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Abstract. Diabetes mellitus is a serious chronic condition of the human
metabolism. The development of an automated treatment has reached
clinical phase in the last few years. The goal is to keep the blood glucose
concentration within a certain region with minimal interaction required
by the patient or medical personnel. However, there are still several prac-
tical problems to solve. One of these would be that the available sensors
have significant noise and drift. The latter is rather difficult to manage,
because the deviating signal can cause the controller to drive the glu-
cose concentration out of the safe region even in the case of frequent
calibration. In this study a linear-quadratic-Gaussian (LQG) controller
is employed on a widely used diabetes model and enhanced with an ad-
vanced Sparse-grid quadratic filter and a fuzzy interference system-based
calibration supervisor.

Keywords: Diabetes, LQG control, Sparse-grid quadratic filter, fuzzy
inference system.

1 Introduction

The blood glucose concentration is regulated through a complex endocrine
system of the human body, where insulin plays a key role. If the glucose-insulin
interaction is impaired, diabetes is diagnosed. Artificial Pancreas (AP) is a mean
to provide an automated treatment of the insulin dependent type-1 diabetes
(T1DM) by keeping the blood glucose levels of the patient in normoglycemic
range (3.9 - 7.8 mmol/L). It consists of three main parts: a continuous glu-
cose monitor (CGM), an insulin pump for subcutaneous delivery and a control
algorithm for closed-loop control.
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The aim of the AP is to automatically regulate the blood glucose concentra-
tion of T1DM patients with minimal interaction required, ensuring reasonable
safety in all times. There are various methods to choose from: classical PID [1];
run-to-run control [2]; exact linearization based nonlinear control [3]; H∞ control
[4,5]; Model Predictive Control (MPC) [6,7]; Linear Parameter Varying (LPV)
control [8,9], among others. Soft computing based methods, such as fuzzy logic
control [10] and model-free soft computing-based control [11] are gaining popu-
larity as well. Most of these techniques require signals beyond what is physically
measurable; hence, accurate estimation of the state variables is needed.

However, most commercially available CGMs do not measure the glucose con-
centration directly, but the time derivative instead, therefore the readings will
slowly drift from the actual values. Hence, calibration is needed. In this work
it will be investigated how nonlinear stochastic filtering and fuzzy interference-
based timing of the calibration can ensure satisfactory operation of the AP.

2 Diabetes Model

The employed model is described by the following differential equations [12]:
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(1)

where the state variables are: C(t) glucose concentration in the subcutaneous
tissue [mmol/L]; Q1(t), Q2(t) the masses of glucose in accessible and non-
accessible compartments [mmol]; x1(t) remote effect of insulin on glucose distri-
bution [1/min]; S1(t), S2(t) insulin masses in the accessible and non-accessible
compartments [mU]; G1(t), G2(t) glucose masses in the accessible and non-
accessible compartments [mmol]. u(t) injected insulin flow of rapid-acting insulin
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[mU/min] is the input of the system, while D(t) amount of ingested carbohy-
drates [mmol/min], and Phy(t) effect of physical activity [mmol/min] represent
the disturbances [12]. All parameters are assumed to be time-invariant.

Based on [12] and [13] the model is reduced to a 9th order one (three neglected
states) as the linear transfers of the reduced states have time constants compa-
rable to the sampling time (Ts) of the used sensor. As CGM measurements are
available every 5 minutes, the following discrete-time sensors model is used:

xd[k + 1] = xd[k] + wd[k] y1[k] = xd[k] + C[k] + z1[k] (2)

where C[k] = C(k · Ts), xd[k] is the state variable associated with sensor drift,
y1[k] is the output of the sensor, finally wd[k] and z1[k] are white noises with
Gaussian distribution. The former represents the disturbance that drives the
sensor drift with 0.1667 mmol2/L2 variance, while the latter is additive mea-
surement noise with 0.25 mmol2/L2 variance. Because of the drift, the sensor
must be re-calibrated using a manual glucose measurement y2[k] = C[k] + z2[k],
which is assumed to have only additive measurement noise z2[k] with very small
variance 0.0025 mmol2/L2 compared to sensor noise. However, these manual
measurements cannot be done very often.

