Skip to main content

Generic Transformation to Strongly Existentially Unforgeable Signature Schemes with Leakage Resiliency

  • Conference paper
Book cover Provable Security (ProvSec 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8782))

Included in the following conference series:

Abstract

This paper presents an efficient transformation method that converts fully leakage resilient signature schemes which are weakly existentially unforgeable into ones which are strongly existentially unforgeable. To achieve our goal, we give a definition of leakage resilient chameleon hash function and present a construction based on the leakage resilient hard relation. Then we combine leakage resilient chameleon hash function with the technique presented by Steinfeld, Pieprzyk, and Wang to obtain a generic transformation that works well in the bounded leakage model.

Department of Mathematical and Computing Sciences, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, W8-55, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan. Supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (A) No.24240001 and (C) No.23500010, a grant of I-System Co. Ltd., and NTT Secure Platform Laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: The case of hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 216–233. Springer, Heidelberg (1994)

    Google Scholar 

  5. Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and fiat-shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on computational diffie-hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Brands, S.A.: An efficient off-line electronic cash system based on the representation problem. Technical report, Amsterdam, The Netherlands (1993)

    Google Scholar 

  10. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptography in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garg, S., Jain, A., Sahai, A.: Leakage-resilient zero knowledge. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 297–315. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Huang, Q., Wong, D.S., Zhao, Y.: Generic transformation to strongly unforgeable signatures. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 1–17. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS. The Internet Society (2000)

    Google Scholar 

  16. Lyubashevsky, V., Palacio, A., Segev, G.: Public-key cryptographic primitives provably as secure as subset sum. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 382–400. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Okamoto, T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  19. Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Steinfeld, R., Pieprzyk, J., Wang, H.: How to strengthen any weakly unforgeable signature into a strongly unforgeable signature. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 357–371. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Teranishi, I., Oyama, T., Ogata, W.: General conversion for obtaining strongly existentially unforgeable signatures. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 191–205. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Wang, Y., Tanaka, K.: Strongly simulation-extractable leakage-resilient NIZK. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 66–81. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, Y., Tanaka, K. (2014). Generic Transformation to Strongly Existentially Unforgeable Signature Schemes with Leakage Resiliency. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds) Provable Security. ProvSec 2014. Lecture Notes in Computer Science, vol 8782. Springer, Cham. https://doi.org/10.1007/978-3-319-12475-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12475-9_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12474-2

  • Online ISBN: 978-3-319-12475-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics