Skip to main content

A Causal Model for Disease Pathway Discovery

  • Conference paper
Book cover Neural Information Processing (ICONIP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8834))

Included in the following conference series:

  • 4850 Accesses

Abstract

Pathway provides a deep insight into the mechanism of the biological process. With the increasing of high-throughout gene expression monitoring technology, a lot of data driven methods have been proposed to reconstruct the pathways from the observation data. Low reliability of the discovered results, especially the direction of the regulatory relation, is the main challenge of the existing methods. In this work, a level-wise causal search (LWCS) based disease pathway discovery method is proposed. The following three steps are conducted in each searching level of LWCS to locate the causal variables: firstly, in the parents and children (PC) discovery step, structure learning approach is employed to discover the candidate causal genes; then, in the casual direction learning step, additive noise models are explored to determine the direction of the edges, finally, the trivial causal candidates are pruned and not contained in the further level search. The proposed method is tested and verified on real life gene expression data sets. The success of the proposed method reflects that the causality is a proper model to present the regulatory relations among the genes and phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences 96(12), 6745–6750 (1999)

    Article  Google Scholar 

  2. Barabási, A.-L., Gulbahce, N., Loscalzo, J.: Network medicine: A network-based approach to human disease. Nature Reviews Genetics 12(1), 56–68 (2011)

    Article  Google Scholar 

  3. Bromberg, F., Margaritis, D.: Improving the reliability of causal discovery from small data sets using argumentation. Journal of Machine Learning Research, 301–340 (2009)

    Google Scholar 

  4. Cai, R., Hao, Z., Yang, X., Wen, W.: An efficient gene selection algorithm based on mutual information. Neurocomputing 72(4), 991–999 (2009)

    Article  Google Scholar 

  5. Cai, R., Zhang, Z., Hao, Z.: Bassum: A bayesian semi-supervised method for classification feature selection. Pattern Recognition 44(4), 811–820 (2011)

    Article  MATH  Google Scholar 

  6. Cai, R., Zhang, Z., Hao, Z.: Causal gene identification using combinatorial v-structure search. Neural Networks 43, 63–71 (2013)

    Article  MATH  Google Scholar 

  7. Cai, R., Zhang, Z., Hao, Z.: Sada: A general framework to support robust causation discovery. In: ICML, pp. 208–216 (2013)

    Google Scholar 

  8. Cookson, W., Liang, L., Abecasis, G., Moffatt, M., Lathrop, M.: Mapping complex disease traits with global gene expression. Nature Reviews Genetics 10(3), 184–194 (2009)

    Article  Google Scholar 

  9. Dondelinger, F., Lèbre, S., Husmeier, D.: Non-homogeneous dynamic bayesian networks with bayesian regularization for inferring gene regulatory networks with gradually time-varying structure. Machine Learning 90(2), 191–230 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Drew, B.A., Burow, M.E., Beckman, B.S.: Mek5/erk5 pathway: the first fifteen years. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1825(1), 37–48 (2012)

    Article  Google Scholar 

  11. Dudoit, S., Yang, Y.H., Callow, M.J., Speed, T.P.: Statistical methods for identifying differentially expressed genes in replicated cdna microarray experiments. Statistica Sinica 12(1), 111–140 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using bayesian networks to analyze expression data. Journal of Computational Biology 7(3-4), 601–620 (2000)

    Article  Google Scholar 

  13. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46(1-3), 389–422 (2002)

    Article  MATH  Google Scholar 

  14. Haibe-Kains, B., Olsen, C., Djebbari, A., Bontempi, G., Correll, M., Bouton, C., Quackenbush, J.: Predictive networks: A flexible, open source, web application for integration and analysis of human gene networks. Nucleic Acids Research 40(D1), 866–875 (2012)

    Article  Google Scholar 

  15. Hoyer, P.O., Janzing, D., Mooij, J.M., Peters, J., Schölkopf, B.: Nonlinear causal discovery with additive noise models. In: Neural Information Processing Systems, pp. 689–696 (2008)

    Google Scholar 

  16. Kalisch, M., Bühlmann, P.: Estimating high-dimensional directed acyclic graphs with the pc-algorithm. The Journal of Machine Learning Research 8, 613–636 (2007)

    MATH  Google Scholar 

  17. Kotera, M., Yamanishi, Y., Moriya, Y., Kanehisa, M., Goto, S.: Genies: Gene network inference engine based on supervised analysis. Nucleic Acids Research 40(W1), W162–W167 (2012)

    Google Scholar 

  18. Minoche, A.E., Dohm, J.C., Himmelbauer, H., et al.: Evaluation of genomic high-throughput sequencing data generated on illumina hiseq and genome analyzer systems. Genome Biol. 12(11), R112 (2011)

    Google Scholar 

  19. Mooij, J., Janzing, D., Peters, J., Schölkopf, B.: Regression by dependence minimization and its application to causal inference in additive noise models. In: ICML, pp. 745–752. ACM (2009)

    Google Scholar 

  20. Pearl, J.: Causality: models, reasoning and inference, vol. 29. Cambridge University Press (2000)

    Google Scholar 

  21. Pearl, J., Verma, T.S.: A theory of inferred causation. Studies in Logic and the Foundations of Mathematics 134, 789–811 (1995)

    Article  MathSciNet  Google Scholar 

  22. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  23. Peters, J., Janzing, D., Scholkopf, B.: Causal inference on discrete data using additive noise models. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(12), 2436–2450 (2011)

    Article  Google Scholar 

  24. Piersanti, S., Martina, Y., Cherubini, G., Avitabile, D., Saggio, I.: Use of dna microarrays to monitor host response to virus and virus-derived gene therapy vectors. American Journal of Pharmacogenomics 4(6), 345–356 (2004)

    Article  Google Scholar 

  25. Ruan, J., Dean, A.K., Zhang, W.: A general co-expression network-based approach to gene expression analysis: Comparison and applications. BMC Systems Biology 4(1), 8 (2010)

    Article  Google Scholar 

  26. Shipp, M.A., Ross, K.N., Tamayo, P., Weng, A.P., Kutok, J.L., Aguiar, R.C., Gaasenbeek, M., Angelo, M., Reich, M., Pinkus, G.S., et al.: Diffuse large b-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine 8(1), 68–74 (2002)

    Article  Google Scholar 

  27. Viswanathan, G.A., Seto, J., Patil, S., Nudelman, G., Sealfon, S.C.: Getting started in biological pathway construction and analysis. PLoS Computational Biology 4(2), e16 (2008)

    Article  Google Scholar 

  28. Zhang, K., Peters, J., Janzing, D., Schölkopf, B.: Kernel-based conditional independence test and application in causal discovery. In: UAI, pp. 804–813 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cai, R. et al. (2014). A Causal Model for Disease Pathway Discovery. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds) Neural Information Processing. ICONIP 2014. Lecture Notes in Computer Science, vol 8834. Springer, Cham. https://doi.org/10.1007/978-3-319-12637-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12637-1_44

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12636-4

  • Online ISBN: 978-3-319-12637-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics