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Abstract. In the Directedk-Chinese Postman Problem (k-DCPP), we are given
a connected weighted digraphG and asked to findk non-empty closed directed
walks covering all arcs ofG such that the total weight of the walks is minimum.
Gutin, Muciaccia and Yeo (Theor. Comput. Sci. 513 (2013) 124–128) asked for
the parameterized complexity ofk-DCPP whenk is the parameter. We prove that
thek-DCPP is fixed-parameter tractable.
We also consider a related problem of findingk arc-disjoint directed cycles in an
Euler digraph, parameterized byk. Slivkins (ESA 2003) showed that this problem
is W[1]-hard for general digraphs. Generalizing another result by Slivkins, we
prove that the problem is fixed-parameter tractable for Euler digraphs. The corre-
sponding problem on vertex-disjoint cycles in Euler digraphs remains W[1]-hard
even for Euler digraphs.

1 Introduction

A digraphH is connectedif the underlying undirected graph ofH is connected. Let
G = (V,A) be a connected digraph, where each arca ∈ A is assigned a non-negative
integer weightω(a) (G is a weighted digraph). The DIRECTED CHINESE POSTMAN

PROBLEM is a well-studied polynomial-time solvable problem in combinatorial opti-
mization [1,9,13].

DIRECTED CHINESE POSTMAN PROBLEM (DCPP)
Input: A connected weighted digraphG = (V,A).
Task: Find a minumum total weight closed directed walkT

onG such that every arc ofG is contained inT .

In this paper, we will investigate the following generalisation of DCPP.

DIRECTEDk-CHINESE POSTMAN PROBLEM (k-DCPP)
Input: A connected weighted digraphG = (V,A) and an integerk.
Task: Find a minimum total weight set ofk non-empty

closed directed walks such that every arc ofG is
contained in at least one of them.

Note that thek-DCPP can be extended to directed multigraphs (that may include
parallel arcs but no loops), but the extended version can be reduced to the one on di-
graphs by subdividing parallel arcs and adjusting weights appropriately. Since it is more
convenient, we consider thek-DCPP for digraphs only.

http://arxiv.org/abs/1402.2137v1


In the literature, the undirected version ofk-DCPP, abbreviatedk-UCPP, has also
been studied. If a vertexv of G is part of the input and we require that each of thek

walks containsv then thek-DCPP andk-UCPP are polynomial-time solvable [24,16].
However, in general thek-DCCP is NP-complete [12], as is thek-UCPP [12,23].

Lately research in parameterized algorithms and complexity1 for the CPP and its
generalizations was summarized in [2] and reported in [20].Several recent results de-
scribed there are of Niedermeier’s group who identified a number of practically useful
parameters for the CPP and its generalizations, obtained several interesting results and
posed some open problems, see, e.g. [8,21,22]. van Bevernet al. [2] and Sorge [20]
suggested to study thek-UCPP as a parameterized problem with parameterk and asked
whether thek-UCPP is fixed-parameter tractable, i.e. can be solved by an algorithm of
running timeO(f(k)nO(1)), wheref is a function ofk only andn = |V |.

Gutin, Muciaccia and Yeo [12] proved that thek-UCPP is fixed-parameter tractable.
Observing that their approach for thek-UCPP is not applicable to thek-DCPP, the
authors of [12] asked for the parameterized complexity ofk-DCPP parameterized byk.
In this paper, we show that thek-DCPP is also fixed-parameter tractable.

Theorem 1. Thek-DCPP is fixed-parameter tractable.

Our proof is very different from that in [12] for thek-UCPP. While the latter proof
was based on a simple reduction to a polynomial-size kernel,we give a fixed-parameter
algorithm directly using significantly more powerful tools. In particular, we use anap-
proximationalgorithm of Grohe and Grüber [11] for the problem of findingthe maxi-
mum numberν0(D) of vertex-disjoint directed cycles in a digraphD (this algorithm is
based on the celebrated paper by Reedet al. [17] on boundingν0(D) by a function of
τ0(D), the minimum size of a feedback vertex set ofD). We also use the well-known
fixed-parameter algorithm of Chenet al. [4] for the feedback vertex set problem on
digraphs.

We also consider the following well-known problem related to thek-DCPP.

k-ARC-DISJOINT CYCLES PROBLEM (k-ADCP)
Input: A digraphD and an integerk.
Task: Decide whetherD hask arc-disjoint directed cycles.

Crucially, we are interested in thek-ADCP because given a set ofk arc-disjoint
cycles, we can solve thek-DCPP in polynomial time (see Lemma 5). However, this
problem is important in its own right.

The problem is NP-hard in general but polynomial-time solvable for planar digraphs
[14]. In fact, for planar digraphs the maximum number of arc-disjoint directed cycles
equals the minimum size of a feedback arc set, see, e.g, [1]. It is natural to considerk
as the parameter for thek-ADCP. It follows easily from the results of Slivkins [19] that
thek-ADCP is W[1]-hard. It remains W[1]-hard for quite restricted classes of directed
multigraphs, e.g., for directed multigraphs which become acyclic after deleting two sets
of parallel arcs [19]. Here we show that thek-ADCP-EULER, thek-ADCP on Euler
digraphs, is fixed-parameter tractable, generalizing a result in [19] (Theorem 4).

1 For terminology and results on parameterized algorithms and complexity we refer the reader
to the monographs [7,10,15].



Theorem 2. Thek-ADCP-EULER is fixed-parameter tractable.

Interestingly, the problem of deciding whether a digraph has k vertex-disjoint di-
rected cycles, which is W[1]-hard (also easily follows fromthe results of Slivkins
[19]), remains W[1]-hard on Euler digraphs. Indeed, consider a digraphD and let
ν0(D) denote the maximum number of vertex-disjoint directed cycles inD. Construct
a new digraphH from D by adding two new verticesx andy, arcsxy andyx and
the following extra arcs betweenx and the vertices ofD: for eachv ∈ V (D) add
max{d−(v)− d+(v), 0} parallel arcsvx andmax{d+(v)− d−(v), 0} parallel arcsxv,
whered−(v) andd+(v) are the in-degree and out-degree ofv, respectively. To eliminate
parallel arcs, it remains to subdivide all arcs betweenx andV (D). Now it is sufficient
to observe thatH is Euler andν0(H) = ν0(D) + 1.

To prove Theorems 1 and 2 we study the following problem that generalizes thek-
DCPP (in the case when an optimal solution exists in which thenumber of times each
arc is visited by every closed walk is restricted) andk-ADCP. Letb ≤ c be non-negative
integers.

DIRECTEDk-WALK [b, c]-COVERING PROBLEM (k[b, c]-DWCP)
Input: A connected weighted digraphG = (V,A) and

an integerk.
Task: Find a minimum total weight set ofk non-empty

closed directed walks in which every arc ofG appears
betweenb andc times.

Let D be a digraph. For a vertex orderingν = (v1, v2, . . . , vn) of V (D), the
cutwidthof ν is the maximum number of arcs between{1, . . . , i} and{i + 1, . . . n}
over all i ∈ [n]. Thecutwidthof D is the minimum cutwidth of all vertex orderings of
V (D).

In Section 3 we will prove the following theorem.

Theorem 3. Let (G, k) be an instance ofk[b, c]-DWCP and suppose we are given a
vertex orderingν = (v1, v2, . . . , vn) ofG with cutwidth at mostp. Then(G, k) can be
solved in timeO∗((c2k)p4k).

Note that whenc andp are upper-bounded by functions ofk, the algorithm of this
theorem is fixed-parameter.

In order to apply Theorem 3 to thek-DCPP andk-ADCP-EULER, we first need to
find a vertex ordering of bounded cutwidth. This is done usingLemma 3, which given an
Euler directed graph, either finds a vertex ordering with cutwidth bounded by a function
of k, or findsk arc-disjoint cycles. (For thek-DCPP, we apply Lemma 3 to an Euler
directed multigraph derived from a solution to the DCPP onG.) If k arc-disjoint cycles
are found, then thek-ADCP-EULER is solved. In the case of thek-DCPP, it remains
to use Lemma 5, which shows that givenk arc-disjoint cycles (in the derived directed
multigraph), we can solve thek-DCPP onG in polynomial time.

If we find a vertex ordering of cutwidthp(k), we can solve thek-ADCP-EULER by
applying Theorem 3 withb = 0, c = 1. In the case of thek-DCPP,b = 1 and it remains
to find an upper bound onc. This is done using Lemma 6 proved in Section 2, which



shows that if an optimal solution of DCPP traverses each arc less thank times then there
is an optimal solution for thek-DCPP such that no arc is visited more thank times in
total by thek walks of the solution. If an optimal solution of DCPP visits an arc at least
k times, then the derived graph for this solution contains at leastk arc-disjoint cycles
and again we may use Lemma 5. Thus, starting from an arbitraryoptimal solution of
DCPP, we may either apply Theorem 3 withc = k, or Lemma 5.

The paper is organised as follows. In Section 2, we prove six lemmas providing
structural results for thek-DCPP andk-ADCP-EULER. In Sections 3 and 4, we prove
Theorem 3 and the main two results of the paper, Theorems 1 and2. We conclude the
paper with brief discussions of open problems in Section 5.

In what follows, all walks and cycles in directed multigraphs are directed. For a
positive integerp, [p] will denote the set{1, 2, . . . , p}. For integersa ≤ b, [a, b] will
denote the set{a, a+ 1, . . . , b}. Given a directed graphD, a feedback vertex setfor D
is a setS of vertices such thatD − S contains no directed cycles. Afeedback arc set
for D is a setF of arcs such thatD − F contains no directed cycles. A vertexv of a
digraph isbalancedif the in-degree ofv equals its out-degree.

2 Structural Results and Fixed-Parameter Algorithms

Recall that a directed multigraphH is Euler (i.e., has an Euler trail) if and only ifH is
connected and every vertex ofH is balanced [1].

The next lemma is a simple sufficient condition for an Euler digraph to containk
arc-disjoint cycles.

Lemma 1. Every Euler digraphD having a vertex of out-degree at leastk ≥ 1, con-
tainsk arc-disjoint cycles that can be found in polynomial time.

Proof. Fork = 1, it is true asD has a cycle that can be found in polynomial time. Let
k ≥ 2 and letC be a cycle inD. Observe that after deleting the arcs ofC, D has a
vertex of out-degree at leastk − 1 and we are done by induction hypothesis. ⊓⊔

Reedet al. [17] proved that there is a functionf : N → N such that for everyk,
if a digraphD does not havek arc-disjoint cycles, then it has a feedback arc set with
at mostf(k) arcs. The celebrated result of Reedet al. [17] can be easily extended to
directed multigraphs by subdividing parallel arcs. Using this result, Grohe and Grüber
[11] showed that there is a non-decreasing and unbounded functionh : N → N and a
fixed-parameter algorithm that for a digraphD returns at leasth(k) arc-disjoint cycles
if D has at leastk arc-disjoint cycles.

Let h−1 : N → N be defined byh−1(q) = min{p : h(p) ≥ q}. Sinceh is a non-
decreasing and unbounded function,h−1 is a non-decreasing and unbounded function.
Combining the above results, we find that for every digraphD, either the algorithm of
Grohe and Grüber returns at leastk arc-disjoint cycles, orD has a feedback arc set of
size at mostf(h−1(k)).

Chenet al.[4] designed a fixed-parameter algorithm that decides whether a digraph
D contains a feedback vertex set of sizek (k is the parameter). As this is an iterative
compression algorithm, it can be easily modified to an algorithm for finding a minimum



feedback vertex set inD (the running time of the latter algorithm isq(τ0(D))nO(1),

whereτ0(D) is the minimum size of a feedback vertex set inD, n = |V (D)| and
q(k) = 4kk!). The modified algorithm can be used for finding a minimum feedback arc
set inD asD can be transformed, in polynomial time, into another digraphH such that
D has a feedback arc set of sizek if and only if H has a feedback vertex set of sizek,
see, e.g., [1] (Proposition 15.3.1).

Lemma 2. There is a functiong : N → N and a fixed-parameter algorithm such that
for a digraphD, the algorithm returns eitherk arc-disjoint cycles or a feedback arc set
of size at mostg(k).

Proof. Run the Grohe-Grüber algorithm onD. Either the algorithm returns at leastk

arc-disjoint cycles, or we know thatD has noh−1(k) arc-disjoint cycles and so by the
result of Reedet al.D has a feedback arc set of size at mostf(h−1(k)). We can use
the algorithm of Chenet al. to find in D a minimum feedback arc set. We may set
g(k) = f(h−1(k)). ⊓⊔

Lemma 3. Let g : N → N be the function in Lemma 2. LetD be an Euler directed
multigraph. We can obtain eitherk arc-disjoint cycles ofD or a vertex ordering of
cutwidth at most2g(k).

Proof. Let us run the procedure of Lemma 2 forD andk. If we getk arc-disjoint cycles,
we are done. Otherwise, we get a feedback arc setF of D such that|F | ≤ g(k). Then
D′ = D − F is an acyclic digraph. We letν = (v1, . . . , vn) be an acyclic ordering of
D′, i.e.,D′ has no arc of the formvivj , i > j, (it is well-known that such an ordering
exists [1]). Nowν is a vertex ordering forD with at most|F | arcs from{vi+1, . . . , vn}
to{v1, . . . , vi} for eachi ∈ [n−1], and becauseD is Euler there are the same number of
arcs from{v1, . . . , vi} to {vi+1, . . . , vn} [1, Corollary 1.7.3]. Soν is a vertex ordering
with cutwidth at most2g(k). ⊓⊔

In the rest of this section,G = (V,A) is a connected weighted directed graph. For
a solutionT = {T1, . . . , Tk} to thek-DCPP onG (k ≥ 1), let GT = (V,AT ), where
AT is a multiset containing all arcs ofA, each as many times as it is traversed in total
by T1 ∪ · · · ∪ Tk.

Lemmas 4 and 5 are similar to two simple results obtained for thek-UCPP in [12].
Note that givenk closed walks which cover all the arcs of a digraph, their union is a
closed walk covering all the arcs and, therefore, it is a solution for the DCPP. Hence,
the following proposition holds.

Lemma 4. The weight of an optimal solution for thek-DCPP onG is not smaller than
the weight of an optimal solution for the DCPP onG.

Lemma 5. Let T be an optimal solution for the DCPP onG. If GT contains at least
k arc-disjoint cycles, then the weight of an optimal solutionfor thek-DCPP onG is
equal to the weight of an optimal solution of the DCPP onG. Furthermore ifk arc-
disjoint cycles inGT are given, then an optimal solution for thek-DCPP can be found
in polynomial time.



Proof. Note thatGT is an Euler directed multigraph and so every vertex ofGT is
balanced. LetC be any collection ofk arc-disjoint cycles inGT . Delete all arcs of
C from GT and observe that every vertex in the remaining directed multigraphG′ is
balanced. Find an optimal DCPP solution for every connectedcomponent ofG′ and
append each such solutionF to a cycle inC which has a common vertex withF . As a
result, in polynomial time, we obtain a collectionQ of k closed walks for thek-DCPP
onG of the same weight asT . SoQ is optimal by Lemma 4. ⊓⊔

For a directed multigraphD, let µD(xy) denote the multiplicity of an arcxy of
D. Themultiplicity µ(D) of D is the maximum of the multiplicities of its arcs. Thus,
Lemma 5 implies that ifµ(GT ) ≥ k for any optimal solutionT of the DCPP onG,
then there is an optimal solution of thek-DCPP onG with weight equal to the weight
of GT . The next lemma helps us in the case thatµ(GT ) ≤ k − 1.

Lemma 6. LetT be an optimal solution of the DCPP onG such thatµ(GT ) ≤ k − 1.
Then there is an optimal solutionW for thek-DCPP onG such thatµ(GW ) ≤ k.

Proof. Let T be an optimal solution of DCPP onG and letµ(GT ) ≤ k − 1. Suppose
that there is an optimal solutionW of thek-DCPP onG such thatµ(GW ) > k.

Let ρ(xy) = µGW
(xy)−µGT

(xy) for each arcxy of G. Consider a directed multi-
graphH ′ with the same vertex set asG and in whichxy is an arc of multiplicity|ρ(xy)|
if it is an arc inG andρ(xy) 6= 0. We say that an arcxy of H ′ is positive(negative)
if ρ(xy) > 0 (ρ(xy) < 0). Now reverse every negative arc ofH ′ (i.e., replace every
negative arcuv by the negative arcvu) keeping the weight of the arcs the same. We
denote the resulting directed multigraph byH.

For a digraphD and its vertexx, let N+
D (x) andN−

D (x) denote the sets of out-
neighbors and in-neighbors ofx, respectively. SinceGT andGW are both Euler directed
multigraphs, we have that

∑

y∈N+

H′
(x)

ρ(xy) =
∑

z∈N−

H′
(x)

ρ(zx) implying
∑

u∈N+

H
(x)

µ(xu) =
∑

v∈N−

H
(x)

µ(vx)

for each vertexx in G. So, every vertex inH has the same in-degree as out-degree.
Thus, the arcs ofH can be decomposed into a collectionC = {C1, . . . , Ct} of cycles.
We define the weightω(Ci) of a cycleCi of C as the sum of the weights of its positive
arcs minus the sum of the weights of its negative arcs, and assume thatω(C1) ≤ · · · ≤
ω(Ct).

SetF0 = GT and fori ∈ [t], constructFi from Fi−1 as follows: for each arcxy
of Ci, if xy is a positive arc inH add a copy ofxy to Fi−1 and if xy is a negative
arc inH remove a copy ofyx from Fi−1. Since for each arcuv of G, µGT

(uv) ≥ 1
andµGW

(uv) ≥ 1, we haveµFi
(uv) ≥ 1. Each vertex ofFi is balanced, soFi is a

solution of DCPP onG. SinceT is optimal,ω(F0) ≤ ω(F1) = ω(F0) + ω(C1) and so
ω(C1) ≥ 0. Due to the ordering of cycles ofC according to their weights,ω(Ci) ≥ 0
for i ∈ [t]. Thus,ω(Fi) ≥ ω(Fi−1) for i ∈ [t].

Sinceµ(F0) ≤ k − 1 andµ(Ft) > k, there is an indexj such thatµ(Fj) = k.
Then the out-degree of some vertex ofFj is at leastk and so by Lemma 1,Fj hask arc-
disjoint cycles. Similarly to Lemma 5, it is not hard to show that there is a solutionU



of k-DCPP onG of weightω(Fj). SinceW is optimal andω(Fj) ≤ ω(Ft) = ω(GW ),
U is also optimal and we are done. ⊓⊔

3 Proof of Theorem 3

Theorem 3 is proved by providing a dynamic programming (DP) algorithm of required
complexity. We first make an observation to simplify the DP algorithm.

Lemma 7. Let G = (V,A) and k define an instance ofk[b, c]-DWCP. The instance
is positive and and the weight of an optimal solution isρ if and only if there are (not
necessarily connected) non-empty directed multigraphsG1, . . . , Gk with the following
properties:

– All multigraphsG1, . . . , Gk use only arcs ofG (each, possibly, multiple number of
times);

– G1 is a balanced multigraph;
– For 2 ≤ i ≤ k, Gi is a balanced digraph (with no parallel arcs);
– Each arca ∈ A occurs betweenb andc times in the multigraph2 G1 ∪ · · · ∪ Gk,

and the total weight of this multigraph isρ.

Proof. On the one hand, letW1, . . . ,Wk be a solution to thek[b, c]-DWCP instance,
where eachWi is a closed directed walk. For eachi ∈ [k], let Qi be the directed
multigraph whose vertices are the vertices visited byWi and which contains an arcuv
of multiplicity µ if uv is traversed exactlyµ times byWi. For eachi ≥ 2, if Qi has
parallel arcs, letGi be a cycle inQi and letQ′

i = Qi\A(Gi) and, otherwise (i.e.,Qi has
no parallel arcs), letGi = Qi and letQ′

i be empty. Now letG1 = Q1 ∪Q′
2 ∪ · · · ∪Q′

k.
Observe that all properties of the lemma are satisfied.

On the other hand, consider directed multigraphsG1, . . . , Gk satisfying the proper-
ties of the lemma. If all multigraphsGi are connected, then we are done. Ifb = 0, then
we may replace each graphGi with a cycleCi contained inGi, and produce a solution
to k[b, c]-DWCP that consists ofk (not necessarily pairwise arc-disjoint) cycles.

Finally, if not all multigraphs are connected andb > 0, we proceed as follows. First,
select for each multigraphGi, i > 1 an arbitrary connected componentHi, and move
all other components ofGi to G1, increasing arc multiplicity as appropriate. Next, as
long asG1 remains unconnected, letH be an arbitrary connected component ofG1. As
b > 0 andG is connected, some componentHi, i > 1 must intersect a vertex ofH ;
we may moveH to the multigraphGi and maintain thatGi is connected. Repeat this
until G1 (and hence each multigraphGi) is connected. Note that this does not change
the arc multiplicity or the weight of the solution. Now everymultigraphGi for i ∈ [k]
is balanced and connected, i.e., Euler, and we can find an Euler tourWi for each graph
Gi, which forms the solution to thek[b, c]-DWCP instance. ⊓⊔

Let ν = (v1, v2, . . . , vn) be a vertex ordering of a digraphG of cutwidth at most
p. For eachi ∈ {0, 1, . . . , n}, letEi be the set of arcs of the formvjvh or vhvj , where

2 Here, as in the proof, the union of multigraphs means that themultiplicity of an arc in the union
equals the sum of multiplicities of this arc in the multigraphs of the union.



j ≤ i andh > i. Note that in particularE0 = ∅ andEn = ∅. As ν has cutwidth at
mostp, |Ei| ≤ p for eachi. We refer toE0, E1, . . . , En as thearc bagsof ν. For each
i ∈ {0, 1, . . . , n}, let γ(i) =

⋃
0≤j≤i Ej . For a vertexv ∈ V , letA+(v) = {vu ∈ A :

u ∈ V } andA−(v) = {uv ∈ A : u ∈ V }.
We now give an intuitive description of the DP algorithm before giving technical

details. Our DP algorithm will process each arc bag ofν in turn, fromE0 to En. For
each arc bagEi, we store the weights of a range of partial solutions. A partial solution
consists of a multisetA1 and setsA2, . . . , Ak of arcs inγ(i). EachAj is to be thought
of the (multi)set of arcs inGj (defined in Lemma 7) taken fromγ(i). A functionφ is
used to represent how many times each arc in the bagEi is used by each (multi)setAj

in the solution. Finally, a setS tracks which (multi)sets are non-empty. This is to ensure
we don’t produce a solution which uses less thank non-empty walks. For each arc bag
Ei, and every choice ofφ, S respecting the conditions of Lemma 7, we will calculate
the minimum weight of a partial solution corresponding to these choices.

Let us make these notions more precise. LetEi be an arc bag inν, and letφ be
a functionEi × [k] → [0, c] such that for eacha ∈ Ei we have

∑
j φ(a, j) ∈ [b, c]

andφ(a, j) ≤ 1 for 2 ≤ j ≤ k. Let S be a subset of[k]. For a vertexv and multiset
M of arcs, letA+(v,M) be the multiset of arcs fromM leavingv, and similarly let
A−(v,M) be the multiset of arcs fromM enteringv. Then we defineχ(Ei, φ, S) to
be the minimum integerρ for which there exist arc multisetsA1, . . . , Ak satisfying the
following conditions:

1. For every arca ∈ Ei and everyj ∈ [k], Aj contains exactlyφ(a, j) copies ofa;
2. For every arca ∈ γ(i), the multisetA1 ∪ · · · ∪Ak contains betweenb andc copies

of a;
3. For everyh ≤ i and everyj ∈ S, |A+(vh, Aj)| = |A−(vh, Aj)|;
4. For everyj ∈ [k], Aj 6= ∅ if and only if j ∈ S; and
5.

∑
j∈[k]

∑
a∈Aj

ω(a) = ρ.

Note that|A+(vh, Aj)| and|A−(vh, Aj)| are the numbers of arcs inAj leaving and
enteringvh, respectively, and that the second sum in Condition 5 is taken over all arcs
in multisetAj , i.e., over every copy of an arc inAj .

If no such integerρ exists, then we letχ(Ei, φ, S) = ∞.
Observe that ifEi, φ, S andρ together with arc multisets(A1, . . . , Ak) satisfy the

above conditions, thenχ(Ei, φ, S) ≤ ρ. In such a case we will call(A1, . . . , Ak) a
witnessfor χ(Ei, φ, S) ≤ ρ. Thus,χ(Ei, φ, S) is the minimumρ such that there exists
a witness forχ(Ei, φ, S) ≤ ρ.

The next lemma shows that we can solve thek[b, c]-DCPP by finding the values
χ(Ei, φ, S). SinceEn = ∅, the only functionφ : En × [k] → [b, c] is the empty
function.

Lemma 8. Letφ : En × [k] → [b, c] be the empty function. Thenχ(En, φ, [k]) = ∞
if there is no solution for thek[b, c]-DCPP onG, and otherwiseχ(En, φ, [k]) is the
minimum total weight of a solution fork[b, c]-DCPP.

Proof. We will show that (a) ifχ(En, φ, [k]) = ρ 6= ∞, then there exists a solution
for thek[b, c]-DCPP onG with weightρ; and that (b) if there exists a solution for the
k[b, c]-DCPP onG with weightρ, then there exists a witness forχ(En, φ, [k]) ≤ ρ.



In what follows it will be useful to observe thatγ(n) = A(G).
Suppose thatχ(En, φ, [k]) = ρ 6= ∞ and (A1, . . . , Ak) is a witness for

χ(En, φ, [k]) ≤ ρ. By Condition 3 ofχ(En, φ, [k]), every vertex is balanced with re-
spect to each arc (multi)setAj , and by Condition 4, eachAj is non-empty. Thus,A1

forms the arc (multi)set of a balanced directed multigraph andAj , j > 1 the arc set of a
balanced digraph, and by Condition 2, every arc inG appears betweenb andc times in
these (multi)sets. By Lemma 7, the arcs of the multisetA1∪ . . .∪Ak can be partitioned
into a solution for thek[b, c]-DCPP, which by Condition 5 and minimality ofρ has total
weight exactlyρ. Thus there exists a solution for thek[b, c]-DCPP onG with weightρ.

Now suppose that there exists a solution for thek[b, c]-DCPP onG with weightρ;
by Lemma 7, there then exist non-empty balanced directed multigraphsG1, . . . , Gk of
total weightρ, where every arc appears betweenb andc times in total, and whereGj

for j > 1 has no parallel arcs. LettingAj be the arc (multi)set ofGj for eachj ∈ [k],
we find that(A1, . . . , Ak) is a witness forχ(En, φ, [k]) ≤ ρ. As En = ∅, Condition
1 of χ(En, φ, [k]) is trivially satisfied. Condition 2 is satisfied by the conditions in
Lemma 7. Since every vertex in a balanced directed multigraph is balanced, Condition 3
is satisfied. As each of thek multigraphs is non-empty, Condition 4 is satisfied. Finally,
as the multigraphs have total weightρ, Condition 5 is satisfied. Thus(A1, . . . , Ak) is a
witness forχ(En, φ, [k]) ≤ ρ, as required. ⊓⊔

Due to the space limit, we place the proof of the next lemma in the Appendix.

Lemma 9. Consider an arc bagEi, for i ≥ 1. Let E∗
i = Ei \ Ei−1. For anyφ :

Ei × [k] → [0, c] andS ⊆ [k], letY =
∑

j∈S

∑
a∈E∗

i
φ(a, j) · ω(a).

If there existsa ∈ Ei such that
∑

j∈[k] φ(a, j) < b or
∑

j∈[k] φ(a, j) > c, then
χ(Ei, φ, S) = ∞.

Otherwise, the following recursion holds:

χ(Ei, φ, S) = Y + min
φ′,S′

χ(Ei−1, φ
′, S′)

where the minimum is taken over allφ′ : Ei−1×[k] → [0, c], andS′ ⊆ [k] satisfying
the following conditions:

– For all a ∈ Ei ∩ Ei−1 and all j ∈ [k], φ′(a, j) = φ(a, j);
– For all j ∈ [k],

∑

a∈A+(vi)∩Ei−1

φ′(a, j) +
∑

a∈A+(vi)∩Ei

φ(a, j)

=
∑

a∈A−(vi)∩Ei−1

φ′(a, j) +
∑

a∈A−(vi)∩Ei

φ(a, j).

– S = S′ ∪ {j ∈ [k] :
∑

a∈E∗

i
φ(a, j) > 0}.

If there are noφ′, S′ satisfying these conditions, thenχ(Ei, φ, S) = ∞.
Furthermore, if there existφ′, S′ satisfying the above conditions and we are given

a witness(A′
1, . . . , A

′
k) for χ(Ei−1, φ

′, S′) ≤ ρ′, then we can construct a witness for
χ(Ei, φ, S) ≤ Y + ρ′ in polynomial time.



We are now ready to prove Theorem 3.
Theorem 3 Let (G, k) be an instance ofk[b, c]-DWCP and suppose we are given a
vertex orderingν = (v1, v2, . . . , vn) ofG with cutwidth at mostp. Then(G, k) can be
solved in timeO∗((c2k)p4k).

Proof. Our DP algorithm calculates all valuesχ(Ei, φ, S) with φ(·, j) ≤ 1 for j >

1 in a bottom-up manner, that is, we only calculate valuesχ(Ei, ·, ·) after all values
χ(Ej , ·, ·) have been calculated for0 ≤ j < i (we use the recursion of Lemma 9).

Each arc bagEi of ν contains at mostp arcs. For each arca, there arec+1 options
for φ(a, 1) and2 options forφ(a, j) for eachj > 1, i.e.,(c+1)2k−1 ≤ c2k options per
arc. Thus there are at most(c2k)p valid choices forφ : Ei × [k] → [0, c]. As there are
2k choices for a setS ⊆ [k], the total size of each DP table isO((c2k)p2k).

SinceE0 = ∅, the only functionφ : E0 × [k] → [0, c] is the empty func-
tion. It is easy to see thatχ(E0, φ, S) = 0 if S = ∅, and∞ otherwise. To speed
up the application of Lemma 9 forEi, 1 ≤ i ≤ n, we form an intermediate ta-
ble T from the data for bagEi−1. Call two entriesχ(Ei, φ, S) andχ(Ei−1, φ

′, S′)
compatiblewhen the conditions in Lemma 9 are met (i.e.,χ(Ei−1, φ

′, S′) is one of
the entries included in the minimisation forχ(Ei, φ, S)). Let thesignatureof entry
χ(Ei−1, φ

′, S′) be (φ′′, d1, . . . , dk, S
′), whereφ′′ is φ′ restricted to arcsEi−1 ∩ Ei,

and wheredj =
∑

a∈A+(vi)∩Ei−1
φ′(a, j)−

∑
a∈A−(vi)∩Ei−1

φ′(a, j) is the imbalance
at vi in walk numberj. Observe that whether an entryχ(Ei−1, φ

′, S′) is compatible
with the entryχ(Ei, φ, S) can be determined from the signature alone. Thus, for every
signature(φ′′, d1, . . . , dk, S

′) we letT (φ′′, d1, . . . , dk, S
′) contain the minimum value

over all entriesχ(Ei−1, . . .) with matching signature; this can be computed in a sin-
gle loop over the entriesχ(Ei−1, . . .). Then, for every entryχ(Ei, φ, S) of the new
table, we look inT through all signatures that would be compatible with(φ, S) and
keep the minimum value (and addY to it, by Lemma 9). The reason we may have to
look at several signatures is the setS; for simplicity, we may simply loop over all sets
S′ ⊆ S such thatS′ ∪ {j ∈ [k] : φ(a, j) > 0, somea ∈ Ei} = S. Note that the
size of the intermediate tableT is immaterial; the time taken consists of first one loop
throughχ(Ei−1, . . .), then2k queries toT for each entry inχ(Ei, . . .). Thus, the en-
triesχ(Ei, . . .) can all be computed in total timeO∗((c2k)p4k). As En = ∅ there is
only one functionφ : En × [k] → [b, c]. By Lemma 8,χ(En, φ, [k]) is the minimum
total weight of a solution fork[b, c]-DCPP, and∞ if there is no such solution. Thus to
solvek[b, c]-DCPP it suffices to check the value ofχ(En, φ, [k]).

Thus the algorithm finds the valueρ in timeO∗((c2k)p4k).
The algorithm can easily be made constructive using the method of Lemma 9.

For each arc bagEi, φ : Ei × [k] → [0, c], S ⊆ [k], in addition to calculating the
valueχ(Ei, φ, S) = ρ, we also calculate a witness forχ(Ei, φ, S) ≤ ρ, in the cases
whereρ 6= ∞. Just as we can calculate the values of allχ(Ei, ·, ·) given the values of
all χ(Ei−1, ·, ·), we may construct witnesses for allχ(Ei, ·, ·) given witnesses for all
χ(Ei−1, ·, ·), using an intermediate tableT as before. (Note that(A1, . . . , Ak), where
eachAi = ∅, is a witness forχ(E0, φ, ∅) = 0, whereφ is the empty function. This gives
us the base case in our construction of witnesses.) Given a witness forχ(En, φ, [k]),
Lemma 8 shows how to construct a solution tok[b, c]-DCPP onG from this witness.

⊓⊔



4 Proofs of Theorems 1 and 2

Theorem2 Thek-ADCP-EULER is fixed-parameter tractable.

Proof. Let D be an Euler digraph. We may assume thatD has no vertex of out-degree
at leastk as otherwise we are done by Lemma 1. By Lemma 3, forD we can either
obtaink arc-disjoint cycles or a vertex orderingν of cutwidth at most2g(k) for some
functiong : N → N. Note thatD is a positive instance of thek-ADCP-EULER if and
only if (D, k) has a finite solution fork[0, 1]-DWCP (as every closed walk contains a
cycle). It remains to observe that the algorithm of Theorem 3for thek[0, 1]-DWCP is
fixed-parameter when the out-degree of every vertex ofD is upper-bounded byk and
the cutwidth ofν is bounded by a function ofk. ⊓⊔

Theorem1 Thek-DCPP admits a fixed-parameter algorithm.

Proof. LetG = (V,A) be a digraph and letT be an optimal solution of DCPP onG. If
we get a collectionC of k arc-disjoint cycles inGT , then usingC, by Lemma 5, we can
solve thek-DCPP onG in (additional) polynomial time. Otherwise, by lemma 3, we
have a vertex ordering ofGT of cutwidth bounded by a function ofk. We may assume
that every vertex ofGT is of out-degree at mostk − 1 (otherwise by Lemma 1,GT

has a collection ofk arc-disjoint cycles). Since every vertex ofGT is of out-degree at
mostk − 1, the multiplicity ofGT is at mostk − 1. Now Lemma 6 implies that there
is an optimal solutionW for thek-DCPP onG such that the multiplicity ofGW is at
mostk. Thus, we may treat thek-DCPP onG as an instance(G, k) of k[1, k]-DWCP.
It remains to observe that the algorithm of Theorem 3 to solvethek[1, k]-DWCP onG
will be fixed-parameter. ⊓⊔

5 Discussions

Our algorithms for solving bothk-DCPP andk-ADCP on Euler digraphs have very
large running time bounds, mainly because the boundf(h−1(k)) on the size of feed-
back arc set is very large. Functionf(k) obtained in [17] is a multiply iterated expo-
nential, where the number of iterations is also a multiply iterated exponential and, as
a result,h−1(k) grows very quickly. So obtaining a significantly smaller upper bound
for f(k) on Euler digraphs would significantly reduceh−1(k) as well and is of certain
interest in itself. In particular, is it true thatf(k) = O(kO(1)) for Euler digraphs? Note
that for planar digraphs,f(k) = k [1, Corollary 15.3.10] and Seymour [18] proved the
same result for a wide family of Euler digraphs. It would alsobe interesting to check
whether thek-DCPP ork-ADCP admits a polynomial-size kernel.

Cechlárová and Schlotter [3] introduced the following somewhat related problem in
the context of housing markets: can we delete at mostk arcs in a given digraph such
that each strongly connected component of the resulting digraph is Euler? They asked
for the parameterized complexity of this problem, wherek is the parameter. Crowston
et al.[5] showed that the problem restricted to tournaments is fixed-parameter tractable,
but in general the complexity still remains an open question. See also the recent paper
[6] for other related problems.
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Appendix: Proof of Lemma 9

Lemma 9 Consider an arc bagEi, for i ≥ 1. Let E∗
i = Ei \ Ei−1. For anyφ :

Ei × [k] → [0, c] andS ⊆ [k], letY =
∑

j∈S

∑
a∈E∗

i
φ(a, j) · ω(a).

If there existsa ∈ Ei such that
∑

j∈[k] φ(a, j) < b or
∑

j∈[k] φ(a, j) > c, then
χ(Ei, φ, S) = ∞.

Otherwise, the following recursion holds:

χ(Ei, φ, S) = Y + min
φ′,S′

χ(Ei−1, φ
′, S′)

where the minimum is taken over allφ′ : Ei−1×[k] → [0, c], andS′ ⊆ [k] satisfying
the following conditions:

– For all a ∈ Ei ∩ Ei−1 and all j ∈ [k], φ′(a, j) = φ(a, j);
– For all j ∈ [k],

∑

a∈A+(vi)∩Ei−1

φ′(a, j) +
∑

a∈A+(vi)∩Ei

φ(a, j)

=
∑

a∈A−(vi)∩Ei−1

φ′(a, j) +
∑

a∈A−(vi)∩Ei

φ(a, j).

– S = S′ ∪ {j ∈ [k] :
∑

a∈E∗

i
φ(a, j) > 0}.

If there are noφ′, S′ satisfying these conditions, thenχ(Ei, φ, S) = ∞.
Furthermore, if there existφ′, S′ satisfying the above conditions and we are given

a witness(A′
1, . . . , A

′
k) for χ(Ei−1, φ

′, S′) ≤ ρ′, then we can construct a witness for
χ(Ei, φ, S) ≤ Y + ρ′ in polynomial time.

Proof We will prove the last claim of the lemma first. Suppose we are given a witness
(A′

1, . . . , A
′
k) for χ(Ei−1, φ

′, S′) ≤ ρ′. For eachj ∈ [k], let Aj be the multisetA′
j

together withφ(a, j) copies of each arc inE∗
i . We now show that(A1, . . . , Ak) is a

witness forχ(Ei, φ, S) = Y + ρ′.
By construction ofAj , definition ofA′

j and the fact thatφ′(a, j) = φ(a, j) for all
a ∈ Ei ∩ Ei−1, j ∈ [k], we have that for alla ∈ Ei andj ∈ [k], Aj contains exactly
φ(a, j) copies ofa, satisfying Condition 1 ofχ(Ei, φ, S) ≤ Y + ρ′.

By definition ofA′
j and the fact thatb ≤

∑
j∈[k] φ(a, j) ≤ c for eacha ∈ E∗

i ,
we have that every arc appears at leastb times and at mostc times inA1 ∪ · · · ∪ Ak,
satisfying Condition 2.

Observe thatE∗
i consists of all arcs of the formvivh or vhvi for h > i. It fol-

lows by construction that for anyh < i and j ∈ [k], A+(vh, Aj) = A+(vh, A
′
j)

and A−(vh, Aj) = A−(vh, A
′
j). Then as|A+(vh, A

′
j)| = |A−(vh, A

′
j)| for all

h < i, we have that|A+(vh, Aj)| = |A−(vh, Aj)| for all h < i. As every
arc incident withvi is in exactly one ofEi−1 or Ei, we have that for allj ∈
[k], |A+(vi, Aj)| =

∑
a∈A+(vi)∩Ei−1

φ′(a, j) +
∑

a∈A+(vi)∩Ei
φ(a, j), and simi-

larly |A−(vi, Aj)| =
∑

a∈A−(vi)∩Ei−1
φ′(a, j) +

∑
a∈A−(vi)∩Ei

φ(a, j). It follows
by the second condition of the lemma that|A+(vi, Aj)| = |A−(vi, Aj)|. Therefore
|A+(vh, Aj)| = |A−(vh, Aj)| for all h ≤ i, satisfying Condition 3.



By the fact thatS = S′ ∪ {j ∈ [k] :
∑

a∈Ei\Ei−1
φ(a, j) > 0}, definition of

(A′
1, . . . , A

′
k) and construction of(A1, . . . , Ak), we have thatS = S′ ∪ {j ∈ [k] :

Aj \A′
j 6= ∅} = {j ∈ [k] : Aj 6= ∅}. This satisfies Condition 4.

Finally, by construction of{A1, . . . , Ak} and χ(Ei−1, φ
′, S′), we have that

χ(Ei, φ, S) =
∑

j∈[k]

∑
a∈Aj

ω(a) = Y +
∑

j∈[k]

∑
a∈A′

j
ω(a) = Y +

χ(Ei−1, φ
′, S′), satisfying Condition 5.

Thus, we have that(A1, . . . , Ak) is a witness forχ(Ei, φ, S) ≤ Y + ρ′.
We now prove the other claims of the lemma. If there existsa ∈ Ei such that∑

j∈[k] φ(a, j) < b or
∑

j∈[k] φ(a, j) > c, then any arc multisetsA1, . . . , Ak that
satisfy Condition 1 ofχ(Ei, φ, S) will falsify Condition 2, and soχ(Ei, φ, S) = ∞. So
now assume thatb ≤

∑
j∈[k] φ(a, j) ≤ c for everya ∈ Ei.

Let φ′ : Ei−1 × [k] → [b, c], S′ ⊆ [k] be such that the conditions of the lemma
are satisfied andχ(Ei−1, φ

′, S′) is minimised. Ifχ(Ei−1, φ
′, S′) = ∞ then trivially

χ(Ei, φ, S) ≤ Y + χ(Ei−1, φ
′, S′). Otherwise,χ(Ei−1, φ

′, S′) = ρ′ 6= ∞ and so
there exists a witness forχ(Ei−1, φ

′, S′) ≤ ρ′ Then by the argument above, there
exists a witness forχ(Ei, φ, S) ≤ Y + χ(Ei−1, φ

′, S′). In either caseχ(Ei, φ, S) ≤
Y + χ(Ei−1, φ

′, S′).
It remains to show that ifχ(Ei, φ, S) 6= ∞, then there existφ′, S′ such that

χ(Ei, φ, S) = Y + χ(Ei−1φ
′, S′).

Suppose thatχ(Ei, φ, S) = ρ 6= ∞. Let (A1, . . . , Ak) be a witness for
χ(Ei, φ, S) = ρ. Then for eachj ∈ [k], let A′

j be the multiset of arcs fromAj not
incident tovi and letA∗

j be the multiset of arcs fromAj incident tovi. For a multisetM
of arcs fromG, letω(M) =

∑
a∈M ω(a), where each arca is taken in the sum as many

times as it has copies inM. Observe thatY =
∑

j∈[k] ω(A
∗
j ). LetZ =

∑
j∈[k] ω(A

′
j);

thenχ(Ei, φ, S) = Y + Z.
Let φ′ : Ei−1 × [k] → [b, c] be the function such thatφ′(a, j) is the number of

copies ofa in A′
j , for eacha ∈ Ei−1, j ∈ [k]. Finally letS′ = {j ∈ [k] : A′

j 6= ∅}.
As γ(i)\γ(i−1) contains no arcs incident tovh for anyh < i, we have that for any

h < i, |A(v) ∩ A′
j | = |A(v) ∩ Aj | for eachj ∈ [k]. Therefore(A′

1, . . . , A
′
k) satisfies

Conditon 3 of a witness forχ(Ei−1, φ
′, S′) = Z. It is easy to see that(A′

1, . . . , A
′
k)

satisfies the other conditions for a witness forχ(Ei−1, φ
′, S′) = Z, from which it

follows thatχ(Ei, φ, S) = Y + χ(Ei−1, φ
′, S′). ⊓⊔
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