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Université Libre de Bruxelles
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Abstract

The class of graphs that do not contain an induced path on k vertices,
Pk-free graphs, plays a prominent role in algorithmic graph theory. This
motivates the search for special structural properties of Pk-free graphs,
including alternative characterizations.

Let G be a connected Pk-free graph, k ≥ 4. We show that G admits
a connected dominating set whose induced subgraph is either Pk−2-free,
or isomorphic to Pk−2. Surprisingly, it turns out that every minimum
connected dominating set of G has this property.

This yields a new characterization for Pk-free graphs: a graph G is Pk-
free if and only if each connected induced subgraph of G has a connected
dominating set whose induced subgraph is either Pk−2-free, or isomorphic
to Ck. This improves and generalizes several previous results; the partic-
ular case of k = 7 solves a problem posed by van ’t Hof and Paulusma [A
new characterization of P6-free graphs, COCOON 2008].

In the second part of the paper, we present an efficient algorithm
that, given a connected graph G on n vertices and m edges, computes
a connected dominating set X of G with the following property: for the
minimum k such that G is Pk-free, the subgraph induced byX is Pk−2-free
or isomorphic to Pk−2.

As an application our results, we prove that Hypergraph 2-

Colorability, an NP-complete problem in general, can be solved in
polynomial time for hypergraphs whose vertex-hyperedge incidence graph
is P7-free.
keywords: Pk-free graph, connected domination, computational com-
plexity.
MSC: 05C69, 05C75, 05C38.
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1 Introduction

A dominating set of a graph G is a vertex subset X such that every vertex not
in X has a neighbor in X . Dominating sets have been intensively studied in
the literature. The main interest in dominating sets is due to their relevance on
both theoretical and practical side. Moreover, there are interesting variants of
domination and many of them are well-studied.

A connected dominating set of a graph G is a dominating set X whose in-
duced subgraph, henceforth denoted G[X ], is connected. As usual, a connected
dominating set such that every proper subset is not a connected dominating set
is called a minimal connected dominating set. A connected dominating set of
minimum size is called a minimum connected dominating set.

We use the following standard notation. Let Pk be the induced path on k

vertices and let Ck be the induced cycle on k vertices. If G and H are two
graphs, we say that G is H-free if H does not appear as an induced subgraph
of G. Furthermore, if G is H1-free and H2-free for some graphs H1 and H2, we
say that G is (H1, H2)-free. If two graphs G and H are isomorphic, we write
G ∼= H .

The class of Pk-free graphs has received a fair amount of attention in the
theory of graph algorithms. Given an NP-hard optimization problem, it is often
fruitful to study its complexity when the instances are restricted to Pk-free
graphs.

Let us mention two recent results in this direction: the polynomial time
algorithm to compute a stable set of maximum weight, given by Lokshtanov
et al. [10], and the result of Hoang et al. [6] showing that k-Colorability is
efficiently solvable on P5-free graphs. The proof of the latter result relies on the
fact that a connected P5-free graph has a dominating clique or a dominating
P3.

Theorem 1 (Bácso and Tuza [1]). Let G be a connected P5-free graph. Then
G has a dominating clique or a dominating induced P3.

An immediate implication of this result is the following.

Theorem 2 (Bácso and Tuza [1], Cozzens and Kelleher [4]). Let G be a graph.
The following assertions are equivalent.

(i) G is P5-free.

(ii) Every induced subgraph H of G admits a connected dominating set X such
that H [X ] is a clique or H [X ] ∼= C5.

Later, van ’t Hof and Paulusma [13] obtained a characterization for the class
of P6-free graphs in the flavour of Theorem 2. An earlier, slightly weaker result
was given by Liu et al. [8], and the particular case of triangle free graphs was
discussed before by Liu and Zhou [9].

Theorem 3 (van ’t Hof and Paulusma [13]). Let G be a graph. The following
assertions are equivalent.

(i) G is P6-free.

(ii) Every induced subgraph H of G admits a connected dominating set X such
that H [X ] has a complete bipartite spanning subgraph or H [X ] ∼= C6.
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Complementing Theorem 3, van ’t Hof and Paulusma give a polynomial
time algorithm that, given a connected P6-free graph, computes a connected
dominating set X such that G[X ] has a complete bipartite spanning subgraph
or G[X ] ∼= C6.

In view of Theorems 2 and 3, two questions arise. The first one is whether
condition (ii) of Theorem 3 can be tightened, such that H [X ] is a P4-free graph
or G[X ] ∼= C6. Note that if H [X ] is P4-free, it is a connected cograph, and
in particular has a complete bipartite spanning subgraph. This condition is
the direct analogue of condition (ii) of Theorem 2 for P6-free graphs. The
advantage of the strenghtened version is of course that the structure of cographs
is well understood and more restricted compared to the class of graphs having
a spanning complete bipartite graph.

The second question is whether similar characterizations can be given for the
class of Pk-free graphs, for k > 6. In their paper, van ’t Hof and Paulusma [13]
explicitly ask for such a characterization in the case of k = 7.

1.1 Our contribution

In this paper, we give an affirmative answer to these two questions. We show
that every connected Pk-free graph, k ≥ 4, admits a connected dominating set
whose induced subgraph is either Pk−2-free, or isomorphic to Pk−2. Surprisingly,
it turns out that every minimum connected dominating set has this property.

Theorem 4. Let G be a connected Pk-free graph, k ≥ 4, and let X be any
minimum connected dominating set of G. Then G[X ] is Pk−2-free, or G[X ] ∼=
Pk−2.

From this result we derive the following characterization of Pk-free graphs.

Theorem 5. Let G be a graph and k ≥ 4. The following assertions are equiv-
alent.

(i) G is Pk-free.

(ii) Every connected induced subgraph H of G admits a connected dominating
set X such that H [X ] is Pk−2-free or H [X ] ∼= Ck.

We now come to the algorithmic dimension of the problem. The proof of
Theorem 4 is constructive in the sense that it yields an algorithm to compute,
given a Pk-free graph, a connected dominating set whose induced subgraph is
either Pk−2-free, or isomorphic to Pk−2. However, recall that the computation
of a longest induced path in a graph is an NP-hard problem, as shown in Garey
and Johnson [5, p. 196]. In other words, there is little hope of computing
in polynomial time the minimum k for which the input graph is Pk-free. To
overcome this obstacle, our algorithm can only make implicite use of the absent
induced Pk, which is the main difficulty here.

Theorem 6. Given a connected graph G on n vertices and m edges, one can
compute in time O(n5(n+m)) a connected dominating set X with the following
property: for the minimum k ≥ 3 such that G is Pk-free, G[X ] is Pk−2-free or
G[X ] ∼= Pk−2.

3



Our last result is an application of the previous theorems. A 2-coloring of a
hypergraph assigns to each vertex one of two colors, such that each hyperedge
contains vertices of both colors. The problem Hypergraph 2-Colorability

is to decide whether a given hypergraph admits a 2-coloring. Garey and John-
son [5, p. 221] explain that it is NP-complete in general. One successful approach
to deal with this hardness is to put restrictions on the bipartite vertex-hyperedge
incidence graph1 of the input hypergraph.

As an application of Theorem 3, van ’t Hof and Paulusma [13] show that
Hypergraph 2-Colorability is solvable in polynomial time for hypergraphs
with P6-free incidence graph. Using our results, we settle the case of hypergraphs
with P7-free incidence graph.

Theorem 7. Hypergraph 2-Colorability can be solved in polynomial time
for hypergraphs with P7-free incidence graph. If it exists, a 2-coloring can be
computed in polynomial time.

The proof of our results we give in the subsequent sections. We close the
paper with a short discussion of our contribution.

2 Proofs

2.1 Proof of Theorems 4 and 5

We need the following lemma from an earlier paper of ours [3].

Lemma 1 (Camby and Schaudt [3]). Let G be a connected graph that is
(Pk, Ck)-free, for some k ≥ 4, and let X be a minimal connected dominating set
of G. Then G[X ] is Pk−2-free.

When applied to Pk-free graphs, which are in particular (Pk+1, Ck+1)-free,
the above lemma implies that any minimal connected dominating set induces a
Pk−1-free graph, for k ≥ 3. We next prove a simple but useful lemma, which
plays a key role also in the proof of Theorem 6. Let X be a connected domi-
nating set of a graph G, and x ∈ X . Assuming that X is a minimal connected
dominating set and |X | ≥ 2, x is a cut-vertex of G[X ] or x has a private neigh-
bor : a vertex y ∈ V (G) \X with NG(y) ∩X = {x}.

Lemma 2. Let G be a Pk-free graph, for some k ≥ 4, and let X be a minimal
connected dominating set of G. Assume that there is an induced Pk−2 in G[X ],
say on the vertices x1, x2, . . . , xk−2. Then any private neighbor y of x1 is such
that (X ∪ {y}) \ {xk−2} is a connected dominating set of G.

Proof. Note that G is in particular (Pk+1, Ck+1)-free and thus, by Lemma 1,
G[X ] is Pk−1-free.

Let X ′ := {x1, x2, . . . , xk−2}. Moreover, let y be any private neighbor of
x1, and let Y := (X ∪ {y}) \ {xk−2}. We have to prove that Y is a connected
dominating set of G.

1Recall that for a hypergraph H = (V,E) we define the bipartite vertex-hyperedge inci-
dence graph as the bipartite graph on the set of vertices V ∪ E with the edges vY such that
v ∈ V , Y ∈ E and v ∈ Y . In the following, we just say the incidence graph.
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Suppose for a contradiction that G[Y ] is not connected. Hence, xk−2 is
a cut-vertex of G[X ]. In particular, there is some vertex y′ ∈ X such that
NG(y

′) ∩X ′ = {xk−2}. But then G[X ′ ∪ {y′}] ∼= Pk−1, a contradiction.
It remains to show that Y is a dominating set. Suppose the contrary, that

is, there is some vertex x′ with NG[x
′] ∩ Y = ∅. As X is a dominating set,

NG[x
′] ∩X = {xk−2}. Because xk−2 is adjacent to Y and x′ is not adjacent to

Y , x′ 6= xk−2. But this means that G[X ′ ∪ {y, x′}] ∼= Pk, a contradiction.

Now we can state the proof of Theorem 4.

Proof of Theorem 4. Let X be a minimum connected dominating set of G. As
G is in particular (Pk+1, Ck+1)-free, G[X ] is Pk−1-free, by Lemma 1. We have
to show that G[X ] is Pk−2-free or isomorphic to Pk−2.

To see this, assume there is an induced Pk−2 in G[X ], say on the vertices
x1, x2, . . . , xk−2. Let X

′ := {x1, x2, . . . , xk−2}. Note that x1 is not a cut-vertex
of G[X ]: otherwise there is some vertex y′ ∈ X such that NG(y

′) ∩X ′ = {x1},
and hence G[X ′ ∪ {y′}] ∼= Pk−1. This is a contradiction. Thus, x1 is not a
cut-vertex of G[X ] and therefore has a private neighbor w.r.t. X , say y1. By
Lemma 2, Y1 := (X∪{y1})\{xk−2} is a connected dominating set of G. As X is
a minimum connected dominating set, Y1 is a minimum connected dominating
set, too. Moreover, y1 has no neighbor in X \ {x1}, in particular in X \X ′.

By reapplying the argumentation to Y1 and the induced Pk−2 on
y1, x1, x2, . . . , xk−3, We obtain a vertex y2 ∈ V (G) \ Y1 such that Y2 :=
(Y1 ∪ {y2}) \ {xk−3} is a minimum connected dominating set of G and G[Y2]
contains an induced Pk−2 on the vertices y2, y1, x1, x2, . . . , xk−4. Moreover, y2
has no neighbor in Y1 \ {y1}, in particular in X \X ′.

Iteratively, we end up with a minimum connected dominating set Yk−2,
which is exactly (X \ X ′) ∪ {y1, . . . , yk−2}. Since, for i = 1, 2, . . . , k − 2, yi is
not adjacent to X \X ′ and G[Yk−2] is connected, X \X ′ must be empty, hence
X = X ′. Thus, G[X ] = G[X ′] ∼= Pk−2. This completes the proof.

Proof of Theorem 5. Clearly Pk does not have a connected dominating set sat-
isfying (ii). Hence, (ii) implies (i).

Conversely, let H be any connected induced subgraph of G, and let X be a
minimum connected dominating set of H . By Theorem 4, H [X ] is Pk−2-free or
H [X ] ∼= Pk−2. If H [X ] is Pk−2-free, the assertion of (ii) is satisfied. Otherwise,
let x1, x2, . . . , xk−2 be a consecutive ordering of the induced path H [X ]. In
particular, x1 and xk−2 are not cut-vertices of H [X ]. As X is minimum, there
exists a private neighbor yi of xi, for i ∈ {1, k − 2}. It must be that y1yk−2 ∈
E(H), since otherwise H [X ∪{y1, yk−2}] ∼= Pk. Hence, H [X ∪{y1, yk−2}] ∼= Ck,
as desired. So, (i) implies (ii).

2.2 Proof of Theorem 6

Before we state our algorithm, we need to introduce some notation and defi-
nitions. For this, let us assume we are given a connected input graph G on n

vertices and m edges. Let X be an arbitrary connected dominating set of G.
By NC (X) we denote the set of vertices in X that are non-cutting in G[X ],

i.e. for every x ∈ NC (X), G[X \ {x}] is connected. Let x be a degree-1 ver-
tex of G[X ]. We define the half-path starting in x to be the maximal path
(x, x1, x2, . . . , xs) in X such that |NG[X](xi)| = 2 for each i ∈ {1, 2, . . . , s− 1}.
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For example, if the neighbor y ∈ X of x has degree at least 3, the half-path is
simply (x, y). The length of the half-path is then s. To each x ∈ X we assign a
weight wX(x) as follows:

1. if |NG[X](x)| ≥ 2, put wX(x) = 0, and

2. if |NG[X](x)| = 1, put wX(x) = s, where s is the length of the half-path
starting in x.

Finally, the weight w(X) of the set X given by

w(X) =
∑

x∈X

(wX(x))2.

See Fig. 1 for an illustration of these definitions.

2

0

0

0

0

0

0

1

Figure 1: A graph G. The black vertices form a connected dominating set X of
G, with weights wX as shown. We have w(X) = 5.

Let X be the family of all connected dominating sets of G. We next define
a strict partial order ≺ on X as follows. For any two sets X,Y ∈ X , we put
X ≺ Y if

1. |X | > |Y |, or

2. |X | = |Y | and w(X) < w(Y ).

The height of the strict poset (X ,≺) is the maximum set of mutually comparable
elements of X .

Lemma 3. For a connected n-vertex graph G, the height of (X ,≺) is in O(n3).

Proof. If G[X ] is not an induced path, every vertex in X of degree at most 2
in G[X ] is contained in at most one half-path. Hence,

∑
x∈X wX(x) ≤ |X |.

If G[X ] is an induced path, every vertex appears in at most two half-paths,
implying

∑
x∈X wX(x) ≤ 2|X |. Thus

w(X) =
∑

x∈X

(wX(x))2 ≤ (
∑

x∈X

wX(x))2 ≤ 4|X |2,

and so the weight of a connected dominating set is in O(n2). Since there are at
most n different possible sizes of connected dominating sets of G, the height of
(X ,≺) is in O(n3).
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Proof of Theorem 6. Assume we are given a connected graph G on n vertices
and m edges as input. Our algorithm works as follows, starting with the con-
nected dominating set Y := V (G). Its output is a connected dominating set X
with the properties stated in Theorem 6.

1. Compute a minimal connected dominating set X ⊆ Y .

2. If G[X ] is an induced path, return X and terminate the algorithm.

3. Compute the set NC (X) and the weight wX(x) for every x ∈ NC (X).

4. Order the vertices of NC (X) with non-increasing weight wX , breaking ties
arbitrarily. Let that order be v1, v2, . . . , v|NC (X)|.

5. For i from 1 to |NC (X)| do the following:

(a) Compute a private neighbor yi of vi w.r.t. X .

(b) For j from i+ 1 to |NC (X)| do the following:

i. Check whether Yij := (X∪{yi})\{vj} is a connected dominating
set.

ii. If yes, put X ← Yij and go to Step 1.

6. Return X and terminate the algorithm.

We remark that the computation of yi in Step 5a is always possible, since xi is
non-cutting in G[X ] and X is a minimal connected dominating set. The proof
is completed by the following sequence of claims.

Claim 1. When the algorithm terminates, the output X is a connected domi-
nating set and G[X ] is Pk−2-free or G[X ] ∼= Pk−2.

Since Step 1 is applied before the return is called, X is a minimal connected
dominating set. If the algorithm terminates with Step 2, G[X ] is Pk−1-free by
Lemma 1. Hence, either G[X ] ∼= Pk−2 or G[X ] is Pk−2-free.

Now assume that the algorithm terminates in Step 6. In particular, G[X ] is
not an induced path. Suppose for a contradiction that G[X ] contains an induced
Pk−2, say on the vertices x1, x2, . . . , xk−2. Like in the proof of Lemma 2, both
x1 and xk−2 cannot be cut-vertices of G[X ]. Thus, x1, xk−2 ∈ NC (X ).

After Step 4, the vertices of NC (X) are ordered v1, v2, . . . , v|NC (X)| with
non-increasing weight. W.l.o.g. x1 = vi, xk−2 = vj , and i < j. As X is
returned, the set Yij := (X ∪ {yi}) \ {vj} is not a connected dominating set, in
contradiction to Lemma 2. This proves our claim.

Claim 2. Let X be a minimal connected dominating set considered in some
iteration of the algorithm. Assume that the ’go to’ is called in Step 5(b)ii because
Yij := (X ∪ {yi}) \ {vj} is a connected dominating set. Let X ′ be the minimal
connected dominating set computed in the subsequent Step 1. Then X ≺ X ′.

Clearly |X ′| ≤ |X |. If |X ′| < |X |, X ≺ X ′ by definition. So we may assume
that |X ′| = |X |, and hence X ′ = Yij . It remains to show that w(X) < w(X ′).

Let z ∈ X \ {vi, vj} be a degree-1 vertex of G[X ], and let (z, x1, x2, . . . , xs)
be a half-path starting in z. As G[X ] is not a path, xs is a cut-vertex of G[X ].
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In particular, xs 6= vj . Hence, in G[Yij ], (z, x1, x2, . . . , xs) is the initial segment
of a half-path starting in z. In particular, wX′(z) ≥ wX(z).

If vi is not a degree-1 vertex of G[X ], wX′(vi) = wX(vi) = 0, and (yi, vi) is
the initial segment of a half-path starting in yi. Hence, wX′(yi) ≥ 1, and thus

wX′(vi) = 0 and wX′(yi) ≥ wX(vi) + 1. (1)

If the degree of vi in G[X ] is 1, let (vi, x1, x2, . . . , xs) be a half-path starting
in vi. Again, xs is a cut-vertex of G[X ], and so xs 6= vj . Hence, in G[X ′],
(yi, vi, x1, x2, . . . , xs) is the initial segment of a half-path starting in yi. Again (1)
holds.

Summing up, we see that (1) holds, and

wX′(z) ≥ wX(z) for every vertex z ∈ X ′ \ {yi, vi}. (2)

We now turn to the vertex vj . First assume that the degree of vj in G[X ] is
at least 2, and thus wX(vj) = 0. Then, by (2),

w(X ′)− w(X) ≥ wX′(y)2 − wX(vj)
2 > 0,

and so w(X ′)− w(X) > 0.
Now assume that vj is a vertex of degree 1 in G[X ], and so wX(vj) ≥ 1. Let

NG[X](vj) = {x}. As G[X ] is not a path, |NG[X](x)| ≥ 2, and so wX(x) = 0.
Thus wX′(x) = wX(vj) − 1. Recall that (2) holds, and wX′(z) ≥ wX(z) for
every vertex z ∈ X ′ \ {yi, vi}. We obtain the following inequality.

w(X ′)− w(X) ≥ wX′(yi)
2 + wX′(x)2 − wX(vi)

2 − wX(vj)
2

= (wX′(yi)
2 − wX(vi)

2)− (wX(vj)
2 − wX′(x)2)

≥ [(wX(vi) + 1)2 − wX(vi)
2]− [wX(vj)

2 − (wX(vj)− 1)2]

But wX(vi) ≥ wX(vj) implies

(wX(vi) + 1)2 − wX(vi)
2 > wX(vj)

2 − (wX(vj)− 1)2,

and thus w(X ′)− w(X) > 0 holds as in the previous case.
Hence, X ≺ X ′, proving our claim.

See Fig. 2 for an illustration of Step 5(b)ii.
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Figure 2: Before (left) and after (right) an application of Step 5(b)ii. In the
next iteration, the algorithm terminates with the right connected dominating
set as output.

Claim 3. The algorithm terminates in O(n5(n+m)) time.
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By Claim 2, each call of the ’go to’-step and the subsequent application of
Step 1 result in a connected dominating set that is properly larger in the order
≺. By Lemma 3, the height of the poset (X ,≺), and hence the number of
iterations the whole algorithm performs, is in O(n3).

It remains to discuss the complexity of the particular steps. For this, recall
that it can be checked in time O(n + m) whether a given vertex subset is
a connected dominating set. Consequently, Step 1 can be performed in time
O(n(n+m)) by the immediate greedy procedure.

Step 2 and the computation of the weights in Step 3 can both be performed
in linear time using the degree sequence of G[X ]. The computation of the set
NC (X) in Step 3 can be done straightforwardly in time O(n(n+m)).

It remains to discuss the complexity of the loop of Step 5. The computation
of a private neighbor in Step 5a is clearly done in O(n + m) time. The inner
loop of Step 5b consumes O(n) checks whether some vertex set is a connected
dominating set, requiring O(n +m) time each. Hence, Step 5 can be done in
O(n2(n+m)) time.

The overall running time amounts to O(n5(n + m)), which completes the
proof of both our claim and Theorem 6.

2.3 Proof of Theorem 7

Proof of Theorem 7. Let H = (V,E) be a hypergraph whose incidence graph
is P7-free. A 2-coloring of H we denote by (A,B), where A,B ⊆ V are two
non-empty sets with A ∪B = V , each of which intersects every hyperedge.

A hypergraph for which any two hyperedges are not comparable (w.r.t. in-
clusion) is called a clutter. The following observation was proven by van ’t Hof
and Paulusma [13]. In order to be self-contained, we give a quick proof of it.

Claim 4. We may assume that H is a clutter.

Proof. Assume there are hyperedges e, f ∈ E with e ⊆ f . Such a pair of
hyperedges we can detect in polynomial time.

Every 2-coloring of H is a 2-coloring of the hypergraph H ′ = (V,E \ {f}) in
particular. If (A,B) is a 2-coloring of H ′, it holds that e∩A 6= ∅ and e∩B 6= ∅.
Thus, f ∩ A 6= ∅ and f ∩B 6= ∅, and so (A,B) is a 2-coloring of H .

So we may delete, for every such pair e, f ∈ E with e ⊆ f the hyperedge f

from H . It is clear that the resulting hypergraph is a clutter, and its incidence
graph is still P7-free. This proves Claim 4.

Although immediate, Claim 4 considerably simplifies the argumentation of
the following proof. We now assume that H is a clutter. Moreover, we may
assume that H is connected, that is, its incidence graph is connected. In the
following, we prove a sequence of claims that discuss all relevant cases for the
2-coloring problem. We state the polynomial algorithm along the way.

Let G be the incidence graph of H . Since we are searching for a 2-coloring,
we may assume that |NG(f)| ≥ 2 for every f ∈ E. By Theorem 5, there is
a connected dominating set X of G such that G[X ] is P5-free or G[X ] ∼= C7.
However, the latter case contradicts the fact that G is bipartite. So, G[X ] is a
connected P5-free graph.

Using Theorem 5 again, we see that G[X ] has a dominating P3-free graph.
That is, there is a pair of adjacent vertices, say v ∈ V and e ∈ E, that together
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dominate G[X ]. In particular, e intersects every other hyperedge. It is clear
that we can compute such hyperedge in polynomial time.

Claim 5. If there is a proper subset X ⊂ e that dominates E, (X,V \X) is a
2-coloring of H.

Let f ∈ E be arbitrary. By assumption, f ∩ X 6= ∅. Since H is a clutter,
f 6⊆ e, and thus f 6⊆ X . Hence, f \X 6= ∅, proving Claim 5.

Indeed, it can be checked in polynomial time whether there is a proper subset
X ⊂ e that dominates E. (If so, X is found in polynomial time, too.) In view
of Claim 5, we may assume that no proper subset of e dominates E.

We now make a distinction of the cases |e| = 2 and |e| ≥ 3. Let us first
assume that |e| = 2, say e = {x, y}. Since H is a clutter, every hyperedge f of
H contains either x or y. Let X,Y ⊆ E \ {e} such that every f ∈ X contains
x, every g ∈ Y contains y, and X ∪ Y = E \ {e}.

If |X | = 0, every hyperedge contains y and, as H is a clutter, some other
vertex. Thus a 2-coloring of H is given by ({y}, V \ {y}). By symmetry, we
may now assume that |X |, |Y | ≥ 1. Observe that, if |X | = 1, say X = {f}, H is
2-colorable if and only if there is some vertex v ∈ f such that ({v, y}, V \{v, y})
is a 2-coloring of H . Indeed, if for every vertex v ∈ f , ({v, y}, V \ {v, y}) is not
a 2-coloring of H , there exists a hyperedge ev = {v, y} for each such vertex v.
Let now v be an arbitrary vertex in f . Then x and v must have the same color,
and so there is a vertex v′ ∈ f with the second color. Then, the hyperedge
ev′ = {v′, y} is monochromatic, a contradiction. This condition can clearly be
checked in polynomial time.

Now let |X |, |Y | ≥ 2. We next show that H admits a 2-coloring. To see this,
pick any f ∈ X and g ∈ Y . Since H is a clutter, f \e, g\e 6= ∅. Pick any u ∈ f \e
and v ∈ g \ e. If fv, gu 6∈ E(G), G[{u, f, x, e, y, g, v}] ∼= P7, a contradiction. As
u and v were arbitrary, it must be that f \ e ⊆ g \ e or g \ e ⊆ f \ e.

Now let f, f ′ ∈ X and g ∈ Y be three mutually distinct hyperedges. As
shown above, the sets f \ e, f ′ \ e are comparable to g \ e. Since H is a clutter,
f \ e is not comparable to f ′ \ e. Hence, either f \ e, f ′ \ e ⊆ g, or g \ e ⊆ f, f ′.

In the first case, f\e ⊆ g for any f ∈ X, g ∈ Y . Thus, (
⋃

f∈X f)\e ⊆
⋂

g∈Y g.
Since H is a clutter, every g ∈ Y has a neigbor outside the set {y} ∪

⋂
g∈Y g.

Hence,

({y} ∪
⋂

g∈Y

g, V \ ({y} ∪
⋂

g∈Y

g))

is a 2-coloring of H . The second case, g \ e ⊆ f, f ′, is dealt with in a similar
fashion.

So we may assume |e| ≥ 3. Since no proper subset of e dominates E in G, the
following holds: for every x ∈ e there is a hyperedge fx such that fx ∩ e = {x}.

Claim 6. For all x, y ∈ e, fx \ e = fy \ e.

Let x, y ∈ e. The case that x = y is trivial. So we may assume that x 6= y.
Suppose that there is a vertex z ∈ fx \ (e ∪ fy). If there is a vertex z′ ∈

fy\(e∪fx), G[{z, fx, x, e, y, fy, z
′}] ∼= P7, a contradiction. Thus, fy\(e∪fx) = ∅,

and so fy \ e ⊆ fx \ e.
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Since H is a clutter, there is a vertex u ∈ fy \ e. As fy \ e ⊆ fx \ e,
u ∈ (fx ∩ fy) \ e. Since |e| ≥ 3, there is a vertex v ∈ e \ {x, y}. But then
G[{z, fx, u, fy, y, e, v}] ∼= P7, a contradiction.

So, fx \ (e∪ fy) = ∅ and, for symmetry, fy \ (e∪ fx) = ∅. This proves Claim
6. For an illustration, see Fig. 3.

fy efx

u vyxz

Figure 3: The situation in the proof of Claim 6.

Claim 7. If |fx \ e| = 1 for some x ∈ e, H does not admit a 2-coloring.

Assume that |fx \ e| = 1 for some x ∈ e. By Claim 6, there is a vertex v ∈ V

such that fy \ e = {v} for all y ∈ e.
Suppose that (A,B) is a 2-coloring of H . We may assume that v ∈ A.

Since for every z ∈ e, fz∩B 6= ∅, e ⊆ B holds, a contradiction. So Claim 7 holds.

It can be checked in polynomial time whether |fx \ e| = 1 for some x ∈ e. In
view of Claim 6 and Claim 7, we may now assume that |fx \ e| ≥ 2 for all x ∈ e.

Claim 8. Let x, y ∈ e be two arbitrary, distinct vertices and let z ∈ fx \ e. A
2-coloring of H is given by ({x, y, z}, V \ {x, y, z}).

Let x, y, z be chosen according to the claim. Suppose that ({x, y, z}, V \
{x, y, z}) is not a 2-coloring of H . Thus there is an hyperedge f with f ⊆
{x, y, z} or f ∩ {x, y, z} = ∅.

Let us first assume f ⊆ {x, y, z}. In particular, |f \e| ≤ 1. Since |fx′ \e| ≥ 2
for all x′ ∈ e, we know that |f∩e| 6= 1. As NG(e) dominates the set E, |f∩e| ≥ 2
and so x, y ∈ f . Since H is a clutter, f 6⊆ e, and so f = {x, y, z}.

By assumption, |fx \ e| ≥ 2, and so there is a vertex z′ ∈ fx \ (e ∪ {z}).
Moreover, since |e| ≥ 3, there is a vertex x′ ∈ E \ {x, y}. But then
G[{z′, fx, z, f, y, e, x′}] ∼= P7, a contradiction.

So we may assume f ∩ {x, y, z} = ∅. As NG(e) dominates E, e∩ f 6= ∅. Let
x′ ∈ e ∩ f . As H is not a clutter, there is some z′ ∈ f \ e. This situation is
illustrated in Fig. 4.

f e fx

z′ x′ y x z

Figure 4: The situation in the proof of Claim 8. The dashed edge is optional.
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If fxz
′ ∈ E(G), G[{z, fx, z′, f, x′, e, y}] ∼= P7, a contradiction. Otherwise,

G[{z, fx, x, e, x′, f, z′}] ∼= P7, another contradiction. This proves Claim 8.

Clearly, a 2-coloring as provided by Claim 8 can be constructed efficiently.
This completes the proof.

3 Conclusion

In this paper we gave a description of the structure of connected dominating
sets in Pk-free graphs. We have shown that any connected Pk-free graph admits
a connected dominating set whose induced subgraph is Pk−2-free or isomorphic
to Pk−2. In fact, any minimum connected dominating set has this property.
Loosely speaking, this means that the restricted structure of connected Pk-free
graphs results in an even more restricted structure of the induced subgraph of
their minimum connected dominating sets.

Although we think that our results are of their own interest, our hope is
that they might be useful in other contexts, too. One example we gave is the
polynomial time solvability of Hypergraph 2-Colorability for hypergraphs
with P7-free incidence graph. It seems possible that, with more work, one could
push this result to hypergraphs with P8-free incidence graph. However, more
interesting would be to know whether there is any k for which Hypergraph

2-Colorability for hypergraphs with Pk-free incidence graph is not solvable
in polynomial time. So far, we do not have an opinion or an intelligent guess
on this question.

Other possible future applications of our results include the coloring of Pk-
free graphs. As mentioned earlier, Hoang et al. [6] showed that k-Colorability

is efficiently solvable on P5-free graphs, using the fact that a connected P5-free
graph has a dominating clique or a dominating induced P3. To our knowl-
edge, an open problem, conjectured by Huang [7], in this context is whether
4-colorability can be decided in polynomial time for P6-free graphs. From The-
orem 6 it follows that, given a P6-free graph, we can efficiently compute a
connected dominating set that induces a P4-free graph (that is a cograph) or a
P4. Of course cographs are less trivial than cliques, especially when it comes to
coloring – but that does not rule out an approach similar to that of Hoáng et
al. [6]. The fact that each vertex of the graph has some neighbor in this cograph
leaves a 3-coloring problem for the rest of the graph, once the coloring of the
cograph is fixed. Here, one might use the fact that 3-coloring is polynomial time
solvable for P6-free graphs, shown by Randerath and Schiermeyer [11], even in
the pre-coloring extension version, proven by Broersma et al. [2].
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