
Parameterized Algorithms for Graph
Partitioning Problems

Hadas Shachnai and Meirav Zehavi

Department of Computer Science, Technion, Haifa 32000, Israel
{hadas,meizeh}@cs.technion.ac.il

Abstract. We study a broad class of graph partitioning problems, where
each problem is specified by a graph G=(V,E), and parameters k and p.
We seek a subset U⊆V of size k, such that α1m1+α2m2 is at most (or at
least) p, where α1,α2∈R are constants defining the problem, and m1,m2

are the cardinalities of the edge sets having both endpoints, and exactly
one endpoint, in U , respectively. This class of fixed cardinality graph
partitioning problems (FGPP) encompasses Max (k,n−k)-Cut, Min k-
Vertex Cover, k-Densest Subgraph, and k-Sparsest Subgraph.

Our main result is an O∗(4k+o(k)∆k) algorithm for any problem in this
class, where ∆ ≥ 1 is the maximum degree in the input graph. This
resolves an open question posed by Bonnet et al. [IPEC 2013]. We obtain
faster algorithms for certain subclasses of FGPPs, parameterized by p,
or by (k + p). In particular, we give an O∗(4p+o(p)) time algorithm for
Max (k, n−k)-Cut, thus improving significantly the best known O∗(pp)
time algorithm.

1 Introduction

Graph partitioning problems arise in many areas including VLSI design, data
mining, parallel computing, and sparse matrix factorizations (see, e.g., [1,12,7]).
We study a broad class of graph partitioning problems, where each problem is
specified by a graph G=(V,E), and parameters k and p. We seek a subset U⊆V
of size k, such that α1m1 +α2m2 is at most (or at least) p, where α1,α2 ∈ R
are constants defining the problem, and m1,m2 are the cardinalities of the edge
sets having both endpoints, and exactly one endpoint, in U , respectively. This
class encompasses such fundamental problems as Max and Min (k,n−k)-Cut,
Max and Min k-Vertex Cover, k-Densest Subgraph, and k-Sparsest
Subgraph. For example, Max (k,n−k)-Cut is a max-FGPP (i.e., maximization
FGPP) satisfying α1 = 0 and α2 = 1, Min (k,n−k)-Cut is a min-FGPP (i.e.,
minimization FGPP) satisfying α1 = 0 and α2 = 1, and Min k-Vertex Cover
is a min-FGPP satisfying α1 =α2 =1.

A parameterized algorithm with parameter k has running time O∗(f(k)) for
some function f , where O∗ hides factors polynomial in the input size. In this
paper, we develop a parameterized algorithm with parameter (k + ∆) for the
class of all FGPPs, where ∆ ≥ 1 is the maximum degree in the graph G. For
certain subclasses of FGPPs, we develop algorithms parameterized by p, or by
(k + p).

ar
X

iv
:1

40
3.

00
99

v1
 [

cs
.D

S]
 1

 M
ar

 2
01

4

2 Hadas Shachnai and Meirav Zehavi

Related Work: Parameterized by k, Max and Min (k,n−k)-Cut, and Max
and Min k-Vertex Cover are W[1]-hard [8,4,11]. Moreover, k-Clique and
k-Independent Set, two well-known W[1]-hard problems [9], are special cases
of k-Densest Subgraph where p=k(k−1), and k-Sparsest Subgraph where
p= 0, respectively. Therefore, parameterized by (k+p), k-Densest Subgraph
and k-Sparsest Subgraph are W[1]-hard. Cai et al. [5] and Bonnet et al. [2]
studied the parameterized complexity of FGPPs with respect to (k+∆). Cai et al.
[5] gave O∗(2(k+1)∆) time algorithms for k-Densest Subgraph and k-Sparsest
Subgraph. Recently, Bonnet et al. [2] presented an O∗(∆k) time algorithm for
degrading FGPPs. This subclass includes max-FGPPs in which α1/2≤α2, and
min-FGPPs in which α1/2≥α2.1 They also proposed an O∗(k2k∆2k) time algo-
rithm for all FGPPs, and posed as an open question the existence of constants a
and b such that any FGPP can be solved in time O∗(ak∆bk). In this paper we an-
swer this question affirmatively, by developing an O∗(4k+o(k)∆k) time algorithm
for any FGPP.

Parameterized by p, Max and Min k-Vertex Cover can be solved in times
O∗(1.396p) and O∗(4p), respectively, and in randomized times O∗(1.2993p) and
O∗(3p), respectively [14]. Moreover, Max (k,n−k) Cut can be solved in time

O∗(pp) [2], and Min (k,n−k) Cut can be solved in time O(2O(p3)) [6]. Parame-
terized by (k+p), Min (k,n−k) Cut can be solved in time O∗(k2k(k+p)2k) [2].

We note that the parameterized complexity of FGPPs has also been studied
with respect to other parameters, such as the treewidth and the vertex cover
number of G (see, e.g., [13,3,2]).

Contribution: Our main result is an O∗(4k+o(k)∆k) time algorithm for the class
of all FGPPs, answering affirmatively the question posed by Bonnet et al. [2]
(see Section 2). In Section 3, we develop an O∗(4p+o(p)) time algorithm for Max
(k,n−k)-Cut, that significantly improves the O∗(pp) running time obtained in

[2]. We also obtain (in Section 4) an O∗(2k+
p
α2

+o(k+p)) time algorithm for the
subclass of positive min-FGPPs, in which α1≥0 and α2>0. Finally, we develop
(in Section 5) a faster algorithm for non-degarding positive min-FGPPs (i.e.,
min-FGPPs satisfying α2≥ α1

2 >0). In particular, we thus solve Min k-Vertex

Cover in time O∗(2p+o(p)), improving the previous randomized O∗(3p) time
algorithm.

Techniques: We obtain our main result by establishing an interesting reduction
from non-degrading FGPPs to the Weighted k′-Exact Cover (k′-WEC)
problem (see Section 2). Building on this reduction, combined with an algorithm
for degrading FGPPs given in [2], and an algorithm for k′-WEC given in [18],
we develop an algorithm for any FGPP. To improve the running time of our
algorithm, we use a fast construction of representative families [10,17].

In designing algorithms for FGPPs, parameterized by p or (k + p), we use
as a key tool randomized separation [5] (see Sections 3–5). Roughly speaking,
randomized separation finds a ‘good’ partition of the nodes in the input graph
G via randomized coloring of the nodes in red or blue. If a solution exists, then,

1 A max-FGPP (min-FGPP) is non-degrading if α1/2 ≥ α2 (α1/2 ≤ α2).

Parameterized Algorithms for Graph Partitioning Problems 3

with some positive probability, there is a set X of only red nodes that is a
solution, such that all the neighbors of nodes in X that are outside X are blue.
Our algorithm for Max (k,n−k)-Cut makes non-standard use of randomized
separation, in requiring that only some of the neighbors outside X of nodes in
X are blue. This yields the desired improvement in the running time of our
algorithm.

Our algorithm for non-degrading positive FGPPs is based on a somewhat
different application of randomized separation, in which we randomly color edges
rather than the nodes. If a solution exists, then, with some positive probability,
there is a node-set X that is a solution, such that some edges between nodes
in X are red, and all edges between nodes in X and nodes outside X are blue.
In particular, we require that the subgraph induced by X, and the subgraph
induced by X from which we delete all blue edges, contain the same connected
components. We derandomize our algorithms using universal sets [16].

Notation: Given a graph G= (V,E) and a subset X⊆V , let E(X) denote the
set of edges in E having both endpoints in X, and let E(X,V \X) denote the
set of edges in E having exactly one endpoint in X. Moreover, given a subset
X⊆V , let val(X)=α1|E(X)|+α2|E(X,V \X)|.

2 Solving FGPPs in Time O∗(4k+o(k)∆k)
In this section we develop an O∗(4k+o(k)∆k) time algorithm for the class of
all FGPPs. We use the following steps. In Section 2.1 we show that any non-
degrading FGPP can be reduced to the Weighted k′-Exact Cover (k′-
WEC) problem, where k′ = k. Applying this reduction, we then show (in Section
2.2) how to decrease the size of instances of k′-WEC, by using representative
families. Finally, we show (in Section 2.3) how to solve any FGPP by using the
results in Sections 2.1 and 2.2, an algorithm for k′-WEC, and an algorithm for
degrading FGPPs given in [2].

2.1 From Non-Degrading FGPPs to k′-WEC

We show below that any non-degrading max-FGPP can be reduced to the max-
imization version of k′-WEC. Given a universe U , a family S of nonempty
subsets of U , a function w : S →R, and parameters k′ ∈N and p′ ∈R, we seek
a subfamily S ′ of disjoint sets from S satisfying |

⋃
S ′| = k′ whose value, given

by
∑
S∈S′ w(S), is at least p′. Any non-degrading min-FGPP can be similarly

reduced to the minimization version of k′-WEC.
Let Π be a max-FGPP satisfying α1

2 ≥ α2. Given an instance I = (G =
(V,E),k,p) of Π, we define an instance f(I)=(U,S,w,k′,p′) of the maximization
version of k′-WEC as follows.

– U=V .
– S=

⋃k
i=1 Si, where Si contains the node-set of any connected subgraph of G

on exactly i nodes.
– ∀S∈S : w(S) = val(S).
– k′=k, and p′=p.

We illustrate the reduction in Figure 1 (see Appendix A). We first prove that
our reduction is valid.

4 Hadas Shachnai and Meirav Zehavi

Lemma 1. I is a yes-instance iff f(I) is a yes-instance.

Proof. First, assume there is a subset X⊆V of size k satisfying val(X)≥p. Let
G1 = (V1,E1), . . . , Gt = (Vt,Et), for some 1 ≤ t ≤ k, be the maximal connected
components in the subgraph of G induced by X. Then, for all 1≤ `≤ t, V` ∈S.

Moreover,

t∑
`=1

|V`|= |X|=k′, and

t∑
`=1

w(V`)=val(X)≥p′.

Now, assume there is a subfamily of disjoint sets {S1, . . . , St}⊆S, for some

1≤ t≤ k, such that

t∑
`=1

|S`|=k′ and

t∑
`=1

w(S`)≥p′. Thus, there are connected

subgraphs G1 =(V1,E1), . . . , Gt=(Vt,Et) of G, such that V`=S`, for all 1≤`≤ t.
Let X`=

⋃t
j=` Vj , for all 1≤ `≤ t. Clearly, |X1|=k. Since α1

2 ≥α2, we get that

val(X1) = val(V1)+val(X2)+α1|E(V1, X2)|−2α2|E(V1, X2)|
≥ val(V1)+val(X2)
= val(V1)+val(V2)+val(X3)+α1|E(V2, X3)|−2α2|E(V2, X3)|
≥ val(V1)+val(V2)+val(X3)
...

≥
t∑
`=1

val(V`).

Thus, val(X1)≥
t∑
`=1

w(V`)≥p. ut

We now bound the number of connected subgraphs in G.

Lemma 2 ([15]). There are at most 4i(∆−1)i|V | connected subgraphs of G on
at most i nodes, which can be enumerated in time O(4i(∆−1)i(|V |+|E|)|V |).

Thus, we have the next result.

Lemma 3. The instance f(I) can be constructed in time O(4k(∆−1)k(|V |+
|E|)|V |). Moreover, for any 1≤ i≤k, |Si|≤4i(∆−1)i|V |.

2.2 Decreasing the Size of Inputs for k′-WEC

In this section we develop a procedure, called Decrease, which decreases the size
of an instance (U,S,w,k′,p′) of k′-WEC. To this end, we find a subfamily Ŝ ⊆S
that contains ”enough” sets from S, and thus enables to replace S by Ŝ without
turning a yes-instance to a no-instance. The following definition captures such a
subfamily Ŝ.

Definition 1. Given a universe E, nonnegative integers k and p, a family S
of subsets of size p of E, and a function w : S → R, we say that a subfamily
Ŝ ⊆ S max (min) represents S if for any pair of sets X ∈ S, and Y ⊆ E \X
such that |Y |≤k−p, there is a set X̂∈Ŝ disjoint from Y such that w(X̂)≥w(X)

(w(X̂)≤w(X)).

Parameterized Algorithms for Graph Partitioning Problems 5

The following result states that small representative families can be computed
efficiently.2

Theorem 1 ([17]). Given a constant c≥1, a universe E, nonnegative integers
k and p, a family S of subsets of size p of E, and a function w :S→R, a subfamily

Ŝ ⊆S of size at most
(ck)k

pp(ck−p)k−p
2o(k)log|E| that max (min) represents S can

be computed in time O(|S|(ck/(ck−p))k−p2o(k)log|E|+|S|log|S|).
We next consider the maximization version of k′-WEC and max representative
families. The minimization version of k′-WEC can be similarly handled by us-
ing min representative families. Let RepAlg(E,k,p,S,w) denote the algorithm in
Theorem 1 where c=2, and let Si={S∈S : |S|= i}, for all 1≤ i≤k′.

We now present procedure Decrease (see the pseudocode below), which re-

places each family Si by a family Ŝi⊆Si that represents Si. First, we state that
procedure Decrease is correct (the proof is given in Appendix C).

Procedure Decrease(U,S,w,k′,p′)
1: for i = 1, 2, . . . , k′ do Ŝi ⇐ RepAlg(U,k′,i,Si,w). end for

2: Ŝ ⇐
⋃k
i=1 Ŝi.

3: return (U,Ŝ,w,k′,p′).

Lemma 4. (U,S,w,k′,p′) is a yes-instance iff (U,Ŝ,w,k′,p′) is a yes-instance.

Theorem 1 immediately implies the following result.

Lemma 5. Procedure Decrease runs in time O(

k′∑
i=1

(|Si|(
2k′

2k′−i
)k

′−i2o(k
′)log|U |

+|Si|log|Si|)). Moreover, |Ŝ| ≤
k′∑
i=1

(2k′)k
′

ii(2k′−i)k′−i
2o(k

′)log|U | ≤ 2.5k
′+o(k′)log|U |.

2.3 An Algorithm for Any FGPP

We now present FGPPAlg, which solves any FGPP in time O∗(4k+o(k)∆k). As-
sume w.l.o.g that ∆≥2, and let DegAlg(G,k,p) denote the algorithm solving any
degrading FGPP in time O((∆+1)k+1|V |), given in [2].

The algorithm given in Section 5 of [18] solves a problem closely related to
k′-WEC, and can be easily modified to solve k′-WEC in time O(2.851k

′ |S||U |·
log2 |U |). We call this algorithm WECAlg(U,S,w,k′,p′).

Let Π be an FGPP having parameters α1 and α2. We now describe algo-
rithm FGPPAlg (see the pseudocode below). First, if Π is a degrading FGPP,
then FGPPAlg solves Π by calling DegAlg. Otherwise, by using the reduction
f , FGPPAlg transforms the input into an instance of k′-WEC. Then, FGPPAlg
decreases the size of the resulting instance by calling the procedure Decrease.
Finally, FGPPAlg solves Π by calling WECAlg.

2 This result builds on a powerful construction technique for representative families
presented in [10].

6 Hadas Shachnai and Meirav Zehavi

Algorithm 1 FGPPAlg(G=(V,E),k,p)

1: if (Π is a max-FGPP and α1
2
≤α2) or (Π is a min-FGPP and α1

2
≥α2) then

2: accept iff DegAlg(G,k,p) accepts.
3: end if
4: (U,S,w,k′,p′)⇐ f(G,k,p).

5: (U,Ŝ,w,k′,p′)⇐ Decrease(U,S,w,k′,p′).
6: accept iff WECAlg(U,Ŝ,w,k′,p′) accepts.

Theorem 2. Algorithm FGPPAlg solves Π in time O(4k+o(k)∆k(|V |+|E|)|V |).

Proof. The correctness of the algorithm follows immediately from Lemmas 1 and
4, and the correctness of DegAlg and WECAlg.

By Lemmas 3 and 5, and the running times of DegAlg and WECAlg, algorithm
FGPPAlg runs in time

O(4k(∆−1)k(|V |+|E|)|V |+
k∑
i=1

(4i(∆−1)i|V |(2k

2k − i
)k−i2o(k)log|V |)

+ 2.851k2.5k+o(k)|V | log3 |V |)
= O(4k∆k(|V |+|E|)|V |+ 2o(k)|V |log|V |[max

0≤α≤1
{4α∆α(

2

2− α
)1−α}]k)

= O(4k∆k(|V |+|E|)|V |+ 4k+o(k)∆k|V |log|V |)
= O(4k+o(k)∆k(|V |+|E|)|V |).

ut

3 Solving Max (k, n−k) Cut in Time O∗(4p+o(p))

We give below an O∗(4p+o(p)) time algorithm for Max (k, n−k) Cut. In Section
3.1 we show that it suffices to consider an easier variant of Max (k, n−k) Cut,
that we call NC-Max (k,n−k)-Cut. We solve this variant in Section 3.2. Finally,
our algorithm for Max (k, n−k) Cut is given in Section 3.3.

3.1 Simplifying Max (k, n−k) Cut

We first define an easier variant of Max (k,n−k) Cut. Given a graph G=(V,E)
in which each node is either red or blue, and positive integers k and p, NC-Max
(k,n−k)-Cut asks if there is a subset X⊆V of exactly k red nodes and no blue
nodes, such that at least p edges in E(X,V \X) have a blue endpoint.

Given an instance (G,k,p) of Max (k,n−k) Cut, we perform several iterations
of coloring the nodes in G; thus, if (G,k,p) is a yes-instance, we generate at least
one yes-instance of NC-Max (k,n−k)-Cut. To determine how to color the nodes
in G, we need the following definition of universal sets.

Definition 2. Let F be a set of functions f :{1,2,. . . ,n} → {0,1}. We say that F
is an (n, t)-universal set if for every subset I⊆{1,2,. . . ,n} of size t and a function
f ′ :I→{0,1}, there is a function f ∈F such that for all i∈I, f(i)=f ′(i).

The following result asserts that small universal sets can be computed efficiently.

Lemma 6 ([16]). There is an algorithm, UniSetAlg, that given a pair of integers
(n,t), computes an (n,t)-universal set F of size 2t+o(t)logn in time O(2t+o(t)nlogn).

Parameterized Algorithms for Graph Partitioning Problems 7

We now present ColorNodes (see the pseudocode below), a procedure that given
an input (G,k,p,q), where (G,k,p) is an instance of Max (k,n−k) Cut and q=
k+p, returns a set of instances of NC-Max (k,n−k)-Cut. Procedure ColorNodes
first constructs a (|V |,k+p)-universal set F . For each f ∈F , ColorNodes generates
a colored copy V f of V . Then, ColorNodes returns a set I, including the resulting
instances of NC-Max (k,n−k)-Cut.

Procedure ColorNodes(G=(V,E), k, p, q)

1: let V ={v1, v2, . . . , v|V |}.
2: F ⇐ UniSetAlg(|V |, q).
3: for all f ∈F do
4: let V f ={vf1 , v

f
2 , . . . , v

f
|V |}, where vfi is a copy of vi.

5: for i = 1, 2, . . . , |V | do
6: if f(i)=0 then color vfi red. else color vfi blue. end if
7: end for
8: end for
9: return I = {(Gf =(Vf , E), k, p) : f ∈F}.

The next lemma states the correctness of procedure ColorNodes.

Lemma 7. An instance (G,k,p) of Max (k,n− k)-Cut is a yes-instance iff
ColorNodes(G,k,p,k+p) returns a set I containing at least one yes-instance of
NC-Max (k,n−k)-Cut.

Proof. If (G,k,p) is a no-instance of Max (k,n−k)-Cut, then clearly, for any
coloring of the nodes in V , we get a no-instance of NC-Max (k,n−k)-Cut. Next
suppose that (G,k,p) is a yes-instance, and let X be a set of k nodes in V such
that |E(X,V \X)|≥p. Note that there is a set Y of at most p nodes in V \X such
that |E(X,Y)|≥p. Let X ′ and Y ′ denote the indices of the nodes in X and Y ,
respectively. Since F is a (|V |,k+p)-universal set, there is f ∈F such that: (1)
for all i∈X ′, f(i)=0, and (2) for all i∈Y ′, f(i)=1. Thus, in Gf , the copies of
the nodes in X are red, and the copies of the nodes in Y are blue. We get that
(Gf ,k,p) is a yes-instance of NC-Max (k,n−k)-Cut. ut
Furthermore, Lemma 6 immediately implies the following result.

Lemma 8. Procedure ColorNodes runs in time O(2q+o(q)|V | log|V |), and returns
a set I of size O(2q+o(q) log|V |).

3.2 A Procedure for NC-Max (k,n−k)-Cut

We now present SolveNCMaxCut, a procedure for solving NC-Max (k,n−k)-Cut
(see the pseudocode below). Procedure SolveNCMaxCut orders the red nodes in
V according to the number of their blue neighbors in a non-increasing manner.
If there are at least k red nodes, and the number of edges between the first k red
nodes and blue nodes is at least p, procedure SolveNCMaxCut accepts; otherwise,
procedure SolveNCMaxCut rejects.

Clearly, the following result concerning SolveNCMaxCut is correct.

Lemma 9. Procedure SolveNCMaxCut solves NC-Max (k,n−k)-Cut in time
O(|V |log |V |+|E|).

8 Hadas Shachnai and Meirav Zehavi

Procedure SolveNCMaxCut(G=(V,E), k, p)

1: for all red v∈V do compute the number nb(v) of blue neighbors of v in G. end for
2: let v1,v2,. . . ,vr, for some 0 ≤ r ≤ |V |, denote the red nodes in V , such that
nb(vi) ≥ nb(vi+1) for all 1≤ i≤r−1.

3: accept iff (r≥k and
∑k
i=1 nb(vi)≥p).

3.3 An Algorithm for Max (k, n−k) Cut

Assume w.l.o.g that G has no isolated nodes. Our algorithm, MaxCutAlg, for
Max (k, n− k) Cut, proceeds as follows. First, if p < min{k, |V |− k}, then
MaxCutAlg accepts, and if |V |−k < k, then MaxCutAlg calls itself with |V |−k
instead of k. Then, MaxCutAlg calls ColorNodes to compute a set of instances of
NC-Max (k,n−k)-Cut, and accepts iff SolveNCMaxCut accepts at least one of
them.

Algorithm 2 MaxCutAlg(G=(V,E), k, p)

1: if p < min{k, |V |−k} then accept. end if
2: if |V |−k < k then accept iff MaxCutAlg(G, |V |−k, p) accepts. end if
3: I ⇐ ColorNodes(G, k, p, k+p).
4: for all (G′, k′, p′) ∈ I do
5: if SolveNCMaxCut(G′, k′, p′) accepts then accept. end if
6: end for
7: reject.

The next lemma implies the correctness of Step 1 in MaxCutAlg.

Lemma 10 ([2]). In a graph G = (V,E) having no isolated nodes, there is a
subset X⊆V of size k such that |E(X,V \X)| ≥ min{k,|V |−k}.

Our main result is the following.

Theorem 3. Algorithm MaxCutAlg solves Max (k,n−k) Cut in time O(4p+o(p)·
(|V |+|E|) log2 |V |).

Proof. Clearly, (G, k, p) is a yes-instance iff (G, |V |−k, p) is a yes-instance. Thus,
Lemmas 7, 9 and 10 immediately imply the correctness of MaxCutAlg.

Denote m = min{k,|V |−k}. If p < m, then MaxCutAlg runs in time O(1).
Next suppose that p≥m. Then, by Lemmas 8 and 9, MaxCutAlg runs in time
O(2m+p+o(m+p)(|V |+|E|) log2 |V |) = O(4p+o(p)(|V |+|E|) log2 |V |). ut

4 Solving Positive Min-FGPPs in Time O∗(2
k+ p

α2
+o(k+p)

)

Let Π be a min-FGPP satisfying α1≥ 0 and α2> 0. In this section we develop

an O∗(2k+
p
α2

+o(k+p)) time algorithm for Π. Using randomized separation, we
show in Section 4.1 that we can focus on an easier version of Π. We solve this
version in Section 4.2, using dynamic programming. Then, Section 4.3 gives our
algorithm.

Parameterized Algorithms for Graph Partitioning Problems 9

4.1 Simplifying the Positive Min-FGPP Π

We first define an easier variant of Π. Given a graph G= (V,E) in which each
node is either red or blue, and parameters k∈N and p∈R, NC-Π asks if there is
a subset X⊆V of exactly k red nodes and no blue nodes, whose neighborhood
outside X includes only blue nodes, such that val(X)≤p.

The simplification process is similar to that performed in Section 3.1. How-
ever, we now use the randomized separation procedure ColorNodes, defined in
Section 3.1, with instances of Π, and consider the set I returned by ColorNodes
as a set of instances of NC-Π. We next prove that ColorNodes is correct.

Lemma 11. An instance (G,k,p) of Π is a yes-instance iff ColorNodes(G,k,p,k+
p
α2

) returns a set I containing at least one yes-instance of NC-Π.

Proof. If (G,k,p) is a no-instance of Π, then clearly, for any coloring of the
nodes in V , we get a no-instance of NC-Π. Next suppose that (G,k,p) is a yes-
instance, and let X be a set of k nodes in V such that val(X)≤p. Let Y denote
the neighborhood of X outside X. Note that |Y |≤ p

α2
. Let X ′ and Y ′ denote the

indices of the nodes in X and Y , respectively. Since F is a (|V |,k+ p
α2

)-universal
set, there is f ∈F such that: (1) for all i∈X ′, f(i) = 0, and (2) for all i∈ Y ′,
f(i)=1. Thus, in Gf , the copies of the nodes in X are red, and the copies of the
nodes in Y are blue. We get that (Gf ,k,p) is a yes-instance of NC-Π. ut

4.2 A Procedure for NC-Π

We now present SolveNCP, a dynamic programming-based procedure for solving
NC-Π (see the pseudocode below). Procedure SolveNCP first computes the node-
sets of the maximal connected red components in G. Then, procedure SolveNCP
generates a matrix M, where each entry [i, j] holds the minimum value val(X)
of a subset X⊆V in Soli,j , the family containing every set of exactly j nodes in
V obtained by choosing a union of sets in {C1, C2 . . . , Ci}, i.e., Soli,j={(

⋃
C′) :

C′ ⊆ {C1, C2, . . . , Ci}, |
⋃
C′| = j}. Procedure SolveNCP computes M by using

dynamic programming, assuming an access to a non-existing entry returns ∞,
and accepts iff M[t, k]≤p.

Procedure SolveNCP(G=(V,E), k, p)

1: use DFS to compute the family C = {C1, C2, . . . , Ct}, for some 0≤ t≤ |V |, of the
node-sets of the maximal connected red components in G.

2: let M be a matrix containing an entry [i, j] for all 0≤ i≤ t and 0≤j≤k.
3: initialize M[i, 0]⇐ 0 for all 0≤ i≤ t, and M[0, j]⇐∞ for all 1≤j≤k.
4: for i=1, 2, . . . , t, and j=1, 2, . . . , k do
5: M[i, j]⇐ min{M[i−1, j],M[i−1, j−|Ci|] + val(Ci)}.
6: end for
7: accept iff M[t, k]≤p.

The following lemma states the correctness and running time of SolveNCP.

Lemma 12. Procedure SolveNCP solves NC-Π in time O(|V |k+|E|).

10 Hadas Shachnai and Meirav Zehavi

Proof. For all 0 ≤ i ≤ t and 0 ≤ j ≤ k, denote val(i,j) = minX∈Soli,j{val(X)}.
Using a simple induction on the computation of M, we get that M[i,j]=val(i,j).
Since (G,k,p) is a yes-instance of NC-Π iff val(t,k)≤p, we have that SolveNCP
is correct. Step 1, and the computation of val(C) for all C∈C, are performed in
time O(|V |+|E|). Since M is computed in time O(|V |k), we have that SolveNCP
runs in time O(|V |k+|E|). ut

4.3 An Algorithm for Π

We now conclude PAlg, our algorithm for Π (see the pseudocode below). Algo-
rithm PAlg calls ColorNodes to compute several instances of NC-Π, and accepts
iff SolveNCP accepts at least one of them.

Algorithm 3 PAlg(G=(V,E), k, p)

1: I ⇐ ColorNodes(G, k, p, k + p
α2

).

2: for all (G′, k′, p′) ∈ I do
3: if SolveNCP(G′, k′, p′) accepts then accept. end if
4: end for
5: reject.

By Lemmas 8, 11 and 12, we have the following result.

Theorem 4. Algorithm PAlg solves Π in time O(2k+
p
α2

+o(k+p)(|V |+|E|)log|V |).

5 Solving a Subclass of Positive Min-LGPPs Faster

Let Π be a min-FGPP satisfying α2≥ α1

2 >0. Denote x=max{ pα2
,min{ pα1

, pα2
+

(1− α1

α2
)k}}. In this section we develop an O∗(2x+o(x)) time algorithm for Π,

that is faster than the algorithm in Section 4. Applying a divide-and-conquer
step to the edges in the input graph G, Section 5.1 shows that we can focus on
an easier version of Π. This version is solved in Section 5.2 by using dynamic
programming. We give the algorithm in Section 5.3.

5.1 Simplifying the Non-Degrading Positive Min-FGPP Π

We first define an easier variant of Π. Suppose we are given a graph G=(V,E)
in which each edge is either red or blue, and parameters k ∈ N and p ∈ R. For
any subset X ⊆ V , let C(X) denote the family containing the node-sets of the
maximal connected components in the graph Gr=(X,Er), where Er is the set of
red edges in E having both endpoints in X. Also, let val∗(X)=

∑
C∈C(X) val(C).

The variant EC-Π asks if there is a subset X⊆V of exactly k nodes, such that
all the edges in E(X,V \X) are blue, and val∗(X)≤p.

We now present a procedure, called ColorEdges (see the pseudocode below),
whose input is an instance (G,k,p) of Π. Procedure ColorEdges uses a universal
set to perform several iterations coloring the edges in G, and then returns the
resulting set of instances of EC-Π.

The following lemma states the correctness of ColorEdges.

Parameterized Algorithms for Graph Partitioning Problems 11

Procedure ColorEdges(G=(V,E), k, p)

1: let E={e1, e2, . . . , e|E|}.
2: F ⇐ UniSetAlg(|E|, x).
3: for all f ∈F do
4: let Ef ={ef1 , e

f
2 , . . . , e

f
|E|}, where efi is a copy of ei.

5: for i = 1, 2, . . . , |E| do
6: if f(i)=0 then color efi red. else color efi blue. end if
7: end for
8: end for
9: return I = {(Gf =(V,Ef), k, p) : f ∈F}.

Lemma 13. An instance (G,k,p) of Π is a yes-instance iff ColorEdges(G,k,p)
returns a set I containing at least one yes-instance of EC-Π.

Proof. Since α2≥ α1

2 , val∗(X)≥val(X) for any set X⊆V and coloring of edges
in E. Thus, if (G,k,p) is a no-instance of Π, then clearly, for any coloring of
edges in E, we get a no-instance of EC-Π. Next suppose that (G,k,p) is a yes-

instance, and let X be a set of k nodes in V such that val(X)≤p. Let Ẽr=E(X),

and Eb = E(X,V \X). Also, choose a minimum-size subset Er ⊆ Ẽr such that

the graphs G′r = (X, Ẽr) and Gr = (X,Er) contain the same set of maximal
connected components. Let E′r and E′b denote the indices of the edges in Er and
Eb, respectively. Note that |E′r|+ |E′b| ≤ x. Since F is an (|E|, x)-universal set,
there is f ∈F such that: (1) for all i∈E′r, f(i)=0, and (2) for all i∈E′b, f(i)=1.
Thus, in Gf , the copies of the edges in Er are red, and the copies of the edges
in Eb are blue. Then, val∗(X) = val(X). We get that (Gf ,k,p) is a yes-instance
of EC-Π. ut
Furthermore, Lemma 6 immediately implies the following result.

Lemma 14. Procedure ColorEdges runs in time O(2x+o(x)|E|log|E|), and re-
turns a set I of size O(2x+o(x)log|E|).

5.2 A Procedure for EC-Π

By modifying the procedure given in Section 4.2, we get a procedure, called
SolveECP, satisfying the following result (see Appendix B).

Lemma 15. Procedure SolveECP solves EC-Π in time O(|V |k+|E|).

5.3 A Faster Algorithm for Π

Our faster algorithm for Π, FastPAlg, calls ColorEdges to compute several in-
stances of EC-Π, and accepts iff SolveECP accepts at least one of them (see the
pseudocode below).

By Lemmas 13, 14 and 15, we have the following result.

Theorem 5. Algorithm FastPAlg solves Π in time O(2x+o(x)(|V |k+|E|)log|E|).
Since Min k-Vertex Cover satisfies α1 =α2 =1, we have the following result.

Corollary 1. Algorithm FastPAlg solves Min k-Vertex Cover in time
O(2p+o(p)(|V |k+|E|)log|E|).

12 Hadas Shachnai and Meirav Zehavi

Algorithm 4 FastPAlg(G=(V,E), k, p)

1: I ⇐ ColorEdges(G, k, p).
2: for all (G′, k′, p′) ∈ I do
3: if SolveECP(G′, k′, p′) accepts then accept. end if
4: end for
5: reject.

References

1. Berkhin, P.: A survey of clustering data mining techniques. Grouping Multidimen-
sional Data Recent Advances in Clustering, Eds. J. Kogan and C. Nicholas and M.
Teboulle pp. 25–71 (2006)

2. Bonnet, E., Escoffier, B., Paschos, V.T., Tourniaire, E.: Multi-parameter complex-
ity analysis for constrained size graph problems: using greediness for parameteri-
zation. In: IPEC. pp. 66–77 (2013)

3. Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V.T.: Exact and
approximation algorithms for densest k-subgraph. In: IPEC. pp. 66–77 (2013)

4. Cai, L.: Parameterized complexity of cardinality constrained optimization prob-
lemss. Comput. J. 51(1), 102–121 (2008)

5. Cai, L., Chan, S.M., Chan, S.O.: Random separation: A new method for solving
fixed-cardinality optimization problems. In: IPEC. pp. 239–250 (2006)

6. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Minimum
bisection is fixed parameter tractable. In: STOC (2014, to appear)

7. Donavalli, A., Rege, M., Liu, X., Jafari-Khouzani, K.: Low-rank matrix factoriza-
tion and co-clustering algorithms for analyzing large data sets. In: ICDEM. pp.
272–279 (2010)

8. Downey, R.G., Estivill-Castro, V., Fellows, M.R., Prieto, E., Rosamond, F.A.: Cut-
ting up is hard to do: the parameterized complexity of k-cut and related problems.
Electr. Notes Theor. Comput. Sci. 78, 209–222 (2003)

9. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II:
on completeness for W[1]. Theor. Comput. Sci. 141(1&2), 109–131 (1995)

10. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative
sets with applications in parameterized and exact agorithms. In: SODA. pp. 142–
151 (2014)

11. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of vertex cover
variants. Theory Comput. Syst. 41(3), 501–520 (2007)

12. Kahng, A.B., Lienig, J., Markov, I.L., Hu, J.: VLSI Physical Design - From Graph
Partitioning to Timing Closure. Springer (2011)

13. Kloks, T.: Treewidth, computations and approximations. LNCS 842, Springer
(1994)

14. Kneis, J., Langer, A., Rossmanith, P.: Improved upper bounds for partial vertex
cover. In: WG. pp. 240–251 (2008)

15. Komusiewicz, C., Sorge, M.: Finding dense subgraphs of sparse graphs. In: IPEC.
pp. 242–251 (2012)

16. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomiza-
tion. In: FOCS. pp. 182–191 (1995)

17. Shachnai, H., Zehavi, M.: Faster computation of representative families for uniform
matroids with applications. CoRR abs/1402.3547 (2014)

18. Zehavi, M.: Deterministic parameterized algorithms for matching and packing
problems. CoRR abs/1311.0484 (2013)

Parameterized Algorithms for Graph Partitioning Problems 13

A An Illustration of the Reduction f

Fig. 1. An illustration of the reduction f , given in Section 2.1.

B A Procedure for EC-Π (Cont.)

We now present the details of procedure SolveECP (see the pseudocode below).
Procedure SolveECP first computes the node-sets of the maximal connected com-
ponents in the graph obtained by removing all the blue edges from G. Then,
procedure SolveECP generates a matrix M, where each entry [i, j] holds the min-
imum value val∗(X) of a subset X⊆V in Soli,j , the family containing every set of
exactly j nodes in V obtained by choosing a union of sets in {C1, C2 . . . , Ci}, i.e.,
Soli,j = {(

⋃
C′) : C′ ⊆ {C1, C2, . . . , Ci}, |

⋃
C′| = j}. Procedure SolveNCP com-

putes M by using dynamic programming, assuming an access to a non-existing
entry returns ∞, and accepts iff M[t, k]≤p.

Procedure SolveECP(G=(V,E), k, p)

1: use DFS to compute the family C = {C1, C2, . . . , Ct}, for some 0≤ t≤ |V |, of the
node-sets of the maximal connected components in the graph obtained by removing
all the blue edges from G.

2: let M be a matrix containing an entry [i, j] for all 0≤ i≤ t and 0≤j≤k.
3: initialize M[i, 0]⇐ 0 for all 0≤ i≤ t, and M[0, j]⇐∞ for all 1≤j≤k.
4: for i=1, 2, . . . , t, and j=1, 2, . . . , k do
5: M[i, j]⇐ min{M[i−1, j],M[i−1, j−|Ci|] + val∗(Ci)}.
6: end for
7: accept iff M[t, k]≤p.

We next prove the correctness of Lemma 15.

Proof. For all 0 ≤ i ≤ t and 0 ≤ j ≤ k, denote val(i,j) = minX∈Soli,j{val∗(X)}.
Using a simple induction on the computation of M, we get that M[i,j]=val(i,j).

14 Hadas Shachnai and Meirav Zehavi

Since (G,k,p) is a yes-instance of EC-Π iff val(t,k)≤p, we have that SolveECP
is correct. Step 1, and the computation of val∗(C) for all C∈C, are performed in
time O(|V |+|E|). Since M is computed in time O(|V |k), we have that SolveECP
runs in time O(|V |k+|E|). ut

C Some Proofs

Proof of lemma 4: First, assume that (U,S,w,k′,p′) is a yes-instance. Let S ′
be a subfamily of disjoint sets from S, such that |

⋃
S ′|= k′,

∑
S∈S′ w(S)≥ p′,

and there is no subfamily S ′′ satisfying these conditions, and |S ′∩Ŝ|< |S ′′∩Ŝ|.
Suppose, by way of contradiction, that there is a set S ∈ (Si ∩ S ′)\Ŝ, for some

1 ≤ i ≤ k′. By Theorem 1, there is a set Ŝ ∈ Ŝi such that w(Ŝ) ≥ w(S), and

Ŝ ∩S′ = ∅, for all S′ ∈ S ′ \{S}. Thus, S ′′ = (S ′ \{S})∪{Ŝ} is a solution to

(U,S,w,k′,p′). Since |S ′∩Ŝ|< |S ′′∩Ŝ|, this is a contradiction.

Now, assume that (U,Ŝ,w,k′,p′) is a yes-instance. Since Ŝ ⊆S, we immediately
get that (U,S,w,k′,p′) is also a yes-instance. ut

	Parameterized Algorithms for Graph Partitioning Problems

