Skip to main content

Model-Based Time Series Classification

  • Conference paper
Advances in Intelligent Data Analysis XIII (IDA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8819))

Included in the following conference series:

Abstract

We propose MTSC, a filter-and-refine framework for time series Nearest Neighbor (NN) classification. Training time series belonging to certain classes are first modeled through Hidden Markov Models (HMMs). Given an unlabeled query, and at the filter step, we identify the top K models that have most likely produced the query. At the refine step, a distance measure is applied between the query and all training time series of the top K models. The query is then assigned with the class of the NN. In our experiments, we first evaluated the NN classification error rate of HMMs compared to three state-of-the-art distance measures on 45 time series datasets of the UCR archive, and showed that modeling time series with HMMs achieves lower error rates in 30 datasets and equal error rates in 4. Secondly, we compared MTSC with Cross Validation defined over the three measures on 33 datasets, and we observed that MTSC is at least as good as the competitor method in 23 datasets, while achieving competitive speedups, showing its effectiveness and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  2. Assent, I., Wichterich, M., Krieger, R., Kremer, H., Seidl, T.: Anticipatory dtw for efficient similarity search in time series databases. PVLDB 2(1), 826–837 (2009)

    Google Scholar 

  3. Athitsos, V., Hadjieleftheriou, M., Kollios, G., Sclaroff, S.: Query-sensitive embeddings. In: SIGMOD, pp. 706–717 (2005)

    Google Scholar 

  4. Athitsos, V., Papapetrou, P., Potamias, M., Kollios, G., Gunopulos, D.: Approximate embedding-based subsequence matching of time series. In: SIGMOD, pp. 365–378 (2008)

    Google Scholar 

  5. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains. The Annals of Mathematical Statistics 41(1), 164–171 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellman, R.: The theory of dynamic programming. Bull. Amer. Math. Soc. 60(6), 503–515 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, H., Tang, F., Tino, P., Yao, X.: Model-based kernel for efficient time series analysis. In: SIGKDD, pp. 392–400 (2013)

    Google Scholar 

  8. Chen, L., Ng, R.: On the marriage of l p -norms and edit distance. In: VLDB, pp. 792–803 (2004)

    Google Scholar 

  9. Chen, L., Özsu, M.T.: Robust and fast similarity search for moving object trajectories. In: SIGMOD, pp. 491–502 (2005)

    Google Scholar 

  10. Chen, Y., Nascimento, M.A., Chin, B., Anthony, O., Tung, K.H.: Spade: On shape-based pattern detection in streaming time series. In: ICDE, pp. 786–795 (2007)

    Google Scholar 

  11. F. Ferraty and P. Vieu. Curves discrimination: a nonparametric functional approach. Computational Statistics and Data Analysis, 44(1-2):161–173, 2003.

    Google Scholar 

  12. Frentzos, E., Gratsias, K., Theodoridis, Y.: Index-based most similar trajectory search. In: ICDE, pp. 816–825 (2007)

    Google Scholar 

  13. Ghassempour, S., Girosi, F., Maeder, A.: Clustering multivariate time series using hidden markov models. International Journal of Environmental Research and Public Health 11(3), 2741–2763 (2014)

    Article  Google Scholar 

  14. González, J., Muñoz, A.: Representing functional data using support vector machines. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 332–339. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Hallak, A., Di-Castro, D., Mannor, S.: Model selection in markovian processes. In: ICML (2013)

    Google Scholar 

  16. Keogh, E.: Exact indexing of dynamic time warping. In: VLDB, pp. 406–417 (2002)

    Google Scholar 

  17. Keogh, E., Zhu, Q., Hu, B., Hao, Y., Xi, X., Wei, L., Ratanamahatana, C.: The UCR time series classification/clustering homepage, http://www.cs.ucr.edu/~eamonn/time_series_data/

  18. Kotsifakos, A., Athitsos, V., Papapetrou, P., Hollmén, J., Gunopulos, D.: Model-based search in large time series databases. In: PETRA (2011)

    Google Scholar 

  19. Kotsifakos, A., Papapetrou, P., Hollmén, J., Gunopulos, D.: A subsequence matching with gaps-range-tolerances framework: A query-by-humming application. PVLDB 4(11), 761–771 (2011)

    Google Scholar 

  20. Kotsifakos, A., Papapetrou, P., Hollmén, J., Gunopulos, D., Athitsos, V.: A survey of query-by-humming similarity methods. PETRA, 5:1–5:4 (2012)

    Google Scholar 

  21. Kotsifakos, A., Papapetrou, P., Hollmén, J., Gunopulos, D., Athitsos, V., Kollios, G.: Hum-a-song: a subsequence matching with gaps-range-tolerances query-by-humming system. PVLDB 5(12), 1930–1933 (2012)

    Google Scholar 

  22. Kruskall, J.B., Liberman, M.: The symmetric time warping algorithm: From continuous to discrete. In: Time Warps. Addison-Wesley (1983)

    Google Scholar 

  23. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML, pp. 282–289 (2001)

    Google Scholar 

  24. Lemire, D.: Faster retrieval with a two-pass dynamic-time-warping lower bound. Pattern recognition 42(9), 2169–2180 (2009)

    Article  MATH  Google Scholar 

  25. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: SIGMOD Workshop DMKD, pp. 2–11 (2003)

    Google Scholar 

  26. Marteau, P.-F.: Time warp edit distance with stiffness adjustment for time series matching. Pattern Analysis and Machine Intelligence 31(2), 306–318 (2009)

    Article  Google Scholar 

  27. Oates, T., Firoiu, L., Cohen, P.R.: Clustering time series with hidden markov models and dynamic time warping. In: In Proceedings of the IJCAI, pp. 17–21 (1999)

    Google Scholar 

  28. Pikrakis, A., Theodoridis, S., Kamarotos, D.: Classification of musical patterns using variable duration hidden Markov models. Transactions on Audio, Speech, and Language Processing 14(5), 1795–1807 (2006)

    Article  Google Scholar 

  29. Rabiner, L.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  30. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. Transactions on Acoustics, Speech and Signal Processing 26, 43–49 (1978)

    Article  MATH  Google Scholar 

  31. A. Stefan, V. Athitsos, and G. Das. The move-split-merge metric for time series. Transactions on Knowledge and Data Engineering (2012)

    Google Scholar 

  32. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: ICDE, pp. 673–684 (2002)

    Google Scholar 

  33. Wang, S.B., Quattoni, A., Morency, L.-P., Demirdjian, D., Darrell, T.: Hidden conditional random fields for gesture recognition. In: CVPR, pp. 1521–1527 (2006)

    Google Scholar 

  34. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.J.: Experimental comparison of representation methods and distance measures for time series data. Data Minining and Knowledge Discovery 26(2), 275–309 (2013)

    Article  MathSciNet  Google Scholar 

  35. Ye, L., Keogh, E.: Time series shapelets: a novel technique that allows accurate, interpretable and fast classification. Data Mining and Knowledge Discovery 22(1-2), 149–182 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kotsifakos, A., Papapetrou, P. (2014). Model-Based Time Series Classification. In: Blockeel, H., van Leeuwen, M., Vinciotti, V. (eds) Advances in Intelligent Data Analysis XIII. IDA 2014. Lecture Notes in Computer Science, vol 8819. Springer, Cham. https://doi.org/10.1007/978-3-319-12571-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12571-8_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12570-1

  • Online ISBN: 978-3-319-12571-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics