
DMVP: Foremost Waypoint Coverage of Time-Varying

Graphs

Eric Aaron∗1, Danny Krizanc†2, and Elliot Meyerson‡2

1Computer Science Department, Vassar College, Poughkeepsie, NY, USA
2Department of Mathematics & Computer Science, Wesleyan University,

Middletown, CT, USA

Abstract

We consider the Dynamic Map Visitation Problem (DMVP), in which a team of agents
must visit a collection of critical locations as quickly as possible, in an environment that may
change rapidly and unpredictably during the agents’ navigation. We apply recent formulations
of time-varying graphs (TVGs) to DMVP, shedding new light on the computational hierarchy
R ⊃ B ⊃ P of TVG classes by analyzing them in the context of graph navigation. We provide
hardness results for all three classes, and for several restricted topologies, we show a separation
between the classes by showing severe inapproximability in R, limited approximability in B, and
tractability in P. We also give topologies in which DMVP in R is fixed parameter tractable,
which may serve as a first step toward fully characterizing the features that make DMVP
difficult.

1 Introduction

In navigation-oriented application domains such as autonomous mobile robots, wireless sensor net-
works, security, surveillance, mechanical inspection, and more, graph representations are commonly
employed for formulating and analyzing the central navigation or area inspection problems. Many
approaches to coverage problems [10, 11, 12] are based on static graph representations, as are visi-
tation problems [1] or related combinatorial optimization problems such as the k-Chinese Postman
Problem [2, 6] and k-Traveling Repairman Problem [13, 14]. But static graph structures do not rep-
resent the dynamic environments that can occur in applications of autonomous robots or non-player
characters in video games and virtual worlds. In this paper, we present the Dynamic Map Visitation
Problem (DMVP), applying recent formulations of highly dynamic graphs (or time-varying graphs
(TVGs)) [8, 23] to an essential graph navigation problem: In DMVP, a team of agents must inspect
a collection of critical locations on a map (represented as a graph) as quickly as possible, but the
agents’ environment may change during navigation.

The application of TVG models is essential to DMVP. In applications such as planetary explo-
ration [26], search and rescue in hazardous environments (e.g., natural disasters, areas of armed
conflict), or even ad-hoc network inspection, many aspects of the structure of graph waypoints and
edges governing navigation can change during agent navigation, and TVG models can capture vari-
ation in graph structure in ways that static graphs cannot. Our paper presents new results about

∗eaaron@cs.vassar.edu
†ekmeyerson@wesleyan.edu
‡dkrizanc@wesleyan.edu

1

ar
X

iv
:1

40
7.

72
79

v1
 [

cs
.C

C
]

 2
7

Ju
l 2

01
4

DMVP complexity and demonstrates distinctions among classes of TVGs; details of our main results
are summarized in Section 1.2.

When incorporating dynamics into a problem such as DMVP, there are many options for how to
constrain/model the dynamics of the graph. Dynamics can be deterministic (e.g., [7, 19, 20, 24, 27])
or stochastic (e.g., [4, 9]). In this paper, to provide a foundation for future work, and exemplify the
aspects of topologies and dynamics that make our problem easy or hard, we focus on the deterministic
case. The deterministic approach is also particularly relevant for situations in which some prediction
of changes is feasible. Quite a bit of this previous work has required that the graph be connected at
all times [9, 20, 22]. Indeed, for complete map visitation to be possible, every critical location must
be eventually reachable. However, in application environments such as those outlined above, at any
given time the waypoint graph may be disconnected. Our model must be general enough to allow
for this phenomenon.

We adopt three classes of TVGs, each of which places constraints on edge dynamics. In R,
edges must reappear eventually; in B, edges must appear within some time bound; in P edge
appearances are periodic. These classes have proven to be critical to the TVG taxonomy [8]. They
have been studied with respect to problems such as broadcast [7] and exploration [16, 19], with
results relating to feasibility of computation and bounds on broadcast and exploration time. R, B,
and P place intuitive constraints on the nature of dynamic navigation domains. Even the assumption
of periodicity of edges has applications to navigation of transportation networks [16, 19], as well as
environments periodically patrolled by other agents, who can prohibit or guarantee safe traversal of
an edge.

In this paper, we shed further light on the computational hierarchy of R, B, and P [7], by
analyzing them in the context of DMVP, a natural but difficult problem in global navigation. We
provide hardness results for all three classes. For several restricted topologies, we demonstrate
separation between the classes by showing severe inapproximability in R, limited approximability
in B, and tractability in P. We also give topologies in which DMVP in R is tractable and fixed
parameter tractable, which may serve as a first step towards fully characterizing the topological
features that make DMVP difficult. Because our goal in this paper is to cleanly differentiate the
classes of dynamics we are exploring, rather than explore the interactions between multiple agents,
our results here focus on the case of a single agent.

1.1 Definitions and TVG Concepts

As a foundation for our work, we adopt the definitions below from Santoro et al. [8].

Definition 1. A TVG (time-varying graph, dynamic graph, or dynamic network) is a five-tuple
G = (V,E, T , ρ, ζ), where T ⊆ T is the lifetime of the system, presence function ρ(e, t) = 1 ⇐⇒
edge e ∈ E is available at time t ∈ T , and latency function ζ(e, t) gives the time it takes to cross e
if starting at time t. The graph G = (V,E) is called the underlying graph of G, with |V | = n.

In the most general case, T can be R, and edges can be directed. However, in our work we
consider the discrete case in which T = N, edges are undirected, and all edges have uniform travel
cost ζ(e, t) = 1 at all times. If agent a is at u, and edge (u, v) is available at time τ , then a can
take (u, v) during this time step, visiting v at time τ + 1. As a traverses G we say a both visits
and covers the vertices in its traversal, and we will henceforth use these terms interchangeably. A
temporal subgraph of a TVG G results from restricting the lifetime T of G to some T ′ ⊆ T . A static
snapshot is a temporal subgraph throughout which the availability of each edge does not change,
i.e., edges are static.

Definition 2. J = {(e1, t1), ..., (ek, tk)} is a journey ⇐⇒ {e1, ..., ek} is a walk in G (called the
underlying walk of J), ρ(ei, ti) = 1 and ti+1 ≥ ti + ζ(ei, ti) for all i < k. The topological length
of J is k, the number of edges traversed. The temporal length is the duration of the journey:
(arrival date)− (departure date).

Given a date t, a journey from u to v departing on or after t whose arrival date t′ is soonest is
called foremost ; whose topological length is minimal is called shortest ; and whose temporal length
is minimal is called fastest.

In [8], a hierarchy of thirteen classes of TVG’s is presented. In related work on exploration [16]
and broadcast [7], focus is primarily on the chain R ⊃ B ⊃ P defined below. We adopt these classes
into our domain, which we believe enforce natural constraints in our application environments.

Definition 3. (Recurrent edges) R is the class of all TVG’s G such that G is connected, and
∀e ∈ E,∀t ∈ T ,∃t′ > t s.t. ρ(e, t′) = 1.

Definition 4. (Time-bounded recurrent edges) B is the class of all TVG’s G such thatG is connected,
and ∀e ∈ E,∀t ∈ T ,∃t′ ∈ [t, t+ ∆) s.t. ρ(e, t′) = 1, for some integer ∆.

Definition 5. (Periodic edges) P is the class of all TVG’s G such that G is connected, and ∀e ∈
E,∀t ∈ T ,∀k ∈ N, ρ(e, t) = ρ(e, t+ kp) for some integer p. p is called the period of G.

As much as possible, we also take standard notation and terms from the graph theory literature.
We rely on several underlying graph topologies. A star is a tree in which at most one vertex has
degree greater than one. The leaves of a star are called points. A spider is a tree in which at most
one vertex has degree greater than two. In other words, a spider consists of a set of vertex-disjoint
paths, called arms, each of which has exactly one endpoint connected to the common central vertex
c. A comb is a max-degree 3 tree, in which there exists a simple path containing every vertex of
degree 3. Such a path is called a backbone of the comb. Paths edge-disjoint to the backbone are
called arms. A leaf distance 1 from the backbone is called a tooth. An r-almost-tree is a connected
graph with |V |+ r − 1 edges, that is, r edges can be removed to produce a tree.

Problem. Given a TVG G and a set of starting locations S for k agents in G, the TVG foremost
coverage or dynamic map visitation problem (DMVP) is the task of finding journeys starting at time
0 for each of these k agents such that every node in V is in some journey, and the maximum temporal
length among all k journeys is minimized. The decision variant asks whether these journeys can be
found such that no journey ends after time t.

We think of the input G as a temporal subgraph of some TVG G∞ with lifetime N and the same
edge constraints as G. Thus, the limited information provided in G is used to compute complete
solutions for agents covering G∞. When unspecified, assume that DMVP refers to DMVP for a
single agent.

1.2 Main Results

Our results are summarized in Table 1. We show that DMVP in R is NP-hard to approximate
within any factor, when the underlying graph G is restricted to a star or tree of max degree 3. We
show that in B this problem is NP-hard to approximate within any factor less than ∆, when G is
restricted to a spider or tree of max degree 3. We show that in P, DMVP is NP-complete when
p = 1, and that there is a nontrivial class of graphs for which p = 2 is NP-hard, but p = 1 is not.

We show that in R, DMVP is solvable in O(T) when G is a path, O(Tn) when G is a cycle,
and O(Tn3 + n22n) for general graphs, where T is the duration of G, as defined in Section 2.
Furthermore, in R, DMVP is fixed parameter tractable when G is an m-leaf O(1)-almost tree, and
poly-time solvable when m = O(lg n). In B, we demonstrate a tight ∆-approximation for trees, and
a 2∆-approximation for general graphs. We demonstrate a class of problems which are NP-hard in
B, but solvable by an online algorithm in P. We show that DMVP in P is solvable in polynomial
time when G is a spider, for fixed p, and we show that when p = 2, DMVP is solvable in linear time
for general trees.

The remainder of this paper is organized as follows: preliminaries (2), lower bounds (3), upper
bounds (4), open problems and discussion (5).

Table 1: DMVP separations and results by TVG class and graph class

DMVP separations
TVG class spiders max-degree 3 trees general trees
R no approx. no approx. no approx.
B tight ∆-approx. tight ∆-approx. tight ∆-approx.
P in P, for fixed p O(n) exact, for p = 2 O(n) exact, for p = 2

∃ graph class over which DMVP NP-hard in P with p = 2, easy with p = 1.

Complexity of exact algorithms in R
path cycle general graphs m-leaf c-almost trees O(lg n)-leaf c-almost trees
O(T) O(Tn) O(Tn3 + n22n) in FPT in P

2 Preliminaries

For the minimization problem DMVP(G, S) and the corresponding decision problem DMVP(G, S, t),
input is viewed as a sequence of graphs Gi each represented as an adjacency matrix, with an associ-
ated integer duration ti, i.e. G = (G1, t1), (G2, t2), ..., (Gm, tm), where G1 appears initially at time
zero. Let T =

∑m
i=1 ti. Note that since each ti can be encoded in O(lg ti) space, it is possible for T

to be exponential in the size of G. The following observation is required to show that the number of
time steps of G that need to be considered for DMVP is in fact polynomial in the size of G.

Observation 1. When computing DMVP over G, it is not necessary to consider each static temporal
subgraph (Gi, ti) for more than 2n− 3 time steps.

Proof. Suppose Gi is the available static subgraph of G from times τ to τ + ti, and ti > 2n − 3.
Suppose agent a starts at vertex u at time τ . There are two cases:

Case 1: If a can complete its coverage of G by only traversing in Gi, then in the worst case a can
execute any complete spanning tree traversal of Gi, which takes no more than 2n− 3 steps. In this
case, it does not matter at which vertex a ends up, because the task has been completed.

Case 2: If there is a vertex v such that a has not covered v by time τ , and u and v are in different
connected components in Gi, then a cannot complete coverage of G when Gi is the available static
subgraph. In this case it may matter which vertex a ends up at, depending on which future edges
will be available. The size of the connected component of u in Gi is at most n − 1, so a spanning
tree traversal of this component ending up back at u takes no more than 2n − 4 steps. If a would
rather end up at a different vertex w 6= u, it simply traverses w’s branch of the spanning tree last,
and returns up only to w, in fewer than 2n− 4 steps.

By Observation 1, for any ti > 2n − 3, when computing DMVP, all time steps after the first
2n − 3 can be ignored (skipped). DMVP over G can be computed by computing DMVP over
G′ = (G1,min(t1, 2n− 3)), ..., (Gm,min(tm, 2n− 3)), and adding back the cumulative time skipped
before completion. G′ can clearly be derived from G in O(m) time. The total duration of G′ is
T ′ =

∑m
i=1 min(ti, 2n − 3) < 2nm − 3m, which is polynomial in |G|. Let ε(τ) be the time skipped

through time τ ≤ T ′. ε(τ) can be simply calculated for all τ ≤ T ′ in O(T ′) time. A similar O(T ′)
preprocessing step can be run to associate each time τ ∈ T ′ with the corresponding available static
graph Gi, enabling O(1) edge presence lookups ρ(e, τ).

Since all of the algorithms we present run in Ω(T ′) time, we can run these preprocessing steps
for every instance of DMVP and not affect the asymptotic running time. Therefore, for the sake
of simplicity, for the rest of our results we assume that this preprocessing has taken place, i.e., we
think of G as G′ and T as T ′, thereby avoiding the exponential nature of T . Note also that for the
case of P, the constraint of periodicity implies that it is only necessary to look at p consecutive time
steps of the input.

3 Lower Bounds

As motivation for many of the results in this paper, it is important to note that MVP for a single
agent is solvable in linear time on trees [1]. To characterize the difficulty of DMVP in R, we first
show inapproximability over stars. A similar theorem was independently discovered in [25].

Theorem 1. DMVP for a single agent in R is NP-hard to approximate within any factor, even
when the underlying graph is a star.

Proof. We reduce from the set cover problem (SCP). Given a universe U = {1, 2, ...,m}, a family
S of subsets s1, s2, ..., sn of U , and an integer k, it is NP-complete to decide whether S contains
a cover of U of size k or less [21]. Given an instance of SCP, construct a star G = (V,E) with
central vertex c; points v1, ..., vm, corresponding to elements in U ; p1, ..., pn, corresponding to sets
in S; and a single check point p0. We use the following static subgraphs to construct a TVG G. For
all si in S, let pass(i) = (V, {c, pi}), and let take(i) = (V,Ei), where Ei = {(c, vj) : j ∈ si}. Let
check = (V, {c, p0}). Let finish = (V, F), where F = {(c, pi) : 1 ≤ i ≤ n}. Consider the TVG G =
(pass(1), 1),(take(1), t1),(pass(1), 1),...,(pass(n), 1),(take(n), tn),(pass(n), 1),(check, 2),(finish, 2k−
1), where ti = 2|si|,∀i ∈ {1, ..., n}. The total duration of G is D = 2n + 2

∑n
i=1|si| + 2k + 1 <

2n+ 2mn+ 2k + 1.
Consider the problem of deciding if DMVP over G with a single agent a starting at c has a

solution of length no more than D. This problem is in NP, since given a journey over G, we can
easily check that it hits every vertex, and that all of its edges are available at the correct times.
Such a solution can be no longer than D, since D is the total duration of G.

Suppose S contains a cover C of U of size k or less. Then for all si ∈ C, a takes si, that is, a
waits at c during both instances of pass(i), and visits all vj ∈ si and returns to c during take(i),
which is possible since the duration of take(i) is 2|si|. Since C is a cover of U , a visits all vi. For all
si /∈ C, a passes si, that is, a moves from c to pi during the first pass(i), waits at pi during take(i),
and returns to c during the second pass(i). During check, a moves from c to p0, then back to c.
At this point, since |C| ≤ k, a has passed at least n− k si’s. So, there are no more than k pi’s left
unvisited. a visits these during finish, thus completing visitation of all vertices of G in no more
than D steps (e.g., Figure 1).

Suppose there exists a solution to this instance of DMVP of length no more than D. Prior to
finish, a must have visited at least n − k pi’s, since finish only lasts for 2k − 1 steps. So a must
have passed at least n−k si’s. Taking and passing for a single si are mutually exclusive, because if a
moves to pi during the first pass(i), a must wait during take(i), and if a both takes si and moves to
pi during the second pass(i), a will be trapped at pi until finish, and will never be able to reach p0,
which must be visited during check, the only input time at which p0 is available. Thus, a could have
taken no more than k si’s. During these k or fewer takes, a must have covered all v1, ..., vm. So, the
union of these k or fewer take(i)’s contains all edges (c, vj), which implies that the corresponding
si’s form a cover of U or size k or less. Hence, the decision problem is NP-complete.

Consider the minimization version of the problem with the same setup. Since it is NP-hard to
decide if there is a solution of length D or less, it is NP-hard to find such a solution. But after D
steps, a may have to wait an arbitrarily long time for the next edge is a feasible solution to appear, so
any feasible solution that takes longer than D steps can be arbitrarily long. Therefore, the problem
cannot be approximated within any factor.

This inapproximability also holds over the restriction of underlying graphs to trees of max-degree
3, in particular, combs.

Theorem 2. DMVP for a single agent in R is NP-hard to approximate within any factor, even
when the underlying graph is a comb.

Proof. Analogous to Theorem 1, we reduce from the set cover problem (SCP) [21]. Given an instance
of SCP, construct a comb G = (V,E) with backbone b0b1bm+n+1; teeth v1, ..., vm, corresponding

pass(1)

c

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0

take(1)

c

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0

pass(1)

c

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0

pass(2)

c

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0

take(2)

c

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0

pass(2)

c

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0

pass(3)

c

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0

take(3)

c

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0

pass(3)

c

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0

pass(4)

c

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0

take(4)

c

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0

pass(4)

c

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0

check

c

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0

finish

c

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0

Agent location after covering
each static temporal subgraph
in dark gray; nodes covered so
far in light gray.

Figure 1: Thm.1 static snapshots for U = {1, 2, 3, 4, 5}, S = {{1, 2, 4}, {2, 4}, {3, 4}, {3, 5}}, k = 2.

to elements in U , with (bi, vi) ∈ E ∀i = 1, ...,m; teeth p1, ..., pn, corresponding to sets in S, with
(bm+i, pi) ∈ E ∀i = 1, ..., n; and two check teeth p0 and pn+1 with (b0, p0), (bm+n+1, pn+1) ∈ E. Let
B = {(b0, b1), ..., (bm+n−1, bm+n)} be the set of all edges in the backbone of G. We use the following
static subgraphs of G to construct a TVG G. For all si in S, let pass(i) = (V,B ∪ {(bm+i, pi)}),
and let take(i) = (V,Ei), where Ei = B ∪ {(bj , vj) : j ∈ si}. Let check = (V, {(b0, p0)}). Let
finish = (V, F), where F = B ∪ {(bm+i, pi) : 1 ≤ i ≤ n+ 1} ∪ {(bm+n+1, pn+1). Let back = (V,B).

Define the TVG G = (back,m+ n), (pass(1), 1), (take(1), 3m), (pass(1), 1), ...,(back,m+ n),
(pass(n), 1),(take(n), 3m),(pass(n), 1), (back,m+ n), (check, 2),(finish,m+ n+ 2 + 2k). The total
duration of G is D = n(4m+n+ 2) + (m+n) + 2 + (m+n+ 1 + 2k) = n2 + 4mn+ 4n+ 2m+ 2k+ 3.

Consider the problem of deciding if DMVP over G with a single agent a starting at b0 has a
solution of length no more than D. This problem is in NP, since given a journey over G, we can
easily check that it hits every vertex, and that all of its edges are available at the correct times.
Such a solution can be no longer than D, since D is the total duration of G.

Suppose S contains a cover C of U of size k or less. Then for all si ∈ C, a takes si, that is, a
travels to b0 during back, and visits all vj ∈ si, and returns to the backbone during take(i), which
is possible since the duration of take(i) is 3m, which allows a to take all of the at most m available
elements while traveling up the backbone. Since C is a cover of U , a visits all vi. For all si /∈ C, a
passes si, that is, a moves to bi+m during back, and to pi during the first pass(i), waits at pi during
take(i), and returns to bi+m during the second pass(i). During the final back, a moves to b0, and
during check, a moves from b0 to p0, then back to b0. At this point, since |C| ≤ k, a has passed at
least n− k si’s. So, there are no more than k pi’s left unvisited. a visits these during finish, each
at cost 2 off the path length m+ n+ 2 path up the backbone to pn+1, thus completing visitation of
all vertices of G in no more than D steps (e.g., Table 1).

Suppose there exists a solution to this instance of DMVP of length no more than D. Prior to
finish, a must have visited at least n − k pi’s, since finish only lasts for 2k − 1. So a must have
passed at least n − k si’s. Taking and passing for a single si are mutually exclusive, because if a
moves to pi during the first pass(i), a must wait during take(i), and if a both takes si and moves to
pi during the second pass(i), a will be trapped at pi until finish, and will never be able to reach p0,
which must be visited during check, the only input time at which p0 is available. Thus, a could have
taken no more than k si’s. During these k or fewer takes, a must have covered all v1, ..., vm. So, the
union of these k or fewer take(i)’s contains all edges (c, vj), which implies that the corresponding
si’s form a cover of U or size k or less. Hence, the decision problem is NP-complete.

Consider the minimization version of the problem with the same setup. Since it is NP-hard to
decide if there is a solution of length D or less, it is NP-hard to find such a solution. But after D
steps, a may have to wait an arbitrarily long time for the next edge is a feasible solution to appear, so
any feasible solution that takes longer than D steps can be arbitrarily long. Therefore, the problem
cannot be approximated within any factor.

We have a similar set of lower bounds for the case of B, but with some ability to approximate.
We later show (Theorem 11) that these approximation bounds are indeed tight for all trees.

Theorem 3. DMVP for a single agent in B is NP-hard to approximate within any factor less than
∆, even when the underlying graph is a spider, ∀∆ > 1.

Proof. We reduce from 3-partition. Given a multiset of 3m positive integers S = {s1, ..., s3m}, it is
strongly NP-complete to decide if they can be partitioned into m sets where all sets have the same
sum [17]. Let

∑3m
i=1 si = M. Then B = M/m is the required sum for each partition.

Starting with the common central vertex c, construct a spider in the following way. For each
si ∈ S, add a corresponding arm of length si. Add m arms of length one to be used as checkpoints,
and add a single long arm A0 of some length k > 2M+2m (e.g., Figure 3). For the TVG used in this
proof, arms over any period of time are in one of three modes: steady, flashing, or carrying. When
an arm A is steady over a period of time from τ to τ ′, all of its edges are constantly available during

pass(1)

b0

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0

p5

take(1)

b0

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0

p5

back

b0

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0

p5

check

b0

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0

p5

finish

b0

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

v1

v2

v3

v4

v5

p1

p2

p3

p4

p0

p5

Agent location after each static
temporal subgraph in dark gray;
nodes covered so far in light
gray.

Figure 2: Thm. 2 sample static snapshots for U = {1, 2, 3, 4, 5}, s1 = {1, 2, 4} ∈ S, with |S| = 4,
and k = 2.

that period. When A is flashing, all of its edges synchronously alternate between being unavailable
for ∆−1 steps, and available for 1 step, satisfying the time-bounded recurrence constraint. Formally,
if A is flashing, then ∀e ∈ A, t ∈ [τ, τ ′],

ρ(e, t) =

{
1 if t− τ ≡ p− 1 mod p,

0 otherwise.

When A is carrying, all of its edges act as if A were flashing, with the exception that the edge distance
i from c is always available at time τ + i, so that starting at time τ , an agent at c can travel along A
for τ ′− τ steps without waiting. Formally, if A = ca0...al is carrying, then ∀(u, v) ∈ E(A), t ∈ [τ, τ ′],

ρ(e, t) =

1 if t− τ ≡ p− 1 mod p,

1 if v = at−τ ,

0 otherwise.

Let take be the temporal subgraph of duration 2B in which the arms corresponding to si’s are
steady, and all others are flashing. Let check be the temporal subgraph of duration 2 in which all
checkpoint arms are steady, and all others are flashing. Let finish be the temporal subgraph of
duration k in which all arms are flashing except for A0, which is carrying. Let G be the TVG formed
by alternating between take and check m times, before ending with finish. The total duration of
G is D = 2M + 2m+ k.

Consider the problem of deciding if DMVP over G with a single agent a starting at c has a solution
of length no more than D. Since k > 2M + 2m, such a solution must take the long arm last, as
traversing this arm twice would result in a solution of length greater than 2k > (2M + 2m) +k = D.
Furthermore, since every arm must be traversed twice except the long arm, the topological length
of a solution journey can be no less than 2M + 2m + k = D. So a solution of temporal length no
more than D cannot involve waiting.

Suppose there exists a 3-partition of S. During each take, a can explore the arms of the spider
corresponding to one partition, and return to c in exactly 2B steps. During the subsequent check,
a visits one checkpoint arm, and returns to c in the allotted 2 steps. Repeating this process for the
remaining takes and checks, a will cover all the si arms and checkpoint arms without ever waiting,
and end up again at c. Finally, during finish, a takes the long arm A0, reaching its leaf without
waiting, completing coverage in D steps.

Now, suppose this instance of DMVP has a solution of length D. To avoid waiting, a must take
complete arms and return to c during each take, so that it is not stalled by flashing. Similarly,
a must take a single checkpoint arm and return to c during each check. Doing this m times, a
has effectively partitioned the si arms into sets each of total length B. So, the decision problem is
NP-complete, since 3-partition remains NP-complete even when input integers are given in unary. a
completes the solution by following the long arm A0, which can be traversed in k steps immediately
after a returns to c from the final checkpoint.

Consider the minimization version of the problem with the same setup. Note that if a does not
begin taking A0 right as finish begins, A0 will take at least ∆(k − 1) + 1 to traverse, this best
case occurring when a does not have to wait for the first edge. In particular, if a takes A0 last,
but has not visited all other arms before finish starts, visiting those arms must have taken at least
2M + 2m+ (∆− 1) > 2M + 2m,∀∆ > 1, since a must wait at least once during its traversal. The
total cost of the solution is then at least D′ = ∆(k− 1) + 1 + 2M + 2m+ (∆− 1) = ∆k+ 2M + 2m.
If a does not take A0 last, it must traverse A0 twice, taking at least ∆(k− 1) + 1 +k steps (this best
case occurring when a starts taking the long arm out right as finish starts), and once it returns
must wait at least once while traversing the remaining arms, making the length of the total solution
at least D′′ = ∆(k − 1) + 1 + k + 2M + 2m + (∆ − 1) = ∆k + 2M + 2m + k > D′. Take any real
constant δ < ∆. Choose the least integer N s.t. N > 1

∆−δ . Let k = Nδ(2M + 2m). Then,

(∆− δ)Nδ(2M + 2m) > δ(2M + 2m),

A0

c

Figure 3: Underlying spider for Thm. 3 for 3-partition input: S = {2, 3, 4, 4, 5, 8}.

(∆− δ)k > δ(2M + 2m),

∆k > δ(2M + 2m+ k),

∆k + 2M + 2m = D′ > δD, ∀∆ > 1.

Therefore, any solution that contains waiting cannot be a δ-approximation. So, finding a δ-approximation
is equivalent to finding a solution with no waiting, i.e., a minimal solution, and thus is NP-hard.
Hence, the problem is NP-hard to approximate within any factor less than ∆.

Theorem 4. DMVP for a single agent in B is NP-hard to approximate within any factor less than
∆, even when the underlying graph is a comb, ∀∆ > 1.

Proof. We use a similar extension to that for R to extend this result from spider to a comb with
long enough arms. We again reduce from 3-partition. Given a multiset of 3m positive integers
S = {s1, ..., s3m}, it is strongly NP-complete to decide if they can be partitioned into m sets where
all sets have the same sum [17]. This result clearly still holds even when m is even. So suppose m

is even and, let
∑3m
i=1 si = M. Then B = M/m is the required sum for each partition.

Let l = 7m2

2 − 3m
2 +4. Starting with a backbone β = b1...b4m+1, construct a comb in the following

way: For each si ∈ S, add a corresponding arm of length lsi attached to β at bm
2 +i. Add m arms

c1, ..., cm of length one to be used as checkpoints, with ci attached at bm
2 −

i−1
2

if i is odd, and b 7m
2 + i

2

if i is even. Add a single long arm of some length k > 2lBm + 7m2

2 − 2m
2 + 3, attached at b4m+1.

For the TVG used in this proof (e.g., Figure 4), arms over any period of time are in one of three
modes: steady, flashing, or carrying (see the proof of Theorem 3).

Assume all edges in β be available at all times, unless stated otherwise. Let take be the temporal
subgraph of duration 2lB+3m in which the arms corresponding to si’s are steady, and all others are
flashing. Let check(j) be the temporal subgraph of duration i+ (i mod 2) + 2 in which checkpoint
cj ’s arm is steady, and all others are flashing. Let finalcheck be the temporal subgraph of duration
m
2 +2 in which checkpoint cm’s arm is steady, and all others are flashing. Let finish be the temporal
subgraph of duration k in which β is flashing, and all arms are flashing except for the long arm of
length k, which is carrying. Let G be the TVG take, check(1), take, check(2), ..., take, check(m −
1), take, finalcheck, finish. The duration of G up until the start of finish is d = 2lBm + 3m2 +∑m
i=1(i+ (i mod 2) + 2) + m

2 + 3 = 2lBm+ 7m2

2 − 2m
2 + 3. The total duration of G is D = d+ k.

Consider the problem of deciding whether DMVP over G with a single agent a starting at b 7m
2

has a solution of length no more than D. Since k > 2lBm + 7m2

2 − 2m
2 + 3, such a solution must

take the long arm last, as traversing this arm twice would result in a solution of length greater than

2k > (2lBm+ 7m2

2 − 2m
2 + 3) + k = D.

Suppose there exists a 3-partition of S. During the jth take, if j is odd (even), starting at b 7m
2

(bm
2 +1), a can explore the arms of the spider corresponding to one partition, and end up at bm

2 +1

(b 7m
2

) in exactly 2Bl + 3m steps. During the subsequent check(j), a visits cj , and returns to bm
2 +1

(b 7m
2

) in exactly i+ (i mod 2) + 2 steps. During finalcheck, a travels from b 7m
2

to cm and then to
b4m+1 in the allotted m

2 + 2 steps. Finally, during finish, a takes the long arm, reaching its leaf
without waiting, completing coverage in D steps.

Now, suppose this instance of DMVP has a solution of length D. If there is no 3-partition
of S, then a must wait during traversal of at least one arm corresponding to an si. Since the
length of this arm is lsi, a must in fact wait for at least l edges of this arm, incurring a cost of

(∆− 1)l = (∆− 1)(7m2

2 − 3m
2 + 2). Since in the length D solution described above a never waits on

an arm, this incurred cost must be made up for by minimizing traversal of edges in β. However, in

the length D solution described above, a only traverses β for a total of 7m2

2 − 3m
2 + 1 < (∆ − 1)l

steps, ∀∆ > 1. Therefore, the solution must be in the form of the solution described above in which
a 3-partition of S does indeed exists. So, the decision problem is NP-complete, since 3-partition
remains NP-complete even when input integers are given in unary.

Consider the minimization version of the problem with the same setup. Note that if a does not
begin taking the long arm right as finish begins, the long arm will take at least ∆(k − 1) + 1 to
traverse, this best case occurring when a does not have to wait for the first edge. In particular, if a
takes the long arm last, but has not visited all other arms before finish starts, visiting those arms
must have taken at least d+ (∆− 1), since a must wait at least once during their traversal, and the
total cost of the solution is then at least D′ = ∆(k − 1) + 1 + d+ (∆− 1) = ∆k − 1 + d. If a does
not take the long arm last, it must traverse the long arm twice, taking at least ∆(k − 1) + 1 + k
steps (this best case occurring when a starts taking the long arm right as finish starts), and once it
returns must wait at least once while traversing the remaining arms, making the length of the total
solution at least D′′ = ∆(k− 1) + 1 + k+ d+ (∆− 1) = ∆(k+ 1) + d > D′. Take any real constant
δ < ∆. Choose the least integer N s.t. N > 1

∆−δ . Let k = Nδd. Then

(∆− δ)Nδd > δd,

(∆− δ)k > δd,

∆k > δd+ δk,

∆k + d = D′ > δD, ∀∆ > 1.

Therefore, any solution that contains waiting cannot be a δ-approximation. So, finding a δ-approximation
is equivalent to finding a solution with no waiting, i.e., a minimal solution, and thus is NP-hard.
Hence, the problem is NP-hard to approximate within any factor less than ∆.

As is shown in Section 4, there is a much greater potential for tractability of DMVP in P than
in B or R. However, the next result follows immediately via reduction from hamiltonian path by
simply restricting t to n− 1.

Theorem 5. DMVP for a single agent in P is NP-complete, when p = 1.

Proof. p = 1 is simply the static case, so the theorem follows immediately from the result that MVP
is NP-complete for a single agent on general graphs [1].

DMVP in P for p = 1 is then also NP-complete for all classes of graphs for which hamiltonian
path is NP-complete, in particular, planar graphs of maximum degree 3, bridgeless undirected planar
3-regular bipartite graphs, and 3-connected 3-regular bipartite graphs [3]. To show that P is an
interesting dynamics class for DMVP in its own right, it is important to show that DMVP yields

b1 b2 b3 b4 b5 b6 b7 b8 b9

c1 c2

Figure 4: 3-partition underlying comb for some S with |S| = 6. Agent starts at b8.

different hardness results over P than over static graphs. Thus, we construct a class of graphs for
the following result:

Theorem 6. There is an infinite class of graphs C such that DMVP for a single agent in P over
graphs in C is NP-complete when p = 2, but trivial when p = 1.

Proof. Given a graph G with an even number of vertices arbitrarily ordered v0, ..., vn−1, con-
struct a corresponding graph G′ ∈ C by adding n new vertices c0, ..., cn−1, and adding the edges
(vi, ci), (vi, ci+1), and (ci, ci+1) for all 0 < i < n, where indices are taken mod n.

To show the problem is NP-complete for a single agent in P over graphs in C, with p = 2, we
reduce from the hamiltonian path problem [21]. Consider a graph G with an even number of vertices
n, and one of those vertices v0, with the problem of deciding whether G contains a hamiltonian path
starting at v0. Take the graph G′ ∈ C corresponding to G as the underlying graph of G. G begins
at time 0. In P with p = 2, traversable edges can only be one of three possible types: (01) available
at odd times but not even times, (10) available at even times but not odd times, (11) available at
all times. Let all original edges of G be of type 11. Let (vi, ci) be of type 01 when i is even and type
10 when i is odd. Let (vi, ci+1) be of type 10 when i is even and 01 when i is odd. Let (ci, ci+1) be
of type 10 when i is even and 01 when i is odd (see Figure 5).

Consider the problem of deciding if DMVP over G for a single agent a starting at v0 has a solution
of length no more than 2n − 1, i.e., a solution with no waiting, and in which each vertex is visited
exactly once. This problem is clearly in NP. If there is a hamiltonian path in G from v0 vertex vi,
then this path will be constantly available in G. a can take this path in n− 1 steps, and, ending at
an odd time, immediately follow (vi, ci) if i is even, or (vi, ci+1) if i is odd, then follow either the
path cici+1ci+2...ci−1 or ci+1ci+2ci+2...ci, the edges for which are always available as a reaches the
incoming vertices, thus completing the overall traversal in exactly 2n− 1 steps. Suppose there is a
solution to this problem of length 2n−1. By construction, if a moves to any ci before covering every
vj , a must then wait at least once at some ck before visiting any further vl. This is because for all
ci, once ci is reached via either (vi−1, ci), (vi, ci), or (ci−1, ci) the only edge that can be immediately
taken without waiting is (ci, ci+1). So a must visit all vj exactly once without visiting any ci, thus
following a path corresponding to a hamiltonian path in G.

However, if we consider the same setup over G′ but with p = 1, v0c1v1c2v2...
cn−1vn−1c0 is always an optimal solution.

4 Upper Bounds

In this section, we map out a class of graphs over which DMVP in R is solvable in polynomial time.
We first start with a very useful lemma. Note that a related observation (about turning around on
a ring) was made in [20].

Lemma 1 (Turning around lemma). There is always an optimal solution J that never turns around
at a degree 2 vertex of the edge-induced subgraph of J in G.

Proof. Suppose v is a degree 2 vertex with neighbors u,w in the edge-induced subgraph of J in G.
Suppose agent a takes edge (u, v) at time τ , then turns around, taking (u, v) at time τ ′ as the very
next edge in its traversal. Since (v, w) is in the edge-induced subgraph of J , a must traverse (v, w)
at some other time, thereby reaching v at that time. So, a could have waited at u from times τ to
τ ′ + 1, instead of taking (u, v) at time τ , and the solution would still be optimal (see Figure 6).

We apply Lemma 1 to get the following solvability results for restricted classes of underlying
graphs.

Theorem 7. DMVP for a single agent in R on a path is solvable in O(T) time.

Proof. Consider DMVP for a single agent a with underlying graph G the path v0v1...vn, and a
starting at vk. To reach v0, a must cover all vk−1, ..., v1 along the way. Similarly, to reach vn, a
must cover all vk+1, ..., vn−1. By Lemma 1, an optimal solution can be constructed by first taking
a foremost journey to either v0 or vn, then taking the foremost journey to the remaining endpoint.
One of these two topological journeys, called the left and right journeys, must embody an optimal
solution, but in the worst case edge availability must be checked for all t ∈ T , yielding an O(T)
runtime.

Theorem 8. DMVP for a single agent in R on a cycle is solvable in O(Tn) time.

Proof. A similar case to Theorem 7 can be made for the cycle C = v0v1...vnv0. Suppose a starts
at v0 at time 0. Consider an optimal visitation of C for a. In this optimal solution, there is some
vertex vk 6= v0 that is visited last. The second to last vertex is then either vk−1 or vk+1. If it is
vk−1, then a must have already visited vk+1 without visiting vk. So, the edge (vk+1, vk) is never
traversed. Therefore, the solution reduces to an optimal solution over the path graph vkvk−1...vk+1

starting at v0. Similarly, if instead vk+1 is the vertex visited second to last, then a must have
already visited vk−1 without visiting vk, and the solution reduces to an optimal solution over the
path vk−1vk−2...vk+1vk. Since there are n−1 possible final vertices for an optimal solution, the cost
of an optimal solution can be computed by for each of these vertices computing the minimal cost
between optimal coverage of each of the two corresponding paths using Algorithm 1, and taking
the minimum over all n − 1 vertices possible final vertices (see Figure 7). This yields an O(Tn)
runtime.

Now we show that despite the severe inapproximability of DMVP over R, we can always compute
an optimal solution in exponential time.

Theorem 9. DMVP for a single agent in R is solvable in O(Tn3 + n22n) time.

G

G′

v0

v1 v2

v3

v4v5

c0

c1 c2

c3

c4c5

01

01

01

10

10

10

10

10

10

01

0101

10

01

10

01

10

01

Figure 5: G (from Thm. 6) with underlying graph G′ constructed from some six-node graph G.
Edges labeled 10 are available at even times; 01 at odd times.

v0 v1 v2 v3 v4 v5

Figure 6: The 7 ways, satisfying Lemma 1, of covering the vertices of a length 5 path with degree 2
intermediate nodes.

Proof. The proposed algorithm first computes all-pairs-all-times-foremost-journey of input TVG G,
using a straightforward dynamic programming algorithm, then uses this information to run another
dynamic programming algorithm, conceived along the lines of a standard method for TSP [5].

Let dtuv be the length of the foremost journey from u to v, starting at time t. Algorithm 2
computes dtuv for all vertex pairs (u, v), and times t ∈ T for a given TVG G.

At all times t, for all vertices u ∈ V , dtuu is clearly 0. At time T , the time limit has been reached,
so an agent cannot move to another vertex in any guaranteed time, and thus we set dTuv =∞ for all
u 6= v. For all T − 1 ≥ t ≥ 0, in the worst case an agent can wait at u for one step, and take the
foremost journey to v starting at time t+ 1. If there is a better journey than this, it must consist of
not waiting, rather taking one of the edges available at time t from u to some vertex k. Subsequently
taking the foremost journey from k to v starting at time t+ 1 results in an optimal journey through
k. Algorithm 2 clearly runs in O(Tn3) time, and uses O(Tn2) space.

Algorithm 3 uses the dtuv values computed by Algorithm 2 to compute the cost of a minimal
solution to DMVP for a single agent in R. Let V ′ ⊆ V and c(V ′, v) be the minimal time it takes to
visit all vertices in V ′ starting at vertex s at time 0 and ending at vertex v ∈ V ′.

After initializing the minimal costs for visiting subsets up to size 2, the algorithm repeatedly uses
the minimal costs for size i subsets to calculate c(V ′, v) for each size i+ 1 subset V ′ and v 6= s ∈ V ′.
Once computed up to size n, the algorithm returns the minimal cost among journeys that cover all
vertices. This is an optimal solution to DMVP as it is the minimum cost of taking foremost journeys
between vertices that results in a complete cover. There are 2n subsets of V , and so n2n subset-
vertex pairs of the form (V ′, v). For each of these, the algorithm computes the minimum of O(n)
values. So, Algorithm 3 has running time O(n22n). Since it saves one cost for each subset-vertex
pair, Algorithm 3 also uses O(n2n) space. Sequentially running Algorithm 2 followed by Algorithm
3, we have a complete algorithm for DMVP for a single agent in R, with combined running time
O(Tn3 + n22n).

Almost-trees have been previously studied with respect to fixed parameter tractability (e.g., [15]).
We use Theorem 9 to generalize Theorems 7 and 8 with the following:

Theorem 10. DMVP in R is fixed parameter tractable, when G is an m-leaf c-almost-tree, for fixed
parameter m, and c constant.

Proof. First, consider the restricted case where G is an m-leaf tree. Since every leaf must be visited,
and visiting all leaves implies coverage of the entire tree, there is a minimal solution that can be
thought of as an ordering of the set of leaves of G, and the foremost journeys between them. In this
case, there is only one way to visit any node, namely, on the way to a leaf. Using this observation
and Algorithm 3 from the proof of Theorem 9, we see that we only need to consider all orderings of

Algorithm 1 DMVP-Line(G, {vk})
lLoc = rLoc = k . Both possible journeys start at vk
lTurned = rTurned = complete = False
t = 0
while not complete do

if not lTurned then . Advance left journey if possible
if ρ((vlLoc, vlLoc−1), t) = 1 then

lLoc = lLoc− 1
if lLoc = 0 then . Left endpoint reached

lTurned = True
else

if ρ((vlLoc, vlLoc+1), t) = 1 then
lLoc = lLoc+ 1
if rLoc = n then . Right endpoint reached

complete = True

if not rTurned then . Advance right journey if possible
if ρ((vrLoc, vrLoc+1), t) = 1 then

rLoc = rLoc+ 1
if rLoc = n then . Right endpoint reached

rTurned = True
else

if ρ((vrLoc, vrLoc−1), t) = 1 then
rLoc = rLoc− 1
if rLoc = 0 then . Left endpoint reached

complete = True

t = t+ 1 . Step

return t

leaves, instead of all orderings of vertices, yielding a run time of O(Tn3 + m22m), which is indeed
fixed parameter tractable for parameter m.

Suppose the underlying graph G of G is an m-leaf c-almost-tree. Consider all edges e such that
removing e from G results in a (c−1)-almost-tree. Each of these edges lies on some path P such that
removing any edge of P will similarly result in a (c− 1)-almost-tree, and every intermediate vertex
on the path has degree 2. Suppose P is the path v0...vl. Since G is an m-leaf c-almost-tree, there
are O(m) paths of this type. The edge-induced subgraph G′ of the underlying walk of an optimal
covering of G can be any (c − c′)-almost-tree ⊆ G, for 0 ≤ c′ ≤ c. For each c′, a solution involves
selecting c′ paths, each of O(n) length, from which to remove an edge. So, there are O(mc′nc

′
)

possible choices of (c − c′)-almost-trees, and thus O(
∑c
c′=0(mc′nc

′
)) = O(mcnc) choices for G′.

Every G′ has no more than m + 2c leaves. Since every edge of G′ is covered, by Lemma 1, there
are at most 2 ways to cover each of the remaining O(m) paths v0...vl of intermediate vertex degree
2, namely: entering at v0 and exiting at vl, or entering at vl and exiting at v0. Augment the set
of leaves to be ordered in a solution with the selected ways of covering these paths, that is, select
one of the consecutive subsequences v0vl or vlv0 to be in the ordering. With this augmentation, we
still have a set of O(m) elements to be ordered, the optimal ordering of which can be computed
via Theorem 9 in O(Tn3 + m22m) time. The minimum over all ways of covering G′ can then be
computed in O(2m)O(Tn3 +m22m) = O(Tn32m +m222m). The overall minimum cost for covering
G can then be computed by taking the minimum cost over all O(mcnc) edge-induced subgraphs in
O(mc′nc)O(Tn32m +m222m) = O(Tn3+cf(m)) time.

The following result follows immediately for the case when m = O(lg n).

v0

v1

v2

v3

v4

Figure 7: The 8 possible underlying walks of solutions, satisfying Lemma 1, to the 5-cycle starting
at v0.

Corollary 1. DMVP in R is solvable in polynomial time, if G is an O(lg n)-leaf c-almost-tree, for
c constant.

We conjecture (see Section 5) that the maximal class of graphs over which DMVP in R is poly-
time solvable is the class of all graphs with polynomially many spanning trees, all of which have
O(lg n) leaves.

Since DMVP in B is bounded by 2∆n, the running time of the algorithm in Theorem 9 on TVGs
over B reduces to O(∆n4 +n22n). We also see that we are able to greatly improve on approximation
from R to B:

Theorem 11. DMVP in B over a tree can be ∆-approximated in O(n) time. This approximation
is tight.

Proof. In [1], it is shown that minimal MVP cost C can be computed in O(n) for static graphs. In
the dynamic case, the journey corresponding to following exactly the edges in the static solution
when they are available can be followed, waiting at most ∆− 1 steps for each edge to appear before
it is traversed. Since no solution can be better than C, and the proposed journey takes at most
∆C, it must be a ∆-approximation. From Theorems 3 and 4, we know there can be no better
approximation. Hence, this approximation is tight.

Theorem 12. DMVP in B can be 2∆-approximated by any online spanning tree traversal of G.

Proof. The topological length of a spanning tree traversal is no more than 2n−3. In the worst case,
waiting ∆− 1 time steps for each subsequent edge to appear results in coverage of G in 2n∆− 3∆
steps. The fastest possible coverage of G is via the traversal of a hamiltonian path in G without
waiting, which takes n− 1 steps, and 2∆(n− 1) > 2n∆− 3∆.

Algorithm 2 All-pairs-all-times-foremost-journey(G)

for all u, v ∈ V × V do . Initialize base case for t = T .
if u = v then

dTuv = 0
else

dTuv =∞ . Since input ends at T , agent cannot move.

for t = T − 1, ..., 0 do . Work backwards until start time t = 0.
for all u, v ∈ V × V do

if u = v then
dtuv = 0

else
dtuv = dt+1

uv + 1 . In worst case, just wait at u.
for all k ∈ V do

if ρ((u, k), t) = 1 then . Check for better route.
dtuv = min(dtuv, d

t+1
kv + 1)

Algorithm 3 DMVP(G, {s})
c({s}, s) = 0 . Initialize subset of size 1.
for all v 6= s ∈ V do . Initialize subsets of size 2.

c({s, v}, v) = d0
sv

for i = 3,...,n do . Build up to subsets of size n.
for all S ⊆ V s.t.|S| = i do

for all v 6= s ∈ V do

c(V ′, v) = minu 6=s∈V ′\{v}(c(V ′ \ {v}, u) + d
c(V ′\{v},u)
uv)

return minv 6=s∈V (c(V, v))

Theorems 3 and 4 show the tightness of Theorem 11. Here, B is starkly differentiated from R in
that we have at least some ability to approximate in B. See Section 5 for a further discussion of the
relationship between these two classes.

Similar to the case for B, DMVP in P is bounded by 2pn, so the running time of the algorithm in
Theorem 9 reduces to O(pn4 + n22n). To exemplify the differences between P and B, and motivate
interest in the tractability of DMVP over P, we first give the following simple example:

Theorem 13. For any p, there is a class of problems over combs, for which DMVP in B is NP-hard,
but in P is solvable by the online algorithm: take arms when you get to them.

Proof. Suppose an agent a starts at b0. a can either take A0 immediately, or travel along B to visit
other arms and return to visit A0 at a later time. Suppose the fastest an agent starting at b0 can
visit the leaf of A0 and return to b0 is l steps. Then the longest this could possibly take a starting
at time 0 is l + (p− 1) steps, this worst case occurring when a must wait p− 1 steps for the fastest
journey to become available. Suppose the fastest journey from b0 to bk takes k′ steps. Then in the
worst case, traveling from b0 to bk takes k′ + (p − 1) steps. Suppose the fastest coverage of the
remaining induced subgraph G′ = G \ (A0 ∪ {b0, ..., bk−1}) takes m steps.

If G′ has only one arm, the foremost journey from bk to the leaf of this arm is clearly optimal.
Assume that if G′ has α arms, then the following online algorithm results in an optimal solution: if
at the endpoint of an unvisited arm, take that arm, otherwise visit the next unvisited vertex of B.
In the α + 1 arm case, our agent starting at b0 using this algorithm will complete coverage in no
more than l + (p− 1) + k′ + (p− 1) +m = l + k + (2p− 2) +m steps. But any solution in which a

A0 A1 A2

k ≥ 2p− 2 k

b0 bk b2k

Figure 8: Segment of an underlying comb for which DMVP in P for an agent starting at b0 is solved
by the simple online tree traversal algorithm, regardless of the lengths of each arm Ai

does not take A0 first must cost at least l+ k′ + k+m, as a must retraverse bk...b0 on its way back
to cover A0. Since k ≥ 2p− 2, the online solution must be minimal.

It is straightforward to modify Theorem 4 (i.e., by appropriately scaling up the underlying
graph: elongating arms, extending the backbone, separating arms along the backbone, and adding
an additional check tooth at b0) to show that DMVP over the above class of combs is NP-hard in
B, for a single agent starting at b0.

The quality of P we take advantage of above is that if the fastest journey between two nodes
takes d steps, the foremost journey can take no longer than d+ (p− 1), while in B it can be as bad
as d∆. We again harness this effect in the following result, a stronger theorem in the context of our
inapproximability results for R and B (Theorems 1 and 3):

Theorem 14. DMVP in P over a spider is solvable in polynomial time, for fixed p.

Proof. Starting at the center c of the spider, it is never useful for an agent to travel along any arm,
unless it reaches a leaf. That is, an optimal solution is essentially an optimal visitation order of the
leaves. We can set up a cost function c(l, t) giving the minimal time it takes to travel from c to leaf
l and back, starting at time t. Since G is periodic, c(l, t) = c(l, t+ kp) ∀k ∈ Z. Suppose the fastest
journey from c to l and back has cost m(l). Let extra time e(l, t) = c(l, t)−m(l), be the cost above
minimum incurred by traveling to l and back starting at time t. 0 ≤ e(l, t) < p ∀l, t, since a can
always simply wait at most p− 1 steps for the periodically fastest journey to be available. For any
l, there are only p2 possible functions e(l, t), since for all 0 ≤ t (mod p) ≤ p− 1, 0 ≤ e(l, t) < p. Let
r(l, t) be the return time mod p of traveling to l and back, that is, c(l, t) = i =⇒ r(l, t) = t + i
(mod p). Classify each l by e and r. Let l1 ≡ l2 ⇐⇒ e(l1, t) = e(l2, t) and r(l1, t) = r(l2, t) ∀t. Since
for each t there are p choices for e and p choices for r, there are p3 such equivalence classes. During a
traversal of the spider, leaves with a common equivalence class are interchangeable, since at a given
time, taking any of the same class will result in equivalent incurrence of cost above minimum as
well as equivalent return time. Thus, a minimal traversal consists of traversing an ordering of arms
corresponding to a sequence of equivalence classes qi, such that the frequency of qi in the sequence
is the number of arms classified as qi.

Notice that for any length p traversed sequence q1q2...qp, by the pigeonhole principle, there must
be qi, qj with i < j such that r(qi, ti) = r(qj , tj), where ti is the start time for traversing the qi
arm, and tj is the start time for traversing the qj arm. Let Qt be a pattern if Q is a sequence
of equivalence classes with 0 < |Q| ≤ p, and starting at c at time t, the traversal of Q returns at
some time t′ ≡ t (mod p). Furthermore, Qt is not a pattern if it contains any subpatterns, i.e.,
traversed subsequence with equivalent start and end time. Any length p sequence must contain a

pattern. An optimal solution can be decomposed into a sequence alternating between patterns and
non-pattern subsequences between patterns. Any pattern can be removed from its location starting
at time t and inserted at any different location t′ ≡ t (mod p), since the fact that the pattern has
the equivalent start and end time means adjacent journeys will be unaltered, due to the periodicity
of G. In particular, any pattern Qt1 can be removed from its current location and inserted after
any Qt2, without changing the cost of the solution. So, given any optimal solution, the following
reordering process does not change the cost of the solution:

1. Divide the sequence into patterns Qt and stray arms in classes q not in patterns

2. Set i = 0, S = {0}

3. Sequence all Qi together starting at i

4. Identify new patterns created by this move

5. Repeat 2 and 3 until nothing changes

6. Consider earliest start time j of an arm such that j (mod p) /∈ S after final Qi

7. Let i = j, and add j to S.

8. Repeat 3 through 8 until nothing changes

After this process, all Qi are grouped together for all i, with fewer than p stray arms separating
each of these sequences of patterns, since in step 6, if there is no such j, then there must be fewer than
p arms left, otherwise there would be a pattern among these arms. Thus, the reordered sequence
also ends with fewer than p stray arms. Since we started with an optimal solution, and the above
process did not change the cost of the solution, there must be an optimal solution of this form.
Since every such reordering begins with the Q0 patterns, there are (p − 1)! orders in which the p
grouped sequences of patterns can show up. For each of these, there are at most p clusters of stray
arms each of length less than p. There are O(p5) ways to fill up these O(p2) slots with arms from

the p3 classes. Since there are O((p3)p) possible patterns, there are O(n(p3)p) ways to partition the

remaining O(n) arms in each class into patterns, and therefore O(n(p3)pp3) = O(n(p3)p+1

) ways to

partition all classes into patterns. This yields O((p− 1)!p5n(p3)p+1

) = O(n(p3)p+1

) possible solutions
of the form reached by executing steps 1-8 above, at least one of which must be optimal. The cost of
each of these possible solutions, of which there are polynomially many in |G|, can be easily computed
in time polynomial in |G|. If a does not start at c, but rather on some arm A, a can either visit the
leaf of A before returning or c, or return to c directly. Compute DMVP for the remaining arms in
each of these two cases will yield an overall optimal solution still in time polynomial in |G|.

This polynomial runtime can be significantly improved for the case of p = 2.

Theorem 15. DMVP in P over a tree is solvable in O(n) time, when p = 2.

Proof. Consider DMVP in P, with p = 2, over a tree T , for an agent starting at root o at time 0.
The proof proceeds as follows: We first show by induction that there is always an optimal solution
that never enters any of the subtrees of o’s children more than once. We then show that when
covered in its entirety, each subtree is of one of three types: (fw11) fastest coverage with return to
root is always available, (fw10) fastest coverage is available only at even times, and (fw01) fastest
coverage is available only at odd times. Alternating between fw10 and fw01 subtrees, and then
taking the remaining subtrees in any order, before ending at a furthest leaf results in an optimal
solution, as we maximize how many subtrees are traversed optimally. We can recursively compute
the type and costs of covering the maximal subtree rooted at each node v, in O(deg(v)) time for
each.

Suppose o has adjacent edges e1 = (o, u1), ..., ed = (o, ud). Let Tui be the maximal subtree
rooted at ui. Suppose agent a starts at o. Recall that since T is a tree, an optimal solution can be
characterized as the set of leaves ordered by when they are visited.

Suppose an optimal solution ends on some leaf of Tui . Assume that when Tui can be entered
at most k times during a solution, the solution that enters only once is still optimal. Suppose an
optimal solution Sk+1 enters Tui k + 1 times. Then there is some non-empty subgraph Tui

k of Tui

that a covers the upon the kth entry, and Tui

k+1 it covers upon the (k + 1)st entry. Let T ′ be the
subgraph of T covered between the kth and (k + 1)st entries into Tui . When a arrives at o before
entering Tui for the kth time, consider an alternate completion resulting in an alternate solution Sk,
in which a instead immediately covers T ′ and ends up back at o, at a cost of at most 1 plus the cost
of this coverage in Sk+1 (which must occur in Sk+1 after the kth entry into Tui). If Sk does incur a
cost over Sk+1 for this traversal, then both Sk and Sk+1 reach o at times τ and τ ′ with equal parity.
In Sk, a completes coverage of T during its kth entry to Tui , by covering Tui

k and returning to vi,
then immediately covering Tui

k+1. If τ and τ ′ have equal parity, then Tui

k+1 is traversed in both Sk
and Sk+1 in equal time. Otherwise, Sk may incur a cost of 1 over Sk+1 for this traversal. Therefore,
the combined coverage of T ′ and Tui

k costs at most 1 more in Sk than in Sk+1. Sk may incur an
additional cost of 1 over Sk+1 for its completing coverage of Tui

k+1, for a total incurrence of at most
2 over Sk+1 for these traversals. However, Sk+1 contains two additional traversals of ei, so the total
cost of Sk+1 can be no better than that of Sk. Therefore, the solution that enters Tui only once is
optimal.

Recall (from the proof of Theorem 6) that in P with p = 2, there are only three relevant
dynamic edge types: 01, which are available at odd times but not even; 10, which are available at
even times but not odd; and 11, which are available at all times. Let Tu be a maximal subtree
of T rooted at u. Let cw(Tu, i) be the cost of the foremost journey covering Tu, starting at time
t ≡ i mod 2, with returning to end back at u. Let c(Tu, i) be the cost of the foremost journey covering
without necessarily returning to u. Let mw(Tu) be the fastest cost of covering Tu with returning
to end back at u, and m(Tu) be the fastest cost of covering Tu without necessarily returning to
u. Notice that, since p = 2, the foremost cost of these coverings at any time can be no more than
cw(Tu, i) = mw(Tu) + 1 and c(Tu, i) = m(Tu) + 1, respectively. Classify Tu as fw11 if a fastest
coverage with return is always available; fw10 if it is available at even times, but not odd; fw01 if
at odd times, but not even.

To enable our characterization of an optimal ordering of subtrees, it is necessary that for any
tree T , if fastest coverage of T with return to o is always available, then fastest coverage takes
even time, otherwise, fastest coverage takes odd time. To see this, first consider height 1 trees (i.e.,
stars). Regardless of when a starts, if the numbers of 01 and 10 edges are equal, then a can alternate
between them, taking each at cost 3, and taking all 11 edges at cost 2, the total cost of which will be
even. If a starts at time 0 and there are more 10’s than 01’s, then a can take one more 10 than 01 at
cost 3, and take the rest at cost 4, for an odd total. Starting at time 1 a cannot save on this extra
edge. A similar case applies when there are more 01’s than 10’s, but for opposite start times. For
trees of greater depth, since each subtree need not be entered more than once, we can use similar
reasoning to the height 1 case. If there are the same number of fw01 as fw10 subtrees, alternate
between them to take them all fastest (each at odd cost), so fastest coverage is always available at
even cost. Otherwise, one more subtree of the more plentiful type could be taken fastest, depending
on start time.

Since each maximal subtree is covered independently, we can (as in the proof of Theorem 14)
look for patterns in a solution given as an optimal ordering of child subtrees. Notice that in this
case, as a result of the parity of coverage with return to o, there are only three patterns: (fw11),
(fw10, fw01), and (fw01, fw10). Given the above information for all of a tree T v’s maximal child
subtrees, we compute these values for T v:

Following the characterization of an optimal solution given in the proof of Theorem 14, we can
construct S0, an optimal solution with return that starts at time t ≡ 0 mod 2 by first taking as many

copies of (fw10, fw01) as possible, since each of these will result in fastest traversals of the covered
subtrees (because fastest coverage of fw10 and fw01 arms always takes odd time), taking one more
fw10 if possible, before taking the remaining subtrees in any order. We construct S1, a similar
solution with return that starts at time t ≡ 1 mod 2, by taking an fw01 subtree before constructing
a time 0 solution in the same way as S0. Since we know the form of an optimal solution, we can easily
compute the cost of each of these two solutions in O(deg(v)). Then, for each i ∈ {0, 1} and each
subtree Tu of T v, we calculate the cost of covering Tv without return starting at time t ≡ i mod 2,
such that Tu is the final subtree covered. We can do this by subtracting the cost of covering Tu in Si,
adding 1 if the removal of Tu from Si necessarily decreases the number of subtrees taken optimally
in Si, and adding the cost of taking Tu without return at the end of this new solution. The foremost
cost of covering T v is the cost of the minimum solution over all Tu. Given the classification of Tu,
this computation takes constant time for each Tu, and thus O(deg(v)) overall. Given these costs,
it is trivial to classify T v. So, we can recursively compute all required values, at a cost of O(deg(v)
per node, and thus O(n) overall. The optimal cost of a complete solution is then c(T, 0).

We hypothesize that more efficient algorithms, such as the one for the p = 2 case, exist for this
type of problem for greater values of p, and even general p, via this method of piecing together fast
patterns. We have similar high hopes for larger classes of underlying graphs.

5 Open Problems and Discussion

This paper presents significant advances towards isolating the maximal class of graphs over which
DMVP in R is solvable in polynomial time. We conjecture that this maximal class is the class of all
graphs with polynomially many spanning trees, all of which have O(lg n) leaves. Furthermore, we
conjecture that this class is equivalent for R and B. But we are very interested in expanding this
class with respect to P, motivated by our solvability results for P over subclasses of trees. We have
shown that for the case of p = 2, DMVP for a single agent over general trees can be computed in
linear time. This result relies on the fact that we know how to optimally piece together patterns
with period 2. New methods for finding optimal pattern sequences could greatly reduce computation
for cases of p > 2. We are hopeful that DMVP in P will be shown to be poly-time solvable over
arbitrary trees or at least bounded degree trees, for greater values p both fixed and not fixed.

Considering B and R, B is clearly differentiated from R in that we have at least some ability
to approximate in B. There remains, however, an important open question: Is there any class C
of underlying graphs such that DMVP is NP-hard over C in R, but not in B? We are particularly
interested in whether or not DMVP in B is NP-hard when the underlying graph is a star and ∆ is
fixed, in particular, when ∆ = 2. Note: The proof of Theorem 1 implies it is hard when ∆ is some
relatively small function of the input. We conjecture that even for ∆ = 2 this problem is NP-hard,
but the highly-restricted nature of the input makes an answer to this problem more elusive than
some of the others we have results for. Towards an answer to this question, we give the following
observation:

Observation 2. DMVP in R over a spider with arms of uniform length l, e.g., a star (when l = 1),
can be decided in polynomial time, when t disallows waiting, i.e., t = 2n− l−d, where d is topological
distance from s to c.

Proof. Suppose G is a spider with arms of uniform length l. Then, G has n/l arms. Suppose a starts
at some vertex s distance d from the central vertex c. If t = 2n− l − d, then the only solution can
be a waiting-free spanning tree traversal of G starting at s. If d > 0, i.e., s 6= c, then the first leaf
visited must be the leaf of s’s arm. If a starts at c, any arm can be traversed first. In either case,
starting at the first time τ that a finds itself at c, a must traverse the O(n/l) = α remaining arms
a1, ..., aα each in time 2l, except for the final traversed arm, whose leaf is reached in l steps from c,
completing the solution. Starting at τ , break the remaining time into α − 1 length 2l time blocks

b1, ..., bα−1, and a final length l time block bα. For each ai, for each bj , we can straightforwardly
compute, in O(l) time, whether or not a can traverse aj and return to c during bj without waiting.
Deciding whether or not there exists a complete traversal of all α arms without waiting then reduces
to the problem of finding a perfect bipartite matching between arms and time blocks, for which
there are many known efficient polynomial time algorithms, e.g., [18].

Overall, our results show some instances where DMVP is tractable as well as showing that
DMVP faces difficult computational challenges for some natural classes of underlying topologies and
dynamics. These challenges motivate research into online, multi-agent solutions to the problem,
since in many cases having a complete global view of the present and future does not appear to be
very helpful; moreover, in agent-oriented applications ranging from software agents to mobile robots,
the information available to teams of agents can be bounded both temporally and geographically,
and such online, multi-agent approaches could be well suited to agent dynamics without diminishing
tractability. We have begun to take steps in this direction using edge markovian TVG models [4].
In these types of stochastic environments, investigating interactive agent policies is an especially
interesting direction to pursue.

References

[1] Aaron, E., Kranakis, E., Krizanc, D.: On the complexity of the multi-robot, multi-depot map
visitation problem. IEEE MASS, 795–800 (2011)

[2] Ahr, D., Reinhelt, G.: A tabu search algorithm for the min-max k-chinese postman problem.
Comp. and Ops. Res., 3403–3422 (2006)

[3] Akiyama, T., Nishizeki T., Saito N.: NP-completeness of the Hamiltonian cycle problem for
bipartite graphs. Journal of Info. Proc. 3.2, 73–76 (1980)

[4] Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic graphs. Distr.
Comp. 24.1, 31–44 (2011)

[5] Bellman, R.: Dynamic programming treatment of the travelling salesman problem. JACM, 9.1,
61–63 (1962)

[6] Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P., Sudan, M.: The
minimum latency problem: Proc. of 26th STOC, 163–171 (1994)

[7] Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Deterministic computations in
time-varying graphs. IFIP TCS, 111–124 (2010)

[8] Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic
networks. IJPED 27.5, 387–408 (2012)

[9] Chen, A., Koucky, M., Lotker, Z.: How to explore a fast-changing world. Autom., Lang. and
Prog. Springer, 121–132 (2008)

[10] Choset, H.: Coverage for robotics: a survey of recent results. Annals of Math and AI, 31,
113–126 (2001)

[11] Correll, N., Rutishauser, S., Martinoli, A.: Comparing Coordination Schemes for Miniature
Robotic Swarms. Springer Tracts in Adv. Robo., 39, 471–480 (2008)

[12] Easton, K., Burdick, J.: A coverage algorithm for multi-robot boundary inspection. Proc. of
ICRA, 727–734 (2005)

[13] Edmonds J., Johnson, E.: Matching, euler tours and the chinese postman problem. Mathemat-
ical Programming 5, 88–124 (1973)

[14] Fakcharoenphol, J., Harrelson, C., Rao, S.: The k-traveling repairman problem. Proc. of 39th
STOC (2007)

[15] Fiala, J., Kloks, T., Kratochvil, J.: Fixed-parameter complexity of λ-labelings. Discrete Applied
Math. 113.1, 59–72 (2001)

[16] Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks. Theoretical
Computer Science 469, 53–68 (2013)

[17] Garey, M., Johnson, D.: Computers and Intractability: A guide to the theory of NP-
completeness. W. H. Freeman (1979)

[18] Hopcroft, J., Karp R.: An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM
Journal on computing 2.4, 225–231 (1973)

[19] Ilcinkas, D., Wade, A.: On the power of waiting when exploring public transportation systems.
Prin. of Distr. Sys. Springer, 451–464 (2011)

[20] Ilcinkas D., Wade, A.: Exploration of the T-interval-connected dynamic graphs: the case of the
ring. Struct. Info. and Comm. Complexity. Spring, 13–23 (2013)

[21] Karp R.: Reducibility among combinatorial problems. In Complexity of Computer Computa-
tions. New York: Plenum, 85–103 (1972)

[22] Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. ACM Symp.
on Theory of Comp. (2010)

[23] Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. ACM SIGACT News 42.1,
82–96 (2011)

[24] Mans, B., Mathieson, L.: On the treewidth of dynamic graphs. COCOON, 349–360 (2013)

[25] Michail, O., Spirakis, P.: Traveling salesman problems in temporal graphs. MFCS (2014), in
press.

[26] Wagner, A., Lindenbaum, M., Bruckstein, A.: Distributed covering by ant-robots using evapo-
rating traces. IEEE Trans. on Robo. and Autom. 15.5, 918–933 (1999)

[27] Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic
networks. IJ Found. Comp. Sci. 14.02, 267–285 (2003)

	1 Introduction
	1.1 Definitions and TVG Concepts
	1.2 Main Results

	2 Preliminaries
	3 Lower Bounds
	4 Upper Bounds
	5 Open Problems and Discussion

