Skip to main content

Multi-scale Simulation of T Helper Lymphocyte Differentiation

  • Conference paper
Advances in Bioinformatics and Computational Biology (BSB 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8826))

Included in the following conference series:

Abstract

The complex differentiation process of the CD4+ T helper lymphocytes shapes the form and the range of the immune response to different antigenic challenges. Few mathematical and computational models have addressed this key phenomenon. We here present a multiscale approach in which two different levels of description, i.e. a gene regulatory network model and an agent-based simulator for cell population dynamics, are integrated into a single immune system model. We illustrate how such model integration allows bridging a gap between gene level information and cell level population, and how the model is able to describe a coherent immunological behaviour when challenged with different stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pennock, N.D., White, J.T., Cross, E.W., Cheney, E.E., Tamburini, B.A., Kedl, R.M.: T cell responses: naive to memory and everything in between. Adv. Physiol. Educ. 37, 273–283 (2013)

    Article  Google Scholar 

  2. Zhu, J., Yamane, H., Paul, W.E.: Differentiation of effector CD4 T cell populations (*). Annu. Rev. Immunol. 28, 445–489 (2010)

    Article  Google Scholar 

  3. Hofer, T., Nathansen, H., Lohning, M., Radbruch, A., Heinrich, R.: GATA-3 transcriptional imprinting in Th2 lymphocytes: a mathematical model. Proc. Natl. Acad. Sci. U.S.A. 99, 9364–9368 (2002)

    Article  Google Scholar 

  4. Yates, A., Callard, R., Stark, J.: Combining cytokine signalling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: a model for cellular decision-making. J. Theor. Biol. 231, 181–196 (2004)

    Article  MathSciNet  Google Scholar 

  5. Hong, T., Xing, J., Li, L., Tyson, J.J.: A mathematical model for the reciprocal differentiation of T helper 17 cells and induced regulatory T cells. PLoS Comput. Biol. 7, e1002122 (2011)

    Google Scholar 

  6. Carbo, A., Hontecillas, R., Kronsteiner, B., Viladomiu, M., Pedragosa, M., Lu, P., Philipson, C.W., Hoops, S., Marathe, M., Eubank, S., Bisset, K., Wendelsdorf, K., Jarrah, A., Mei, Y., Bassaganya-Riera, J.: Systems modeling of molecular mechanisms controlling cytokine-driven CD4+ T cell differentiation and phenotype plasticity. PLoS Comput. Biol. 9, e1003027 (2013)

    Google Scholar 

  7. Naldi, A., Carneiro, J., Chaouiya, C., Thieffry, D.: Diversity and plasticity of Th cell types predicted from regulatory network modelling. PLoS Comput. Biol. 6, e1000912 (2010)

    Google Scholar 

  8. Carbo, A., Hontecillas, R., Andrew, T., Eden, K., Mei, Y., Hoops, S., Bassaganya-Riera, J.: Computational modeling of heterogeneity and function of CD4+ T cells. Frontiers in Cell and Developmental Biology 2 (2014)

    Google Scholar 

  9. Mosmann, T.R., Cherwinski, H., Bond, M.W., Giedlin, M.A., Coffman, R.L.: Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986)

    Google Scholar 

  10. Aggarwal, S., Ghilardi, N., Xie, M.-H., de Sauvage, F.J., Gurney, A.L.: Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003)

    Article  Google Scholar 

  11. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., Toda, M.: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995)

    Google Scholar 

  12. Sakaguchi, S., Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T.: Regulatory T cells: how do they suppress immune responses? Int. Immunol. 21, 1105–1111 (2009)

    Article  Google Scholar 

  13. Walsh, K.P., Mills, K.H.: Dendritic cells and other innate determinants of T helper cell polarisation. Trends Immunol. 34, 521–530 (2013)

    Article  Google Scholar 

  14. Szabo, S.J., Kim, S.T., Costa, G.L., Zhang, X., Fathman, C.G., Glimcher, L.H.: A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000)

    Article  Google Scholar 

  15. Maizels, R.M., Hewitson, J.P., Smith, K.A.: Susceptibility and immunity to helminth parasites. Curr. Opin. Immunol. 24, 459–466 (2012)

    Article  Google Scholar 

  16. Stockinger, B., Veldhoen, M.: Differentiation and function of Th17 T cells. Curr. Opin. Immunol. 19, 281–286 (2007)

    Article  Google Scholar 

  17. Mendoza, L., Pardo, F.: A robust model to describe the differentiation of T-helper cells. Theory Biosci. 129, 283–293 (2010)

    Article  Google Scholar 

  18. Baldazzi, V., Castiglione, F., Bernaschi, M.: An enhanced agent based model of the immune system response. Cell Immunol. 244, 77–79 (2006)

    Article  Google Scholar 

  19. Neumann, J.V.: Theory of Self-Reproducing Automata. University of Illinois Press (1966)

    Google Scholar 

  20. Burnet, F.M.: The Nobel Lectures in Immunology. The Nobel Prize for Physiology or Medicine, 1960. Immunologic recognition of self. Scand. J. Immunol. 33, 3–13 (1991)

    Google Scholar 

  21. Lederberg, J.: Genes and antibodies. Science 129, 1649–1653 (1959)

    Article  Google Scholar 

  22. Brenner, S., Milstein, C.: Origin of antibody variation. Nature 211, 242–243 (1966)

    Article  Google Scholar 

  23. Hayflick, L., Moorhead, P.S.: The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961)

    Article  Google Scholar 

  24. Schwartz, R.H.: T cell anergy. Annu. Rev. Immunol. 21, 305–334 (2003)

    Article  Google Scholar 

  25. Nossal, G.J., Pike, B.L.: Clonal anergy: persistence in tolerant mice of antigen-binding B lymphocytes incapable of responding to antigen or mitogen. Proc. Natl. Acad. Sci. U.S.A. 77, 1602–1606 (1980)

    Article  Google Scholar 

  26. Matzinger, P.: Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994)

    Article  Google Scholar 

  27. Matzinger, P.: The danger model: a renewed sense of self. Science 296, 301–305 (2002)

    Article  Google Scholar 

  28. Jerne, N.: Towards a network theory of the immune system. Ann Immunol. 125C, 373–389 (1974)

    Google Scholar 

  29. Welsh, R.M., Selin, L.K.: Attrition of memory CD8 T cells. Nature 459, E3-4; discussion E4 (2009)

    Google Scholar 

  30. Bahl, K., Kim, S.-K., Calcagno, C., Ghersi, D., Puzone, R., Celada, F., Selin, L.K., Welsh, R.M.: IFN-induced attrition of CD8 T cells in the presence or absence of cognate antigen during the early stages of viral infections. J. Immunol. 176, 4284–4295 (2006)

    Article  Google Scholar 

  31. Castiglione, F., Pappalardo, F., Bernaschi, M., Motta, S.: Optimization of HAART with genetic algorithms and agent-based models of HIV infection. Bioinformatics 23, 3350–3355 (2007)

    Article  Google Scholar 

  32. Castiglione, F., Duca, K., Jarrah, A., Laubenbacher, R., Hochberg, D., Thorley-Lawson, D.: Simulating Epstein-Barr virus infection with C-ImmSim. Bioinformatics 23, 1371–1377 (2007)

    Article  Google Scholar 

  33. Clancy, T., Pedicini, M., Castiglione, F., Santoni, D., Nygaard, V., Lavelle, T.J., Benson, M., Hovig, E.: Immunological network signatures of cancer progression and survival. BMC Med. Genomics 4, 28 (2011)

    Article  Google Scholar 

  34. Woelke, A.L., von Eichborn, J., Murgueitio, M.S., Worth, C.L., Castiglione, F., Preissner, R.: Development of immune-specific interaction potentials and their application in the multi-agent-system VaccImm. PLoS One 6, e23257 (2011)

    Google Scholar 

  35. Mendoza, L.: A network model for the control of the differentiation process in Th cells. Biosystems 84, 101–114 (2006)

    Article  Google Scholar 

  36. Mendoza, L., Pardo, F.: A robust model to describe the differentiation of T-helper cells. Theory Biosci. 129, 283–293 (2010)

    Article  Google Scholar 

  37. Martínez-Sosa, P., Mendoza, L.: The regulatory network that controls the differentiation of T lymphocytes. Biosystems 113, 96–103 (2013)

    Article  Google Scholar 

  38. Santoni, D., Pedicini, M., Castiglione, F.: Implementation of a regulatory gene network to simulate the TH1/2 differentiation in an agent-based model of hypersensitivity reactions. Bioinformatics 24, 1374–1380 (2008)

    Article  Google Scholar 

  39. Janeway Ca Jr., T.P.W.M., et al.: Immunobiology: The Immune System in Health and Disease, 5th edn. Garland Science (2001)

    Google Scholar 

  40. Watanabe, S., Inoue, J.: Intracellular delivery of lipopolysaccharide induces effective Th1-immune responses independent of IL-12. PLoS One 8, e68671 (2013)

    Google Scholar 

  41. Martinez, F.O., Sica, A., Mantovani, A., Locati, M.: Macrophage activation and polarization. Front Biosci. 13, 453–461 (2008)

    Article  Google Scholar 

  42. Duncan, D.D., Swain, S.L.: Role of antigen-presenting cells in the polarized development of helper T cell subsets: evidence for differential cytokine production by Th0 cells in response to antigen presentation by B cells and macrophages. Eur. J. Immunol. 24, 2506–2514 (1994)

    Article  Google Scholar 

  43. Seder, R.A., Paul, W.E., Davis, M.M., de St. Groth, B.F.: The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J. Exp. Med. 176, 1091–1098 (1992)

    Article  Google Scholar 

  44. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M., Stockinger, B.: TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006)

    Article  Google Scholar 

  45. Chen, W., Jin, W., Hardegen, N., Lei, K.-J., Li, L., Marinos, N., McGrady, G., Wahl, S.M.: Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Tieri, P., Prana, V., Colombo, T., Santoni, D., Castiglione, F. (2014). Multi-scale Simulation of T Helper Lymphocyte Differentiation. In: Campos, S. (eds) Advances in Bioinformatics and Computational Biology. BSB 2014. Lecture Notes in Computer Science(), vol 8826. Springer, Cham. https://doi.org/10.1007/978-3-319-12418-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12418-6_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12417-9

  • Online ISBN: 978-3-319-12418-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics