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Abstract. In the Directedk-Chinese Postman Proble+DCPP), we are given
a connected weighted digrajgh and asked to find non-empty closed directed
walks covering all arcs off such that the total weight of the walks is minimum.
Gutin, Muciaccia and Yeo (Theor. Comput. Sci. 513 (2013)-1128) asked for
the parameterized complexity bfDCPP wherk is the parameter. We prove that
the k-DCPP is fixed-parameter tractable.

We also consider a related problem of findingrc-disjoint directed cycles in an
Euler digraph, parameterized bySlivkins (ESA 2003) showed that this problem
is W[1]-hard for general digraphs. Generalizing anotheaulteby Slivkins, we
prove that the problem is fixed-parameter tractable for Edigraphs. The corre-
sponding problem on vertex-disjoint cycles in Euler digrapemains W[1]-hard
even for Euler digraphs.

1 Introduction

A digraph H is connectedf the underlying undirected graph @f is connected. Let
G = (V, A) be a connected digraph, where eachare A is assigned a non-negative
integer weightu(a) (G is aweighted digraph The DRECTED CHINESE POSTMAN
PROBLEM is a well-studied polynomial-time solvable problem in canatorial opti-
mization [1,9,13].

DIRECTED CHINESE POSTMAN PROBLEM (DCPP)

Input: A connected weighted digragh = (V, A).

Task: Find a minumum total weight closed directed walk
on G such that every arc d@f is contained irll".

In this paper, we will investigate the following generatisa of DCPP.

DIRECTED k-CHINESE POSTMAN PROBLEM (k-DCPP)
Input: A connected weighted digragh = (V, A) and an integek.
Task: Find a minimum total weight set éf non-empty

closed directed walks such that every arcois

contained in at least one of them.

Note that thek-DCPP can be extended to directed multigraphs (that maydecl
parallel arcs but no loops), but the extended version caretheced to the one on di-
graphs by subdividing parallel arcs and adjusting weighjs@priately. Since it is more
convenient, we consider tkeDCPP for digraphs only.
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In the literature, the undirected version /6DCPP, abbreviated-UCPP, has also
been studied. If a vertex of G is part of the input and we require that each of the
walks containg then thek-DCPP and:-UCPP are polynomial-time solvable [24]16].
However, in general the-DCCP is NP-completé [12], as is tieUCPP [1Z,2B].

Lately research in parameterized algorithms and compﬂafd!r the CPP and its
generalizations was summarized|in [2] and reported in [36}eral recent results de-
scribed there are of Niedermeier's group who identified almemof practically useful
parameters for the CPP and its generalizations, obtainedadeénteresting results and
posed some open problems, see, é.0. [8,21,22]. van Betexh[2] and Sorge[[20]
suggested to study tlkeUCPP as a parameterized problem with paramegerd asked
whether the:-UCPP is fixed-parameter tractable, i.e. can be solved bygamitam of
running timeO( f (k)n®(")), wheref is a function ofk only andn = |V/|.

Gutin, Muciaccia and Yed [12] proved that theJCPP is fixed-parameter tractable.
Observing that their approach for tieUCPP is not applicable to the-DCPP, the
authors of[[12] asked for the parameterized complexity-BfCPP parameterized By
In this paper, we show that tkeDCPP is also fixed-parameter tractable.

Theorem 1. Thek-DCPP is fixed-parameter tractable.

Our proof is very different from that in_[12] for the-UCPP. While the latter proof
was based on a simple reduction to a polynomial-size kenreejive a fixed-parameter
algorithm directly using significantly more powerful tools particular, we use aap-
proximationalgorithm of Grohe and Gruber [11] for the problem of findihg maxi-
mum number, (D) of vertex-disjoint directed cycles in a digrapgh(this algorithm is
based on the celebrated paper by Reeadl. [17] on bounding/, (D) by a function of
70(D), the minimum size of a feedback vertex setf®f. We also use the well-known
fixed-parameter algorithm of Cheat al. [4] for the feedback vertex set problem on
digraphs.

We also consider the following well-known problem relatedhek-DCPP.

k-ARC-DISJOINT CYCLES PROBLEM (k-ADCP)
Input: A digraphD and an integet.
Task: Decide whetheD hask arc-disjoint directed cycles.

Crucially, we are interested in the ADCP because given a set bfarc-disjoint
cycles, we can solve the-DCPP in polynomial time (see Lemrh& 5). However, this
problem is important in its own right.

The problem is NP-hard in general but polynomial-time sblgdor planar digraphs
[14]. In fact, for planar digraphs the maximum number of digjoint directed cycles
equals the minimum size of a feedback arc set, see,[€.91 j]natural to considek
as the parameter for the ADCP. It follows easily from the results of Slivkins [19]ah
the k-ADCP is W[1]-hard. It remains W[1]-hard for quite restectclasses of directed
multigraphs, e.g., for directed multigraphs which becoryehc after deleting two sets
of parallel arcs[[19]. Here we show that theADCP-EULER, the k-ADCP on Euler
digraphs, is fixed-parameter tractable, generalizing altrgs[19] (Theorem 4).

! For terminology and results on parameterized algorithniscamplexity we refer the reader
to the monographs [7.1.0,115].



Theorem 2. Thek-ADCP-EULER is fixed-parameter tractable.

Interestingly, the problem of deciding whether a digraph haertex-disjoint di-
rected cycles, which is W[1]-hard (also easily follows frahe results of Slivkins
[19]), remains W[1]-hard on Euler digraphs. Indeed, coesid digraphD and let
vo(D) denote the maximum number of vertex-disjoint directed ey@h D. Construct
a new digraphH from D by adding two new vertices andy, arcszy andyxz and
the following extra arcs between and the vertices oD: for eachv € V(D) add
max{d~ (v) —d*(v),0} parallel arcaz andmax{d* (v) —d~(v),0} parallel arcsv,
whered™ (v) andd™ (v) are the in-degree and out-degree pfespectively. To eliminate
parallel arcs, it remains to subdivide all arcs betweeamdV (D). Now it is sufficient
to observe thaff is Euler and/y(H) = vy(D) + 1.

To prove Theorenis 1 and 2 we study the following problem teategalizes thé-
DCPP (in the case when an optimal solution exists in whichtimaber of times each
arc is visited by every closed walk is restricted) &rRADCP. Letb < ¢ be non-negative
integers.

DIRECTED k-WALK [b, ¢|-COVERING PROBLEM (k[b, ¢|-DWCP)

Input: A connected weighted digragh = (V, A) and
an integelk.
Task: Find a minimum total weight set &f non-empty

closed directed walks in which every arc@fappears
betweerb andc times.

Let D be a digraph. For a vertex ordering = (v1,vg,...,v,) of V(D), the
cutwidthof v is the maximum number of arcs betwegh ... i} and{i + 1,...n}
over alli € [n]. Thecutwidthof D is the minimum cutwidth of all vertex orderings of
V(D).

In SectiorB we will prove the following theorem.

Theorem 3. Let (G, k) be an instance ok (b, ¢]-DWCP and suppose we are given a
vertex ordering’ = (v, ve,...,v,) of G with cutwidth at mosp. Then(G, k) can be
solved in timeD* ((c2%)P4*),

Note that where andp are upper-bounded by functionsiofthe algorithm of this
theorem is fixed-parameter.

In order to apply Theorefd 3 to theDCPP and:-ADCP-EULER, we first need to
find a vertex ordering of bounded cutwidth. This is done usieimmad3, which given an
Euler directed graph, either finds a vertex ordering withwvidih bounded by a function
of k, or findsk arc-disjoint cycles. (For th&-DCPP, we apply Lemma 3 to an Euler
directed multigraph derived from a solution to the DCPR:XOjf £ arc-disjoint cycles
are found, then thé-ADCP-EULER is solved. In the case of the DCPP, it remains
to use Lemmal5, which shows that giverarc-disjoint cycles (in the derived directed
multigraph), we can solve the DCPP onG in polynomial time.

If we find a vertex ordering of cutwidth(k), we can solve thé&-ADCP-EULER by
applying Theorerh]3 with = 0, ¢ = 1. In the case of th&-DCPP,b = 1 and it remains
to find an upper bound on This is done using Lemnid 6 proved in Secfidn 2, which



shows that if an optimal solution of DCPP traverses eacleascthark times then there
is an optimal solution for th&-DCPP such that no arc is visited more thHatimes in
total by thek walks of the solution. If an optimal solution of DCPP visitsarc at least
k times, then the derived graph for this solution containgastk arc-disjoint cycles
and again we may use Lemina 5. Thus, starting from an arbitqatiynal solution of
DCPP, we may either apply Theor€in 3 with= &, or Lemmd.b.

The paper is organised as follows. In Sec{idn 2, we proveesimias providing
structural results for th&-DCPP ands-ADCP-EULER. In Section§3 andl4, we prove
Theoreni B and the main two results of the paper, Theoréms Pl.amne conclude the
paper with brief discussions of open problems in Sedflon 5.

In what follows, all walks and cycles in directed multigrapdre directed. For a
positive integem, [p] will denote the sef1,2,...,p}. For integers: < b, [a, b] will
denote the sefa,a + 1,...,b}. Given a directed grapP, afeedback vertex sébr D
is a setS of vertices such thab — S contains no directed cycles. feedback arc set
for D is a setF’ of arcs such thaD — F' contains no directed cycles. A vertexof a
digraph isbalancedf the in-degree ob equals its out-degree.

2 Structural Results and Fixed-Parameter Algorithms

Recall that a directed multigrapti is Euler (i.e., has an Euler trail) if and only # is
connected and every vertex Bf is balanced [1].

The next lemma is a simple sufficient condition for an Eulgrajph to contairk
arc-disjoint cycles.

Lemma 1. Every Euler digraphD having a vertex of out-degree at ledst> 1, con-
tainsk arc-disjoint cycles that can be found in polynomial time.

Proof. Fork = 1, itis true asD has a cycle that can be found in polynomial time. Let
k > 2 and letC be a cycle inD. Observe that after deleting the arcs@f D has a
vertex of out-degree at leakst— 1 and we are done by induction hypothesis. O

Reedet al. [17] proved that there is a functigh: N — N such that for every:,
if a digraphD does not havé arc-disjoint cycles, then it has a feedback arc set with
at mostf (k) arcs. The celebrated result of Regidal. [17] can be easily extended to
directed multigraphs by subdividing parallel arcs. Usihig result, Grohe and Griiber
[11] showed that there is a non-decreasing and unboundetidark : N — N and a
fixed-parameter algorithm that for a digraphreturns at leask (k) arc-disjoint cycles
if D has at least arc-disjoint cycles.

Leth=! : N — N be defined byx~!(q) = min{p : h(p) > ¢}. Sinceh is a non-
decreasing and unbounded functién,! is a non-decreasing and unbounded function.
Combining the above results, we find that for every digrapteither the algorithm of
Grohe and Griber returns at ledsarc-disjoint cycles, oD has a feedback arc set of
size at mosff (h=1(k)).

Chenet al.[4] designed a fixed-parameter algorithm that decides veretlligraph
D contains a feedback vertex set of siz¢k is the parameter). As this is an iterative
compression algorithm, it can be easily modified to an atgorifor finding a minimum



feedback vertex set i (the running time of the latter algorithm igro(D))n°™),
where (D) is the minimum size of a feedback vertex setihn = |V(D)| and
q(k) = 4*k!). The modified algorithm can be used for finding a minimum ek arc
setinD asD can be transformed, in polynomial time, into another digrApsuch that
D has a feedback arc set of sizéf and only if H has a feedback vertex set of size
see, e.g./ 1] (Proposition 15.3.1).

Lemma 2. There is a functiory : N — N and a fixed-parameter algorithm such that
for a digraphD, the algorithm returns eithek arc-disjoint cycles or a feedback arc set
of size at mosy(k).

Proof. Run the Grohe-Griiber algorithm dn. Either the algorithm returns at least
arc-disjoint cycles, or we know thd® has noh~!(k) arc-disjoint cycles and so by the
result of Reeckt al. D has a feedback arc set of size at mpgi—!(k)). We can use
the algorithm of Cheret al. to find in D a minimum feedback arc set. We may set

g(k) = f(h=(k)). o

Lemma 3. Letg : N — N be the function in Lemnid 2. L& be an Euler directed
multigraph. We can obtain eithér arc-disjoint cycles ofD or a vertex ordering of
cutwidth at mosg(k).

Proof. Let us run the procedure of Lemiilia 2 forandk. If we getk arc-disjoint cycles,
we are done. Otherwise, we get a feedback ard'seft D such tha{F'| < g(k). Then
D’ = D — Fis an acyclic digraph. We let = (v1, ..., v,) be an acyclic ordering of
D’,i.e.,D’ has no arc of the form;v;, i > j, (it is well-known that such an ordering
exists [1]). Nowv is a vertex ordering fob with at most|F'| arcs from{v; 41, ..., v}
to{vi,...,v;} foreach € [n—1], and becausP is Euler there are the same number of
arcs from{v, ..., v;} to {viy1,..., v, } [1, Corollary 1.7.3]. Sa is a vertex ordering
with cutwidth at mosRg(k). O

In the rest of this sectior; = (V, A) is a connected weighted directed graph. For
a solutionT = {T1,...,T}} to thek-DCPP onG (k > 1), letGr = (V, Ar), where
Ar is a multiset containing all arcs of, each as many times as it is traversed in total
byTiU---UT;.

Lemmag# andl5 are similar to two simple results obtainedi®k{UCPP in [12].
Note that giverk closed walks which cover all the arcs of a digraph, their onga
closed walk covering all the arcs and, therefore, it is atgmiufor the DCPP. Hence,
the following proposition holds.

Lemma 4. The weight of an optimal solution for tikeDCPP onG is not smaller than
the weight of an optimal solution for the DCPP 6h

Lemma 5. Let T be an optimal solution for the DCPP d#. If G contains at least
k arc-disjoint cycles, then the weight of an optimal solutfonthe k-DCPP onG is
equal to the weight of an optimal solution of the DCPP@nFurthermore ifk arc-
disjoint cycles inGr are given, then an optimal solution for thkeDCPP can be found
in polynomial time.



Proof. Note thatGr is an Euler directed multigraph and so every vertex@af is
balanced. Let be any collection of: arc-disjoint cycles inGr. Delete all arcs of
C from G and observe that every vertex in the remaining directedigmafthG’ is
balanced. Find an optimal DCPP solution for every connectedponent of’ and
append each such solutidnto a cycle inC which has a common vertex with. As a
result, in polynomial time, we obtain a collectighof k closed walks for thé&-DCPP
on G of the same weight &B. SoQ is optimal by Lemmal. O

For a directed multigrapt, let up(xy) denote the multiplicity of an arey of
D. Themultiplicity (D) of D is the maximum of the multiplicities of its arcs. Thus,
Lemmal® implies that ifu(Gr) > k for any optimal solutioril” of the DCPP or,
then there is an optimal solution of thkeDCPP onG with weight equal to the weight
of Gr. The next lemma helps us in the case thgfr) < k& — 1.

Lemma 6. LetT be an optimal solution of the DCPP @nsuch thatu(Gr) < k — 1.
Then there is an optimal solutidi for the k-DCPP onG such thatu(Gw) < k.

Proof. Let T' be an optimal solution of DCPP a# and letu(Gr) < k — 1. Suppose
that there is an optimal solutidiy’ of thek-DCPP onG such thaju(Gw ) > k.

Let p(ay) = pew (zy) — ey (xy) for each arecy of G. Consider a directed multi-
graphH’ with the same vertex set &sand in whichzy is an arc of multiplicity|p(xy)|
if it is an arc inG andp(xy) # 0. We say that an arey of H' is positive(negative
if p(zy) > 0 (p(zy) < 0). Now reverse every negative arc Bf (i.e., replace every
negative araw by the negative areu) keeping the weight of the arcs the same. We
denote the resulting directed multigraph By

For a digraphD and its vertexz, let N (z) and N, (z) denote the sets of out-
neighbors and in-neighborsefrespectively. Sinc&'r andGyy are both Euler directed
multigraphs, we have that

S oplay)= D plzx)implying > plzu) = > p(vx)

yeENS, (2) ZEN, (z) uENF () vEN (x)

for each vertex: in G. So, every vertex irH has the same in-degree as out-degree.
Thus, the arcs off can be decomposed into a collectén= {C1, ..., C;} of cycles.
We define the weight(C;) of a cycleC; of C as the sum of the weights of its positive
arcs minus the sum of the weights of its negative arcs, anthesthaty(Cy) < --- <

SetFy = Gr and fori € [t], constructF; from F;_; as follows: for each arey
of C;, if xy is a positive arc ind add a copy ofcy to F;_; and if zy is a negative
arc in H remove a copy ofjz from F;_;. Since for each arav of G, ug,(uv) > 1
and g, (uv) > 1, we haveur, (uv) > 1. Each vertex ofF; is balanced, s@; is a
solution of DCPP ort7. SinceT is optimal,w(Fy) < w(Fy) = w(Fp) + w(C1) and so
w(Cy) > 0. Due to the ordering of cycles @faccording to their weightsy(C;) > 0
fori € [t]. Thusw(F;) > w(F;—1) fori € [t].

Sincep(Fy) < k— 1 andu(F;) > k, there is an indey such thatu(F;) = k.
Then the out-degree of some vertextgfis at leask and so by Lemmial 1£; hask arc-
disjoint cycles. Similarly to Lemmi@ 5, it is not hard to shdvat there is a solutiofy



of k-DCPP onG of weightw(F}). SinceW is optimal andv(F}) < w(F}) = w(Gw),
U is also optimal and we are done. a

3 Proof of Theorem[3

TheoreniB is proved by providing a dynamic programming (D&yrithm of required
complexity. We first make an observation to simplify the Dfoaithm.

Lemma 7. LetG = (V, A) and k define an instance df[b, ¢]-DWCP. The instance
is positive and and the weight of an optimal solutiom i and only if there are (not
necessarily connected) non-empty directed multigraghs . . , G with the following
properties:

— All multigraphsGy, . . ., G use only arcs of? (each, possibly, multiple number of
times);

— G, is a balanced multigraph;

— For2 < i <k, G, is a balanced digraph (with no parallel arcs);

— Each arca € A occurs betweenh and ¢ times in the multigraghG; U - - - U Gy,
and the total weight of this multigraph js

Proof. On the one hand, Id8/, ..., W be a solution to thé[b, ¢]-DWCP instance,
where eachV; is a closed directed walk. For eache [k], let ; be the directed
multigraph whose vertices are the vertices visitedzyand which contains an arw
of multiplicity p if wv is traversed exactly, times byW;. For eachi > 2, if Q; has
parallel arcs, le€7; be a cycle in); and letQ; = Q;\ A(G;) and, otherwise (i.eQ; has
no parallel arcs), lef7; = Q; and letQ; be empty. Now leG; = Q1 UQ5U - -- U Q.
Observe that all properties of the lemma are satisfied.

On the other hand, consider directed multigraghs. . . , G, satisfying the proper-
ties of the lemma. If all multigraph&; are connected, then we are done ¥ 0, then
we may replace each graph with a cycleC; contained inZ;, and produce a solution
to k[b, c]-DWCP that consists df (not necessarily pairwise arc-disjoint) cycles.

Finally, if not all multigraphs are connected aing- 0, we proceed as follows. First,
select for each multigrap@¥;, ¢ > 1 an arbitrary connected compondif, and move
all other components af; to Gy, increasing arc multiplicity as appropriate. Next, as
long asGG; remains unconnected, &t be an arbitrary connected componentaf As
b > 0 andG is connected, some compondiit, ¢« > 1 must intersect a vertex df;
we may moveH to the multigraph; and maintain tha€s; is connected. Repeat this
until G; (and hence each multigragh) is connected. Note that this does not change
the arc multiplicity or the weight of the solution. Now evenultigraphG; for i € [k]
is balanced and connected, i.e., Euler, and we can find am teuld1’; for each graph
G, which forms the solution to thkb, c]-DWCP instance. O

Letv = (v1,vs,...,v,) be a vertex ordering of a digragh of cutwidth at most
p. Foreach € {0,1,...,n}, let E; be the set of arcs of the formuv, or v, v;, where

2 Here, as in the proof, the union of multigraphs means thatihiéplicity of an arc in the union
equals the sum of multiplicities of this arc in the multignapof the union.



j < iandh > i. Note that in particula, = ) andE,, = (. As v has cutwidth at
mostp, |E;| < p for eachi. We refer toEy, E1, . . ., E, as thearc bagsof v. For each
i €{0,1,...,n}, lety(i) = Uy<;<; £ Foravertexw € V, let A*(v) = {vu € A:
ueV}iandA (v) ={w e Ad: ueV}.

We now give an intuitive description of the DP algorithm krefgiving technical
details. Our DP algorithm will process each arc bag @ turn, from E, to E,,. For
each arc bady;, we store the weights of a range of partial solutions. A phsiblution
consists of a multisel; and setsd,, ..., Ay of arcs iny(¢). EachA; is to be thought
of the (multi)set of arcs ii7; (defined in Lemma&l7) taken from(:). A function ¢ is
used to represent how many times each arc in thefhdg used by each (multi)set;
in the solution. Finally, a s&f tracks which (multi)sets are non-empty. This is to ensure
we don't produce a solution which uses less tharon-empty walks. For each arc bag
E;, and every choice of, S respecting the conditions of Lemrh 7, we will calculate
the minimum weight of a partial solution corresponding tes choices.

Let us make these notions more precise. Egtbe an arc bag i, and let¢ be
a functionE; x [k] — [0, ] such that for each € E; we have)_; ¢(a,j) € [b,¢]
and¢(a,j) < 1for2 < j < k. Let S be a subset dft]. For a vertex»r and multiset
M of arcs, letA™* (v, M) be the multiset of arcs fromM leavingwv, and similarly let
A~ (v, M) be the multiset of arcs from/ enteringv. Then we defing((E;, ¢, 5) to
be the minimum integes for which there exist arc multiset$, , . . . , A, satisfying the
following conditions:

1. Forevery are € E; and everyj € [k], A; contains exactly(a, j) copies ofa;

2. Forevery ar@ € (i), the multisetd; U - - - U A, contains betweehiandc copies
of a;

3. Foreveryh <iandeveryj € S, |A"(vn, A;)| = |A™ (vn, A;)];

4. Foreveryj € [k], A; # 0ifand onlyif j € S; and

5. Zje[k] ZaeAj w(a) = p.

Note thaf A (v, A;)| and|A~ (vp,, A;)| are the numbers of arcs it leaving and
enteringuy, respectively, and that the second sum in Cond[tion 5 isntaker all arcs
in multisetA;, i.e., over every copy of an arc ;.

If no such integep exists, then we leg(E;, ¢, .5) = oo.

Observe that ifF;, ¢, S andp together with arc multiset&d, . . ., Ay) satisfy the
above conditions, ther(FE;, ¢,S) < p. In such a case we will call4,,...,A;) a
witnessfor x (E;, ¢, S) < p. Thus,x(E;, ¢, S) is the minimump such that there exists
a witness fory (E;, ¢, .5) < p.

The next lemma shows that we can solve ke c|-DCPP by finding the values
X(E;, ¢,5). SinceE,, = 0, the only functionp : E, x [k] — [b,c] is the empty
function.

Lemma 8. Leto : E, x [k] — [b,c| be the empty function. Thef{ E,,, ¢, [k]) = oo
if there is no solution for thé[b, c|]-DCPP onG, and otherwisey(E., ¢, [k]) is the
minimum total weight of a solution fé{b, ¢|]-DCPP.

Proof. We will show that (a) ifx(E,, ¢, [k]) = p # oo, then there exists a solution
for the k[b, ¢]-DCPP onG with weight p; and that (b) if there exists a solution for the
k[b, c]-DCPP onG with weightp, then there exists a witness fo(E,,, ¢, [k]) < p.



In what follows it will be useful to observe tha{n) = A(G).

Suppose thaty(E,, ¢, [k]) = p # oo and (A4;,...,A;) is a witness for
X(En, ®,k]) < p. By Condition[3 ofy(E,, ¢, [k]), every vertex is balanced with re-
spect to each arc (multi)set;, and by Condition 4, eacH; is non-empty. Thus4,
forms the arc (multi)set of a balanced directed multigrapih4;, j > 1 the arc set of a
balanced digraph, and by Conditidn 2, every arGiappears betwednandc times in
these (multi)sets. By Lemna 7, the arcs of the multisgt . . .U A, can be partitioned
into a solution for thek[b, c]-DCPP, which by Conditionl5 and minimality pfhas total
weight exactlyp. Thus there exists a solution for thé, ¢]-DCPP onG with weightp.

Now suppose that there exists a solution for Affe ¢|-DCPP onG with weight p;
by LemmdY, there then exist non-empty balanced directetdgraphsG, . . . , Gy, of
total weightp, where every arc appears betwédeandc times in total, and wheré&';
for j > 1 has no parallel arcs. Lettind; be the arc (multi)set of7; for eachj € [k],
we find that(Aq,. .., Ax) is a witness fory(E,,, ¢, [k]) < p. As E,, = (), Condition
@ of x(En, ¢, [k]) is trivially satisfied. Conditiori]2 is satisfied by the coialiis in
LemmdT. Since every vertex in a balanced directed multlgispalanced, Conditidd 3
is satisfied. As each of themultigraphs is non-empty, Conditiéh 4 is satisfied. Finally
as the multigraphs have total weightConditior is satisfied. Thusdy, ..., Ax)isa
witness fory(E,, ¢, [k]) < p, as required. O

Due to the space limit, we place the proof of the next lemmaé&ppendix.

Lemma 9. Consider an arc bags;, fori > 1. LetEf = E; \ E,_;. Forany¢ :
E; % [K] =+ [0,c] ands C [k], letY = 3,06 e pe dlar ) - w(a).
If there existsa € E; such thaty_ ., ¢(a,j) < bor} , u é(a,j) > ¢ then

X(Eia ¢, S) = Q.
Otherwise, the following recursion holds:

X(E’L) (ba S) =Y+ g/ng,l, X(Ei,1,¢/,s/>

where the minimum is taken over all: F;,_; x [k] — [0, ¢], andS’ C [k] satisfying
the following conditions:
— Foralla € E;NE;_;andallj € [k], ¢'(a,j) = é(a, j);
— Forall j € [K],

Yo Hlan+ > da))

a€At(v,)NE;_1 a€At(v,)NE;
= > e+ D, )
a€A~ (vi)NE; 1 a€A~(vi)NE;

= S=5"U{jek: Xacp: ¢(a,j) >0}

If there are noy’, S’ satisfying these conditions, the(F;, ¢, S) = oco.

Furthermore, if there exist’, S’ satisfying the above conditions and we are given
awitness(Aj, ..., A}) for x(E;—1,¢',5") < p, then we can construct a witness for
X(E;i, ¢,5) <Y + p’ in polynomial time.



We are now ready to prove Theoréin 3.
Theorem[3 Let (G, k) be an instance ok[b, ¢]-DWCP and suppose we are given a
vertex orderingy = (v, v9, ..., v,) of G with cutwidth at mosp. Then(G, k) can be
solved in timeD* ((c2%)P4*).

Proof. Our DP algorithm calculates all valugg E;, ¢, S) with ¢(-,5) < 1 for j >
1 in a bottom-up manner, that is, we only calculate valyég;, -, -) after all values
X(Ej, -, ) have been calculated for< j < i (we use the recursion of Lemrhh 9).

Each arc badv; of v contains at mosg arcs. For each arg, there are: + 1 options
for ¢(a, 1) and2 options forg(a, j) for eachj > 1,i.e.,(c+1)2F¥~1 < ¢2* options per
arc. Thus there are at mogR*)? valid choices fow : E; x [k] — [0, c]. As there are
2F choices for a se§ C [k], the total size of each DP tabled¥ (c2")P2%).

Since By = 0, the only functiong : FEy x [k] — [0,c] is the empty func-
tion. It is easy to see that(FEy,¢,S) = 0if S = 0, andco otherwise. To speed
up the application of Lemma 9 foE;, 1 < i < n, we form an intermediate ta-
ble T from the data for bagv;_;. Call two entriesy(E;, ¢,S) and x(E;—1,¢’,5")
compatiblewhen the conditions in Lemnid 9 are met (i.e(E;_1, ¢, S’) is one of
the entries included in the minimisation fQ(E;, ¢, .5)). Let the signatureof entry
X(Ei—1,¢',5") be (¢",dy,...,di,S"), whereg” is ¢ restricted to arc€;_1 N E;,
andwherel; =3 1+ (,nm , 9(0:0) = 2Xaca- wonm_, ¢'(a,7) is the imbalance
atv; in walk numberj. Observe that whether an enttyE;_1, ¢/, S”) is compatible
with the entryy (E;, ¢, S) can be determined from the signature alone. Thus, for every
signaturg¢”,dy, ..., d;,S’) we letT(¢",dy, ..., dx,S") contain the minimum value
over all entriesy(E;_1,...) with matching signature; this can be computed in a sin-
gle loop over the entrieg(F;_1,...). Then, for every entry (F;, ¢, S) of the new
table, we look inT" through all signatures that would be compatible w(ithS) and
keep the minimum value (and addto it, by Lemmd®). The reason we may have to
look at several signatures is the $etfor simplicity, we may simply loop over all sets
S’ C Ssuchthats’ u{j € [k] : ¢(a,j) > 0, somea € E;} = S. Note that the
size of the intermediate tablg is immaterial; the time taken consists of first one loop
throughx(E;_1,...), then2¥ queries tol’ for each entry iny(E;, ...). Thus, the en-
tries x(E;, ...) can all be computed in total tim@* ((c2¥)r4*%). As E,, = () there is
only one function : E,, x [k] — [b,c]. By Lemmd®8,x(E,, ¢, [k]) is the minimum
total weight of a solution fok[b, ¢]-DCPP, andx if there is no such solution. Thus to
solveklb, c|-DCPP it suffices to check the value ofE,,, ¢, [k]).

Thus the algorithm finds the valyein time O*((c2*)P4F).

The algorithm can easily be made constructive using the odetf Lemmal[®.
For each arc badr;, ¢ : E; x [k] — [0,¢],S C [k], in addition to calculating the
valuex(F;, ¢, S) = p, we also calculate a witness fQfE;, ¢, S) < p, in the cases
wherep # co. Just as we can calculate the values ofi@lE;, -, -) given the values of
all x(E;-1,-,-), we may construct witnesses for al(E;, -, -) given witnesses for all
x(E;-1,-,-), using an intermediate table as before. (Note thdt4,, ..., Ax), where
eachA; = 0, is awitness fox (Fo, ¢, 0) = 0, whereg is the empty function. This gives
us the base case in our construction of witnesses.) Giverreess fory(E,,, ¢, [k]),
Lemmd®8 shows how to construct a solutiork{b, c|]-DCPP onG from this witness.

O



4 Proofs of Theoremd 1l and2

Theorem[Z2 Thek-ADCP-EULER is fixed-parameter tractable.

Proof. Let D be an Euler digraph. We may assume thatas no vertex of out-degree
at leastk as otherwise we are done by Lemfja 1. By Lenliha 3,Jowve can either
obtaink arc-disjoint cycles or a vertex orderimgof cutwidth at mosgg(%) for some
functiong : N — N. Note thatD is a positive instance of the ADCP-EULER if and
only if (D, k) has a finite solution fok[0, 1]-DWCP (as every closed walk contains a
cycle). It remains to observe that the algorithm of Thedréfor3he k[0, 1]-DWCP is
fixed-parameter when the out-degree of every vertek & upper-bounded by and
the cutwidth ofv is bounded by a function df. a

Theorem[d Thek-DCPP admits a fixed-parameter algorithm.

Proof. Let G = (V, A) be a digraph and |&f be an optimal solution of DCPP @r. If
we get a collectioit of £ arc-disjoint cycles irGr, then using’, by Lemmdb, we can
solve thek-DCPP onG in (additional) polynomial time. Otherwise, by lemia 3, we
have a vertex ordering @¥r of cutwidth bounded by a function & We may assume
that every vertex of7r is of out-degree at mogt — 1 (otherwise by LemmBl1Gi
has a collection of arc-disjoint cycles). Since every vertex@f- is of out-degree at
mostk — 1, the multiplicity of Gr is at mostc — 1. Now Lemmd® implies that there
is an optimal solutioi¥ for the k-DCPP onG such that the multiplicity of>y is at
mostk. Thus, we may treat the-DCPP onG as an instancéG, k) of k[1, k]-DWCP.
It remains to observe that the algorithm of Theofém 3 to sthteé;[1, ¥]-DWCP onG
will be fixed-parameter. ad

5 Discussions

Our algorithms for solving bottk-DCPP andk-ADCP on Euler digraphs have very
large running time bounds, mainly because the bofiftd ! (k)) on the size of feed-
back arc set is very large. Functigitk) obtained in[[17] is a multiply iterated expo-
nential, where the number of iterations is also a multiptydted exponential and, as
a result,h=1(k) grows very quickly. So obtaining a significantly smaller eppound
for f(k) on Euler digraphs would significantly reduke! (k) as well and is of certain
interest in itself. In particular, is it true thgi{k) = O(k°()) for Euler digraphs? Note
that for planar digraphg;(k) = & [1, Corollary 15.3.10] and Seymouir [18] proved the
same result for a wide family of Euler digraphs. It would alteointeresting to check
whether the:-DCPP ork-ADCP admits a polynomial-size kernel.

Cechlarova and Schlotter [3] introduced the following®avhat related problem in
the context of housing markets: can we delete at rhastcs in a given digraph such
that each strongly connected component of the resultingdigis Euler? They asked
for the parameterized complexity of this problem, whkrie the parameter. Crowston
et al.[5] showed that the problem restricted to tournaments islfp@rameter tractable,
but in general the complexity still remains an open questBae also the recent paper
[6] for other related problems.
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Appendix: Proof of Lemma[9

E; x [k] = [0,c]and S C [k], letY = 3" s >° e g 0(a, §) - w(a).

If there existsa € E; such thaty ., ¢(a,j) < bor .. é(a,j) > c then
X(Ei, ¢, 5) = 0.

Otherwise, the following recursion holds:

Lemma[9 Consider an arc bagr;, for i > 1. LetEf = E; \ E;—1. Forany¢ :

X(Eia ¢a S) =Y + él;ng% X(Ei—17¢/7sl)

where the minimumi is taken over all: E;_; x [k] — [0, ¢], andS’ C [k] satisfying
the following conditions:

— Forallae E;NE;_yandallj € [k], ¢'(a,j) = ¢(a,j);

— Forall j € [K],
oo dap+ D, dlad)
a€AtT(vi)NE;—1 a€At (vi)NE;
= > e+ D, )
aeA*(vi)ﬁEi,l aEA*(vi)ﬁEi

- S=5U{jelk: Xep; 0(a,j) >0}

If there are nog’, S’ satisfying these conditions, the(F;, ¢, S) = oco.

Furthermore, if there exist’, S’ satisfying the above conditions and we are given
awitness(Aj, ..., A}y) for x(Ei—1,¢',5") < p, then we can construct a witness for
X(E;, ¢,S) <Y + p’ in polynomial time.

Proof We will prove the last claim of the lemma first. Suppose we @rerga witness
(Al Ay) for x(Ei—1,¢',5") < p'. For eachj € [k], let A; be the multiset4
together with¢(a, j) copies of each arc it’;. We now show thatA;, ..., A) is a
witness fory(E;, ¢,S) =Y + p'.

By construction of4;, definition of A’; and the fact thad'(a, j) = ¢(a, j) for all
a € E;NE;_1,j € [k], we have that for alk € E; andj € [k], A; contains exactly
¢(a, 7) copies ofa, satisfying Conditionll ok(E;, ¢, S) <Y + p'.

By definition of A and the fact thab < > .., ¢(a,j) < cfor eacha € E,
we have that every arc appears at Idaines and at most times inA; U --- U Ag,
satisfying Condition 2.

Observe that& consists of all arcs of the formv, or v,v; for h > 4. It fol-
lows by construction that for anf < i andj € [k], A" (vn, Aj) = A¥(vn, A))
and A~ (v, A;) = A~ (vn, A}). Then as|A™ (vy, A))] = [A™ (vp, A})| for all
h < i, we have that A" (v, 4;)] = |A™(va,A;)| for all b < i. As every
arc incident withv; is in exactly one ofE;_; or E;, we have that for allj €
(K], A" (vi, Aj)] = Daeatwnm s (@) + Xaeatwnnm #a j), and simi-
larly |[A™(vi, A5)l = Xaca-wonm s 9(a:5) + 2Xaca- (e, ¢(a, ). It follows
by the second condition of the lemma that" (v;, A;)| = |A~(v;, 4;)|. Therefore
|A* (vp,, Aj)| = |A™ (vp, Aj)| for all h < i, satisfying Condition3.




By the fact thatS = S"U{j € [k] : 3> ,cp\p, , ?(a,7) > 0}, definition of
(Af,..., A]) and construction ofA;, ..., A;), we have thatS = S' U {j € [k] :
Aj\ AL # 0} = {j € [k] : A; # 0}. This satisfies Conditidn 4.

Finally, by construction of{A;,..., Az} and x(E;-1,¢’,S’"), we have that
X(Ei, ¢,5) = Zje[k] ZaeAj wla) =Y + Zje[k] ZaeA; w(@) = Y +
x(E;i_1,¢',5"), satisfying Conditio5.

Thus, we have thdtd, ..., Ag) is a witness for (F;, ¢, S) <Y + p'.

We now prove the other claims of the lemma. If there exists E; such that
Zje[k] ¢(a,j) < bor Zje[k] ¢(a,j) > ¢, then any arc multisetsl,, ..., A that
satisfy Conditiofi Il of(E;, ¢, S) will falsify Condition[2, and so¢(E;, ¢, S) = co. So
now assume that < Zje[k] ¢(a,j) < cforeverya € E;.

Let¢' : E;_q1 x [k] — [b,c], S’ C [k] be such that the conditions of the lemma
are satisfied angq(E;_1,¢’,S’) is minimised. Ifx(E;_1,¢’,5’) = oo then trivially
X(Ei,$,S) <Y + x(Fi-1,¢',5"). Otherwise,x(E;—1,¢',5") = p' # oo and so
there exists a witness foy(F;_1,¢’,5’) < p’ Then by the argument above, there
exists a witness fox(E;, ¢,S) <Y + x(Ei—1,¢',5"). In either case((E;, ¢, 5) <
Y+ x(Ei-1,¢',5).

It remains to show that ify(E;, ¢,S) # oo, then there existy’, S’ such that
X(E“ d)a S) =Y + X(Eifl(b/v S/)

Suppose thaty(E;,¢,S) = p # oo. Let (4;,...,A;) be a witness for
X(Ei, ¢,5) = p. Then for eachy € [k], let A’ be the multiset of arcs from; not
incident tov; and letA’ be the multiset of arcs from; incident tov;. For a multiset\/
of arcs fromG, letw(M) = ), w(a), where each are is taken in the sum as many
times as it has copies it/. Observe that” = .,y w(4]). LetZ = ", w(A});
theny(E;, ¢,5) =Y + Z.

Let¢' : E;—1 x [k] — [b,c] be the function such thaf'(a, j) is the number of
copies ofa in A’;, for eacha € E;_1,j € [k]. Finally letS’ = {j € [k] : A} # 0}.

As~ (i) \ v(¢—1) contains no arcs incident tg, for anyh < 4, we have that for any
h <, [A(v) N A}| = [A(v) N A;| for eachj € [k]. Therefore(A1, ..., A}) satisfies
Conditon[3 of a witness fog(E;_1,¢’,S") = Z. Itis easy to see thdtd!, ..., A})
satisfies the other conditions for a witness fgiF;_1,¢’,S’) = Z, from which it
follows thatx(E;, ¢,S) =Y + x(Ei—1,¢',5). O
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