Skip to main content

Modularity Maximization Adjusted by Neural Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8834))

Abstract

Graphs are combinatorial structures suitable for modelling various real systems. The high clustering tendency observed in many of these graphs has led a large number of researches, among them, we point out the modularity maximization-based community detection algorithms. Although very effective a few studies suggest that, for some networks, this approach does not find the expected communities due to a resolution limit of the measure. In this paper, we propose a way to automatically choose the value of the resolution parameter considered in the modularity by using neural networks. In the computational experiments, we observed that the proposed strategy outperformed another strategies from the literature for hundreds of artificial graphs considering the expected communities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blondel, V.D., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large network. Journal of Statistical Mechanics: Theory and Experiment, P10008 (2008)

    Google Scholar 

  2. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikolosk, Z., Wagner, D.: On modularity clustering. IEEE Transactions on Knowledge and Data Engineering 20, 172–188 (2008)

    Article  Google Scholar 

  3. Danon, L., Díaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. Journal of Statistical Mechanics: Theory and Experiment 2005(09), P09008 (2005)

    Google Scholar 

  4. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104, 36–41 (2007)

    Article  Google Scholar 

  5. Girvan, M., Newman, M.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative analysis. Phys. Rev. E 80, 056117 (2009)

    Google Scholar 

  7. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78, 046110 (2008)

    Google Scholar 

  8. Meira, L.A.A., Máximo, V.R., Fazenda, A.L., da Conceição, A.F.: Acc-motif: Accelerated motif detection using combinatorial techniques. In: 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems (SITIS), pp. 744–753 (2012)

    Google Scholar 

  9. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: Simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  10. Newman, D.J.: Communities, modules and large scale structure in networks. Nature Physics (2011)

    Google Scholar 

  11. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69, 026113–026127 (2004)

    Google Scholar 

  12. Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys. Rev. E 74, 016110 (2006)

    Google Scholar 

  13. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences U.S.A. 105, 1118–1123 (2007)

    Article  Google Scholar 

  14. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagation errors. Nature (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Carvalho, D.M., Resende, H., Nascimento, M.C.V. (2014). Modularity Maximization Adjusted by Neural Networks. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds) Neural Information Processing. ICONIP 2014. Lecture Notes in Computer Science, vol 8834. Springer, Cham. https://doi.org/10.1007/978-3-319-12637-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12637-1_36

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12636-4

  • Online ISBN: 978-3-319-12637-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics