Skip to main content

Black-Box Optimization of Lighting Simulation in Architectural Design

  • Conference paper

Abstract

This paper deals with an application of optimization in architectural design. Formally, we consider the problem of optimizing a function that can only be evaluated through an expensive oracle. We assume that the analytical expression of the function is unknown and first-order information is not available. This situation frequently occurs when each function evaluation relies on the output of a complex and time-consuming simulation. In the literature, this is called a black-box optimization problem with costly evaluation. This paper presents a black-box problem from architectural design: we aim to find the values of the design variables that yield optimal lighting conditions inside a building. The building façade is described as a parametric model whose parameters are the design variables.We tackle this problem by adapting the Radial Basis Function (RBF) method originally proposed by Gutmann (2001). Experiments indicate that our open-source implementation is competitive with commercial software for black-box optimization, and that it can be a valuable decision-support tool for complex problems requiring time-consuming simulations. The usefulness of this approach goes beyond the specific application in architectural design.

Supported by IDC grant IDG21300102.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Björkman, M., Holmström, K.: Global optimization of costly nonconvex functions using radial basis functions. Optimization and Engineering 1(4), 373–397 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bonami, P., Lee, J.: BONMIN user’s manual. Tech. rep. IBM Corporation (2007)

    Google Scholar 

  3. Delanda, M.: Deleuze and the use of the genetic algorithm in architecture. In: Contemporary Techniques in Architecture, pp. 9–11. Wiley-Academy, London (2002)

    Google Scholar 

  4. Dixon, L., Szego, G.: The global optimization problem: an introduction. In: Dixon, L., Szego, G. (eds.) Towards Global Optimization, pp. 1–15. North Holland, Amsterdam (1975)

    Google Scholar 

  5. Fourer, R., Gay, D.: The AMPL Book. Duxbury Press, Pacific Grove (2002)

    Google Scholar 

  6. Gutmann, H.M.: A radial basis function method for global optimization. Journal of Global Optimization 19, 201–227 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hemker, T.: Derivative free surrogate optimization for mixed-integer nonlinear black-box problems in engineering. Master’s thesis, Technischen Universität Darmstadt (2008)

    Google Scholar 

  8. Holmström, K.: An adaptive radial basis algorithm (ARBF) for expensive black-box global optimization. Journal of Global Optimization 41(3), 447–464 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Holmström, K., Quttineh, N.H., Edvall, M.M.: An adaptive radial basis algorithm (ARBF) for expensive black-box mixed-integer constrained global optimization. Optimization and Engineering 9(4), 311–339 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jakubiec, J.A., Reinhart, C.F.: DIVA 2.0: Integrating daylight and thermal simulations using Rhinoceros 3d, DAYSIM and EnergyPlus. In: Proceedings of the 12th International IBPSA Conference on Building Simulation, pp. 2202–2209 (2011)

    Google Scholar 

  11. Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of expensive black-box functions. Journal of Global Optimization 13(4), 455–492 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kaveh, A., Laknejadi, K.: A new multi-swarm multi-objective optimization method for structural design. Advances in Engineering Software 58, 54–69 (2013)

    Article  Google Scholar 

  13. Kicinger, R., Arciszewski, T., Jong, K.D.: Evolutionary computation and structural design: A survey of the state-of-the-art. Computers and Structures 83(23-24), 1943–1978 (2005)

    Article  Google Scholar 

  14. Krob, D.: Modelling of complex software systems: A reasoned overview. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 1–22. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Lin, S.H.E., Gerber, D.J.: Designing-in performance: A framework for evolutionary energy performance feedback in early stage design. Automation in Construction 38, 59–73 (2014)

    Article  Google Scholar 

  16. Mardaljevic, J., Andersen, M., Roy, N., Christoffersen, J.: Daylighting, Artificial Lighting and Non-Visual Effects Study for a Residential Building. Tech. rep., Loughborough, UK (2012)

    Google Scholar 

  17. Miles, J.: Genetic algorithms for design. In: Waszczyszyn, Z. (ed.) Advances of Soft Computing in Engineering, pp. 1–56. Springer, Vienna (2010)

    Chapter  Google Scholar 

  18. Oxman, R.: Performance-based design: current practices and research issues. International Journal of Architectural Computing 6(1), 1–17 (2008)

    Article  Google Scholar 

  19. Regis, R., Shoemaker, C.: Improved strategies for radial basis function methods for global optimization. Journal of Global Optimization 37, 113–135 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rittel, H.W.J., Webber, M.M.: Dilemmas in a general theory of planning. Policy Sciences 4(2), 155–169 (1973)

    Article  Google Scholar 

  21. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Woodbury, R.F., Burrow, A.L.: Whither design space? AI EDAM 20(2), 63–82 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Costa, A., Nannicini, G., Schroepfer, T., Wortmann, T. (2015). Black-Box Optimization of Lighting Simulation in Architectural Design. In: Cardin, MA., Krob, D., Lui, P., Tan, Y., Wood, K. (eds) Complex Systems Design & Management Asia. Springer, Cham. https://doi.org/10.1007/978-3-319-12544-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12544-2_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12543-5

  • Online ISBN: 978-3-319-12544-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics