))·2k , by (1), and since C contains at least

(2k + 2)2
k+1(2k+k+1) thin clusters, by (3), the claim follows.

Consider clusters C,C ′ as in (5). We now embed the deleted cluster C∗ in
the box representation of H = G− C∗. For this, choose ε > 0 small enough so
that

for all v ∈ C and w ∈ V (H − C) and all dimensions i it holds
that |si − ti| > ε, when s is a corner of the box of v and t is a
corner of the box of w.

(6)

(If such an ε does not exist, we may again perturb the box representation slightly
so as to guarantee (2) while keeping (4).)

Define q ∈ Rd by setting

qi =

1 if pi(C) < pi(C

′)

−1 if pi(C) > pi(C
′)

0 if pi(C) = pi(C
′).

Let v 7→ v∗ be the bijection between C and C∗ with NG(v)∩X = NG(v∗)∩X.
We define a box for every v∗ ∈ C∗ by taking a copy of the box of v and shifting
its coordinates by the vector ε · q, that is, for every dimension i we set

`i(v
∗) = `i(v) + εqi and ri(v

∗) = ri(v) + εqi

8

Note that, by choice of ε, the box of v∗ and the box of v are in the same position.
Let G̃ be the graph defined by this new box representation. We claim that

G̃ = G, which then finishes the proof of the lemma.
To prove this, we first note that we only added edges between vertices in C∗

and H, while all other adjacencies remain unchanged. Next, as p(C) + εq is a
point that lies in every box of C∗, it follows that G̃[C∗] is a complete graph.
Moreover, by choice of ε, we have

NG̃(v∗) \ (C ∪ C∗) = NG(v) \ (C ∪ C∗)

for any v ∈ C. In particular, NG̃(v∗) ∩ C ′ = ∅. It remains to show that also
NG̃(v∗) ∩ C = ∅.

For this, let w∗ ∈ C∗ and v ∈ C be arbitrary, where we allow that v = w.
Let us show that the boxes of v and w∗ do not intersect.

Since v and w′ are nonadjacent in H, there is a dimension i such that either
ri(v) < `i(w

′) or ri(w
′) < `i(v). By symmetry, we may assume ri(v) < `i(w

′).
Let I be the grid interval such that ri(v) ∈ I. If `i(w

′) /∈ I, then ri(v) < `i(w
∗),

since by our construction `i(w
∗) is in the same grid interval as `i(w

′). This
means that the boxes of v and w∗ do not intersect. Thus, we may assume that
`i(w

∗) ∈ I. As v and w are in the same cluster and thus adjacent, it follows that
`i(w) ≤ ri(v), which implies that pi(C) ∈ [`i(w), ri(v)] ⊆ I. Now, (4) implies
that ri(v) = pi(C) = `i(w).

Since pi(C) = ri(v) < `i(w
′), it follows that pi(C) < pi(C

′). Thus, ri(v) =
`i(w) < `i(w)+ε = `i(w

∗). Consequently, the boxes of v and w∗ do not intersect.
This completes the proof.

We can now prove the main lemma of this section.

Proof of Lemma 6. Let I = (G = (V,E), b) be an instance of Boxicity with
cluster vertex deletion number k. We first compute a set X of size |X| ≤ 3k,
so that G − X is a cluster graph. To this end we use the fact that a graph is
a cluster graph if and only if it does not contain a P3 as an induced subgraph.
Start with X = ∅. If G contains three vertices v1, v2, v3 that induce a P3 in G
then add these three vertices to X. Reiterate the process on G \ {v1, v2, v3}
until no more induced P3 is found. Clearly any optimal solution needs to delete
at least one vertex in an induced P3. Thus |X| ≤ 3k.

Next, we iteratively remove one twin of any pair of true twins from G until
the graph becomes free of true twins. By Lemma 7, this does not change the
boxicity of G. In the next step, we divide the clusters of G − X into their
equivalence classes which can be done in polynomial time. Then we delete
clusters from every equivalence class until each equivalence class has at most

2(2k+ 2)2
k+1(2k+k+1) members. Since every cluster has size at most 2|X| ≤ 23k,

by Lemma 8, the resulting graphH has size at most k2
O(k)

. Moreover, Lemma 10
shows that box(H) = box(G). This completes the proof.

4 Proof of Theorem 2

Bounded pathwidth suggest a dynamic programming approach, and this is pre-
cisely what we do. There is a hitch, though. The standard approach would be

9

to solve the Boxicity problem on one bag after another of the path decompo-
sition, so that the local solutions can be combined to a global one. Boxicity,
however, does not permit this: as we are constructing the box representation
of the graph, we may have to completely rearrange the previous boxes to add a
new one.

Thus, the key issue is to force the problem to become “localized”. To this
end, we introduce a special interval graph I∗ that reflects the path structure
of the graph: two vertices are adjacent if and only if they appear in the same
bag of the path decomposition. Doing so, we can safely compute local box
representions of the subgraphs induced by the bags without paying attention to
how these representations overlap. Indeed, the interval graph I∗ gets rid of any
unwanted adjacency.

Having sketched the idea, we now give the formal description of the algo-
rithm. We say that two interval graphs I = ([`v, rv])v∈V and I ′ = ([`′v′ , r

′
v′])v′∈V ′

are consistent if the order of the interval endpoints of the common vertices is
the same, that is, if for all u, v ∈ V ∩ V ′

`u ≤ `v ⇔ `′u ≤ `′v; ru ≤ rv ⇔ r′u ≤ r′v;

`u ≤ rv ⇔ `′u ≤ r′v; and ru ≤ `v ⇔ r′u ≤ `′v.

In particular, if V ′ ⊆ V then I ′ is an induced subgraph of I. When we con-
sider tuples (I1, . . . , Id) and (I ′1, . . . , I

′
d) of interval graphs we say that they are

consistent if Ii is consistent with I ′i for i = 1, . . . , d.

Lemma 11. If I = ([`v, rv])v∈V and I ′ = ([`′v′ , r
′
v′])v′∈V ′ are two consistent

interval graphs, then there is an interval graph J on V ∪ V ′ that is consistent
with both I and I ′. In particular, any edge in E(J) \ (E(I) ∪ E(I ′)) has one
endvertex in V \ V ′ and the other in V ′ \ V .

Proof. Pick v∗ ∈ V ′ \ V and apply induction to the pair of consistent interval
graphs I and I ′ − v∗ in order to obtain an interval graph J ′ on (V ∪ V ′) \ {v∗}
that is consistent with I and with I ′. Let J ′ = ([˜̀v, r̃v])v∈(V ∪V ′)\{v∗}. Among
the interval endpoints of I ′−v∗, that is in

⋃
v′∈V ′\{v∗}{`′v′ , r′v′}, we pick the two

consecutive endpoints p, q for which p ≤ `′v∗ ≤ q. Notice that the endpoint p
(resp. q) might not exist; in such case we simply set p = `′v∗ (resp. q = `′v∗).
Let p′ (resp. q′) be the corresponding endpoint of p (resp. q) in J ′. Then we
put ˜̀

v∗ = 1
2 (p′ + q′) and define r̃v∗ in the analogous way. Observe that we

have ˜̀
v∗ ≤ r̃v∗ by the choice of p, q. Adding the resulting interval [˜̀v∗ , r̃v∗] to J ′

yields an interval graph J on V ∪ V ′ that is consistent with both I and I ′.
The second assertion of the lemma follows from the first.

The following observation is obvious:

Lemma 12. If I is an interval graph on V as vertex set, then there is an
interval graph J on V that is consistent with I and so that each of the intervals
of J has its endpoints in {1, . . . , 2|V |}.

We can now state the main result of this section.

Theorem 13. There is an algorithm that, for any graph G with a given path
decomposition of width w, determines in 2O(w2 logw) · |V (G)|-time a d ∈ N so
that d ≤ box(G) ≤ d+ 1.

10

W
1

W
2

W
3

W
4

W
5

W
4

W
3 W

2

W
1

W
5

1

2

5

6

8

10

4

3

7

9

11

1

3
2

4

5

7

8

10

11

6

9

Figure 5: A box representation computed by the algorithm, where d = 1.

Proof. By omitting duplicated or empty bags, we may assume the given path
decomposition W = {W1, . . . ,Wt} of G to have length t ≤ |V (G)|. By The-
orem 9, the boxicity of G is at most w + 2. Thus, it suffices to describe an
algorithm that checks for some fixed d ≤ w+ 2, whether G has a box represen-
tation of dimension at most d + 1. This algorithm is then executed for every
d = 1, 2, . . . , w + 2.

Our algorithm proceeds as follows.

1. Put B0 = {(∅, . . . , ∅)}, which we consider as a tuple of d empty interval
graphs.

2. For s from 1 to t do the following.

a. Compute all tuples of interval graphs (J1, . . . , Jd), where each Ji is an
interval graph on the vertex set Ws so that all the interval endpoints are
in {1, . . . , 2w + 2}, and where G[Ws] =

⋂d
i=1 Ji.

b. For each of these tuples (J1, . . . , Jd), check whether there is a tuple (J ′1, . . . , J
′
d) ∈

Bs−1 that is consistent with (J1, . . . , Jd). If yes, add (J1, . . . , Jd) to Bs.
c. If Bs = ∅ exit with box(G) > d.

3. Exit with box(G) ≤ d+ 1.

For the running time, note that the loop of line 2 is executed t ≤ |V (G)|
times. Each execution of a–c requires 2O(w2 logw)-time. Indeed, each interval
graph Ji as in line 2a has vertex set Ws, and can thus be described by at
most 2(w + 1) numbers, all of which are in {1, . . . , 2w + 2}. Thus, there are
at most (2w + 2)2w+2 possible such interval graphs Ji and therefore at most
(2w+ 2)d(2w+2) tuples considered in line 2a. Thus, each execution of lines 2a–c
can be performed within the above claimed running time.

To verify that the algorithm is correct, we introduce a bit of notation and
state two claims. Let us define an interval graph I∗ = ([`∗v, r

∗
v])v∈V (G), where

`∗v = min
v∈Wi

i and r∗v = max
v∈Wj

j.

11

We may perturb these points slightly, so that all endpoints become distinct.
Note that I∗ is the interval graph induced by the path decomposition of G; that
is u, v ∈ V (G) are adjacent in I∗ if and only if there is a bag Ws such that
u, v ∈ Ws. Furthermore, we denote by Gs the induced subgraph G[

⋃s
s′=1Ws′]

of G on the first s bags of the path decomposition.
Inductively, we prove two claims:

for every (J1, . . . , Jd) ∈ Bs there is a tuple (I1, . . . , Id) of interval
graphs that is consistent with (J1, . . . , Jd) and so that Gs =⋂d

i=1 Ii ∩ I∗.
(7)

and

if there are interval graphs I1, . . . , Id with Gs =
⋂d

i=1 Ii then
there is a tuple (J1, . . . , Jd) ∈ Bs that is consistent with
(I1, . . . , Id).

(8)

Before proving the claims, we show how it follows from them that the algorithm
is correct. Consider the case when the algorithm stops in line 3. Then Bt 6= ∅,
and with Claim (7) for s = t, we obtain G = Gt as the intersection of d + 1
interval graphs, which proves that box(G) ≤ d+ 1. Now suppose the algorithm
exits in line 2c, that is, that there is an s with Bs = ∅. From Claim (8) we deduce

that there is no tuple (I1, . . . , Id) of interval graphs with Gs =
⋂d

i=1 Ii, which

then precludes the existence of interval graphs I ′1, . . . , I
′
d with G =

⋂d
i=1 I

′
i, as

their restrictions I ′i[
⋃s

s′=1Ws] would intersect to Gs. Thus, box(G) > d, which
finishes the proof of correctness.

We first prove Claim (7). For this, consider (J1, . . . , Jd) ∈ Bs. If s = 1 then⋂d
i=1 Jd = G[W1] = G1, and (7) is satisfied by setting Ii = Ji.

Hence let s > 1. By definition of Bs there is a tuple (J ′1, . . . , J
′
d) ∈ Bs−1

that is consistent with (J1, . . . , Jd). Induction yields a tuple of interval graphs

(I ′1, . . . I
′
d) that is consistent with (J ′1, . . . , J

′
d), and for whichGs−1 =

⋂d
i=1 I

′
i∩I∗.

Applying Lemma 11 to each consistent pair I ′i and Ji yields an interval graph Ii
consistent with both I ′i and Ji. Note that Ii is a supergraph of both I ′i and Ji.

Since G[Ws] =
⋂d

i=1 Ji this means that Gs is a subgraph of
⋂d

i=1 Ii ∩ I∗.
Consider i ∈ {1, . . . , d} and an edge e of Ii that is neither an edge of I ′i, nor

of Ji. From Lemma 11 it follows that e has an endvertex u in V (I ′i − Ji) and
another endvertex v in V (Ji − I ′i). Hence u ∈ Ws′ \Ws for some s′ < s and
v ∈ Ws \Ws−1. In particular, the corresponding intervals, [`∗u, r

∗
u] and [`∗v, r

∗
v],

of I∗ do not intersect. Thus Ii ∩ I∗ = (I ′i ∪ Ji) ∩ I∗. Now, Gs−1 =
⋂d

i=1 I
′
i ∩ I∗

together with G[Ws] =
⋂d

i=1 Ji implies Gs =
⋂d

i=1 Ii ∩ I∗, as desired.

Finally, we show (8). If s = 1 then
⋂d

i=1 Ii = G[W1], and thus, by Lemma 12,
the algorithm computes in line 2a a tuple (J1, . . . , Jd) of interval graphs that is
consistent with (I1, . . . , Id). Since every such tuple is consistent with (∅, . . . , ∅) ∈
B0, it is added to B1 in line 2b.

Hence consider now s > 1. Letting I ′i be the restriction of Ii on
⋃s−1

s′=1Ws′ ,
we see that induction yields a tuple (J ′1, . . . , J

′
d) ∈ Bs−1 that is consistent with

(I ′1, . . . , I
′
d). Next, we apply Lemma 12 to Ii[Ws] in order to obtain an inter-

val graph Ji that is consistent with Ii[Ws], and whose intervals have all their
endpoints in {1, . . . , w + 2}. Consequently, the tuple (J1, . . . , Jd) is among the

12

tuples computed in step 2a of the algorithm. Moreover, (J1, . . . , Jd) is consistent
with (I ′1, . . . , I

′
d), and thus, also consistent with (J ′1, . . . , J

′
d) ∈ Bs−1. Therefore,

(J1, . . . , Jd) is added to Bs in step 2b of the algorithm.

We mention that, while the algorithm as given only computes the number d,
we can also recover a concrete box representation of dimension d+ 1. For this,
it suffices to store for each tuple in Bs to which tuple in Bs−1 it is consistent (if
there are more, we simply choose one).

Together with the algorithm of Bodlaender [6] that computes a path-
decomposition of a graph G of width pw(G) in f(pw(G))·|V (G)| time, we obtain
Theorem 2. We note that the running time could conceivably be improved by
using a faster approximation algorithm with, say, a constant approximation
factor.

5 Proof of Theorem 3

It is an open problem whether boxicity is polynomial-time solvable on graphs
of bounded treewidth. While we cannot solve the problem, we can offer an
indication why we suspect boxicity to be hard.

The first approach to prove tractability is usually dynamic programming.
Evidently, this is because Courcelle [8] proved that a vast number of problems,
namely those expressible in monadic second order logic, can be solved in poly-
nomial time by a generic dynamic programming algorithm, if the treewidth is
bounded. However, nobody appears to know how to formulate “box(G) ≤ d?”
in monadic second order logic, and it is doubtful that this is possible at all.
More generally, dynamic programming seems to fail. Why is that so? We think
this is because the tree-like structure of the input graph does not translate to
a tree-like structure in the interval representation: given an input graph G of
bounded treewidth, it may very well be the case that at least one interval graph
in any optimal interval representation of G has unbounded treewidth.

To illustrate this, consider a K2,n, where the smaller bipartition class is
comprised of two vertices x and y, and the larger consists of v1, . . . , vn. Clearly,
K2,n has pathwidth 2 and boxicity 2 as well: in fact, K2,n+xy and K2,n+{vivj :
i, j} are two interval graphs whose intersection is K2,n. Now, let I1, I2 be any
two interval graphs with K2,n = I1 ∩ I2. The vertices x and y are not adjacent
in at least one of I1 and I2, say in I1. Suppose that I1 contains a pair of non-
adjacent vi, vj : then xviyvjx is an induced 4-cycle, which is impossible in an
interval graph. Thus, {vi}ni=1 form a clique of size n in I1, and I1 has therefore
pathwidth at least n− 1.

What about stronger width-parameters? We have found a similar, albeit
more complicated, example for bounded bandwidth, a parameter even more
restrictive than pathwidth. Theorem 3 is a direct consequence of the following
lemma.

Lemma 14. For every n there is a graph Gn of bandwidth at most 16 and
boxicity 2, so that in any interval representation G = I1 ∩ I2 one of I1 and I2
has treewidth ≥ |V (Gn)|/32.

In light of the lemma, we would like to strengthen the conjecture of Adiga et
al. [3]: We believe that Boxicity remains NP-complete even for graphs of

13

bounded bandwidth.

Proof of Lemma 14. As a basic building block for Gn we use copies of the graph
B, which consists of a path w1 . . . w6 and two vertices u, v adjacent to each of
w1, . . . , w6 but not to each other; see Figure 6. Clearly, B has boxicity 2, and
moreover, if B is represented as the intersection of two interval graphs I1, I2
then

for some k ∈ {1, 2}, uv ∈ E(Ik) and w1, . . . , w6 is a clique in I3−k. (9)

This follows directly from the fact that uwivwju is an induced 4-cycle in B for
each 1 ≤ i < j − 1 < 6.

B1

B2

u

v

w1

w2 w3 w4 w5
w6

v u

w6

u1

v1

u2

v2

Figure 6: Glueing the gadgets (left) and a geometric realisation (right)

We define graphs G1, G2, . . . , Gn iteratively by taking as G1 a copy B1 of
B with vertex set u1, v1, w1

1, . . . , w
1
6. Then, given Gi we obtain Gi+1 by adding

another copy Bi+1 of B on vertex set ui+1, vi+1, wi+1
1 , . . . , wi+1

6 , where we make

• ui+1 adjacent to ui, vi and wi
4;

• vi+1 adjacent to vi and wi
3; and

• wi+1
1 adjacent to vi.

An indication that Gn has indeed boxicity 2 as claimed is given in Figure 6.
That Gn has bandwidth ≤ 16 can also easily be checked. We fix two interval
graphs I1, I2, so that Gn = I1 ∩ I2.

First, we prove that the edge uv flips between consecutive copies of B, that
is

for some k ∈ {1, 2}, uivi ∈ E(Ik) implies ui+1vi+1 ∈ E(I3−k). (10)

To keep notation simple, we consider the case when i = 1, and we assume that
u1v1 ∈ E(I1), so that our task is to show that u2v2 ∈ E(I2).

14

Observe that for each j = 1, 2, 3, 5, 6 the vertices u1w1
jv

1u2u1 form a 4-cycle

in Gn and thus in I2. Since I2 is chordal but u1 and v1 are not adjacent in
I2, it follows that u2w1

j ∈ E(I2). As this edge is not present in Gn, we have
consequently that

w1
4 is the only neighbour in I1 of u2 among w1

1, . . . , w
1
6. (11)

The graph (a) in Fig. 2 we call a Y , the graph (b) we call an umbrella. As
both I1 and I2 are interval graphs, neither of them contains a Y or an umbrella
as an induced subgraph.

We next show that
v1w2

2 ∈ E(I1). (12)

From (11), we deduce that in I1 the induced path w1
2 . . . w

1
6 together with u2

and w2
2 forms an induced Y , unless w2

2 is adjacent to at least one of the vertices
w1

2, . . . , w
1
6. Thus, we can choose j be such w1

j is a neighbour of w2
2 in I1 and

closest to w1
4. If j 6= 4 then w1

j . . . w
1
4u

2w2
2 forms an induced cycle of length ≥ 4,

which contradicts the chordality of I1. Thus, w2
2w

1
4 is an edge of I1.

Now w1
2 . . . w

1
6 together with v1 and w2

2 form an induced umbrella in I1,
unless w2

2 has further neighbours among w1
2, . . . , w

1
6, or w2

2v
1 ∈ E(I1). In the

latter case, we have proved (12), so assume that in I1, w2
2 has a second neighbour

in {w1
2, . . . , w

1
6}. As I1 is chordal one of w1

3 and w1
5 has to be adjacent to w2

2.
By symmetry, let us say that w1

3w
2
2 ∈ E(I1). Then w1

3w
2
2u

2v1w1
3 is a 4-cycle

that is induced unless w2
2 and v1 are adjacent in I1 (here we use (11) again).

This proves (12).
Turning back to Gn, we observe that v1u2w2

2v
2v1 form an induced 4-cycle.

Thus, each of I1 and I2 must contain exactly one of the diagonals v1w2
2 and u2v2.

Since we have already proved that v1w2
2 ∈ E(I1) it follows that u2v2 ∈ E(I2).

This finishes the proof of (10).

Next, we see that consecutive copies of B rotate by 90◦. More formally, we
associate with a gadget Bi a matrix Di ∈ R2×2, where the first row encodes the
orientation of the induced path wi

1 . . . w
i
6, while the second row corresponds to

u, v. If uivi ∈ E(Ik) for k = 1 or k = 2, we set

Di
1k =

{
1 if `k(wi

1) < `k(wi
6)

−1 otherwise
and Di

1,3−k = 0

and

Di
2k = 0 and Di

2,3−k =

{
1 if r3−k(vi) < `3−k(ui)

−1 otherwise

By symmetry, we may assume B1 to be embedded in such a way that u1v1 ∈
E(I1), r2(v1) < `2(u1) and `1(w1

1) < `1(w1
6). Then D1 is simply the identity

matrix. Below we see that Di is the (i − 1)th power of the rotation matrix
R :=

(
0 −1
1 0

)
.

We only prove D2 = R. For larger i this follows with analogous arguments.
As we assumed u1v1 ∈ E(I1), it follows from by (10) that u2v2 ∈ E(I2), which
implies D2

11 = 0 and D2
22 = 0. Let us next show that D2

21 = 1, that is

r1(v2) < `1(u2). (13)

15

Indeed, as u2v2 ∈ E(I2), we either have r1(v2) < `1(u2) or r1(u2) < `1(v2).
By (9), w1

1 . . . w
1
6 is an induced path in I1, and from the assumption that

`1(w1
1) < `1(w1

6) we deduce `1(w1
3) < `1(w1

4). From (11) it follows that `1(u2) ∈
(r1(w1

3), r1(w1
4)]. Since v2 is adjacent to w1

3 we now see that r1(u2) < `1(v2) is
impossible as this would imply r1(w1

3) < r1(u2) < `1(v2). This shows (13).
To show the rotation, it remains to prove that

`2(w2
1) > `2(w2

6), (14)

which is to say that D2
12 = −1.

Suppose that r2(v1) ≤ r2(w2
1). Then since r2(v1) < `2(u1) it follows that

each of w1
1, . . . , w

1
6 is adjacent to w2

1 in I2, from which we deduce that w2
1 is not

a neighbour of any of w1
1, . . . , w

1
6 in I1. However, by (11), then w1

2 . . . w
1
6 induces

with u2 and w2
1 a Y -subgraph in I1, which is impossible. Thus r2(w2

1) < r2(v1).
Now, if `2(w2

1) < `2(w2
6) then one of w2

2, . . . , w
2
6 must be adjacent to v1 in

I2. Since I2 is a chordal graph and w2
1 . . . w

2
6 an induced path in I2, this is only

possible if v1w2
2 is an edge of I2. But, by (12), we also have v1w2

2 ∈ E(I1),
which contradicts v1w2

2 /∈ E(Gn). Therefore, we have proved (14).

v1

v2

v3

v4

v5

v6

v7

Figure 7: Spiral of vi-boxes, and vertical line intersecting ≥ n/4 boxes

Summing up, the boxes corresponding to the induced path v1v2 . . . vn are
arranged in a spiral pattern. This spiral has two options: either it may become
ever larger or, after a number of steps, it may become smaller and smaller.
In both cases, we find a vertical line that meets a quarter of the vi-boxes,
which translates to a clique of size n/4 in I1. In particular, tw(I1) ≥ n/4. As
|V (G)| = 8n, the proof is complete.

6 Discussion

In this paper, we treated Boxicity from the perspective of parameterized com-
plexity. We presented

• a parameterized algorithm for Boxicity with respect to the parameter
cluster vertex deletion;

• an additive 1-approximation algorithm for Boxicity that runs
in 2O(w2 logw) · n time where w is the width of a given path decompo-
sition of the input graph;

16

• and a family of graphs of bounded bandwidth that need, in any optimal
box representation, dimensions of unbounded treewidth.

In some respect, the method of our first algorithm is a generalization of the
true twin reduction. The key insight is that if there are many vertex sets (the
clusters) that are identical in the graph then many of these sets will have essen-
tially the same geometric realization. Deleting one of these many “geometric
twins” is unlikely to change boxicity.

We believe this approach can exploited further. Indeed, we are convinced
that with similar methods as developed in this article, we can also formulate a
parameterized algorithm for Boxicity when the parameter is distance to stars
– the smallest number of vertices whose removal results in a disjoint union of
stars. Like cluster vertex deletion, distance to stars provides a non-trivial pa-
rameterization for Boxicity between vertex cover (solved) and feedback vertex
set (open). Moreover, given a graph G, computing a minimum set X ⊆ V (G)
such that G[V −X] is a disjoint union of stars can be done in f(|X|) · |V (G)|O(1)

time [17].

Our second algorithm yields an additive 1-approximation for Boxicity on
graphs of bounded pathwidth. Two questions that immediately arise are: can
we get rid of the additive 1, such that the algorithm computes box(G) exactly?
Can the algorithm be lifted to run on graphs of bounded treewidth?

We stated earlier our impression of the first question – we conjecture Boxic-
ity to be NP-complete on graphs of bounded bandwidth, thus including graphs
of bounded pathwidth. Our reasoning is that, in any optimal representation
as the intersection of interval graphs, some of the interval graphs may have
unbounded treewidth, even if the input graph has bounded bandwidth. This
seems to annul the main advantage of bounded pathwidth, that the number of
box representation of the union of previous bags can be compressed to a size
bounded by a function of the pathwidth.

We turn to the second question: why is it difficult to extend the algorithm
to graphs of bounded treewidth? We rely heavily on the fact that the one extra
dimension is sufficient to reflect the path decomposition of the whole graph. If
we mimick this approach for bounded treewidth we have to describe the tree
decomposition of the graph with as few extra dimensions as possible. How
many extra dimensions would we need? As many as the boxicity of the chordal
supergraph obtained by turning each bag of the decomposition into a clique. If
we started with a path decomposition, the boxicity will be one. For a general
tree decomposition, however, it could well be that the boxicity of this chordal
graph is about the treewidth of the input graph [7]. This suggests that there
might be input graphs G for which box(G) is much lower than the number
of dimensions required to describe their tree decomposition, which makes it
impossible to approximate using only the techniques of Section 4.

References

[1] A. Adiga, J. Babu, and L. S. Chandran. Polynomial time and parame-
terized approximation algorithms for boxicity. In Proceedings of the 7th
International Symposium on Algorithms and Computation (IPEC 2012),
LNCS 7535, pages 135–146, 2012.

17

[2] A. Adiga, D. Bhowmick, and L. S. Chandran. The hardness of approxi-
mating the boxicity, cubicity and threshold dimension of a graph. Discrete
Applied Mathematics, 158(16):1719–1726, 2010.

[3] A. Adiga, R. Chitnis, and S. Saurabh. Parameterized algorithms for boxic-
ity. In Proceedings of the 21st International Symposium on Algorithms and
Computation (ISAAC 2010), LNCS 6506, pages 366–377, 2010.

[4] E. Asplund and B. Grünbaum. On a coloring problem. Math. Scand.,
8:181–188, 1960.

[5] A. Bielecki. Problem 56. Colloq. Math., 1:333, 1948.

[6] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions
of small treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.

[7] L. S. Chandran and N. Sivadasan. Boxicity and treewidth. Journal of
Combinatorial Theory, Series B, 97(5):733–744, 2007.

[8] B. Courcelle. The monadic second-order logic of graphs I. Recognizable
sets of Finite Graphs. Information and Computation, pages 12–75, 1990.

[9] M. Cozzens. Higher and multi-dimensional analogues of interval graphs.
Ph.d. thesis, Department of Mathematics, Rutgers University, New
Brunswick, NJ, 1981.

[10] R. Diestel. Graph Theory (4th edition). Springer-Verlag, 2010.

[11] M. Doucha and J. Kratochv́ıl. Cluster vertex deletion: A parameterization
between vertex cover and clique-width. In Proceedings of the 37th Inter-
national Symposium on Mathematical Foundations of Computer Science
(MFCS 2012), LNCS 7464, pages 348–359, 2012.

[12] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Com-
plexity. Springer-Verlag, 2013.

[13] L. Esperet. Boxicity of graphs with bounded degree. European Journal of
Combinatorics, 30(5):1277–1280, 2009.

[14] R. Ganian. Twin-cover: Beyond vertex cover in parameterized algorith-
mics. In Proceedings of the 6th International Symposium on Algorithms
and Computation (IPEC 2011), LNCS 7112, pages 259–271, 2011.

[15] A. Kostochka. Coloring intersection graphs of geometric figures with a
given clique number. In J. Pach, editor, Towards a theory of geometric
graphs, volume 342 of Contemp. Math., pages 127–138. Amer. Math. Soc.,
2004.

[16] J. Kratochv́ıl. A special planar satisfiability problem and a consequence of
its NP-completeness. Discrete Applied Mathematics, 52(3):233–252, 1994.

[17] N. Nishimura, P. Ragde, and D. M. Thilikos. Fast fixed-parameter tractable
algorithms for nontrivial generalizations of vertex cover. Discrete Applied
Mathematics, 152:229–245, 2005.

18

[18] F. S. Roberts. On the boxicity and cubicity of a graph. Recent Progress in
Combinatorics, pages 301–310, 1969.

[19] E. Scheinerman. Intersection classes and multiple intersection parameters.
Ph.d. thesis, Princeton University, 1984.

[20] J. Spinrad. Efficient Graph Representations. Fields Institute monographs.
American Mathematical Society, 2003.

[21] C. Thomassen. Interval representations of planar graphs. Journal of Com-
binatorial Theory, Series B, 40(1):9–20, 1986.

[22] M. Yannakakis. The Complexity of the Partial Order Dimension Problem.
SIAM Journal on Algebraic and Discrete Methods, 3(3):351–358, 1982.

Version November 25, 2018

Henning Bruhn <henning.bruhn@uni-ulm.de>

Morgan Chopin <morgan.chopin@uni-ulm.de>

Felix Joos <felix.joos@uni-ulm.de>

Institut für Optimierung und Operations Research
Universität Ulm, Germany

Oliver Schaudt <schaudto@uni-koeln.de>

Institut für Informatik
Universität zu Köln, Germany

19

	1 Introduction
	2 Preliminaries
	3 Proof of Theorem ??
	4 Proof of Theorem ??
	5 Proof of Theorem ??
	6 Discussion