3 Closed-Loop Control

Here a relatively simple control method is proposed as the main focus of this
paper is not on the control algorithm: Linear-quadratic-Gaussian (LQG) control
[14]. It is basically a moving horizon model predictive control, which minimizes a
quadratic constraint for the state variables and control signal, which is as follows:

J(x, u) = 1
2

N−1∑
k=0

(<Qkx[k], x[k]> + <Rku[k], u[k]>) + 1
2 <QNx[N ], x[N ]> (3)

where J(x, u) is defined for an N sample-long time horizon, x[k] represents the
vector of state variables and u[k] the controlled input. < . > denotes the scalar
product, while Qk and Rk are appropriately chosen symmetric and positive
definite matrices. In the case of a linear time-invariant system given in state-
space form with matrices A, B and C and time-invariant weighting matrices Q
and R as well as infinite time horizon (N = ∞), J(x, u) can be minimized using
state-feedback control u[k] = Kx[k]. The gain for the feedback can be acquired
by solving Discrete-time algebraic Riccati equation:

X = Q+ATXA−ATXB(BTXBR)−1BTXA
K = (BTXBR)−1BTXA

(4)

Since model (1) is nonlinear, it is approximated with a linear model in every
step k, then the gain for the state feedback K[k] is computed. For better dis-
turbance rejection integral control has been included [14] and the linear model
extended accordingly. The control law is as follows:

xi[k + 1] = xi[k] + y[k]− 4.9

u[k] = K[k]
((

xb 0
)T − (

x[k] xi[k]
)T)

+ ub
(5)
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where xb is the steady state value of the state variables, xi[k] is the state variable
corresponding to integral control, and ub is the steady state control input for
zero meal intake and 4.9 mmol/L normoglycemic blood glucose concentration
denoted with y[k] = Q1[k]/VG. For n × n matrix Q and matrix R (that is a
scalar) used in the cost function (3) the following values were selected:

Q = e1e
T
1 + ene

T
n R = 10 (6)

where ei denotes the i-th unit vector in R
n. The controller was tuned for extreme

meal intake and physical activity scenario detailed later in Section 6.

4 Observer Design

Since both significant disturbances, measurement noise and sensor drift are
present state estimation is required using Kalman filtering technique. Sigma-
point filters are an increasingly popular option in the case of nonlinear models
[15]. These use a special set of points - called sigma points - to estimate the mean
and covariance of distributions needed in the Kalman filter algorithm. A good
example would be the Gauss-Hermite Quadrature Filter (GHQF) [16]. It offers
high accuracy when all disturbances and measurement noises have Gaussian dis-
tribution, but requires a large number of sigma-points. Hence, it needs relatively
large computational power undesirable in certain practical applications. Sparse-
grid quadrature nonlinear filtering (SGQF) can overcome this dimensionality
problem [15], and consequently was chosen for our application as well.

4.1 Sigma-Point Selection

Let us introduce the notation χ for a set of sigma-points. This set contains
N sigma points denoted as ξi, i = 1, . . . , N . The sigma-points represent the
stochastic variable μ with mean μ̂ and covariance matrix Σ, and can be written
in the form: ξi = Σ

1
2ϕi+μ̂.Σ

1
2 is the factor ofΣ so thatΣ = Σ

1
2Σ

T
2 , and sinceΣ

is positive definite the Cholesky decomposition is used. ϕ is an additional vector
used for sigma point determination [15]. μ is not limited to state variables only,
it can contain the disturbances and measurement noises as well. The dimension
of μ will be denoted with L. GHQF requiresmL sigma points, where m is usually
set to 3. Level-3 SGQF provides a good approximation of the results of GHQF,
but requires only 2L2 + 4L+ 1 or less sigma-points. The exact number depends
on how the three parameters of sigma-point filter (p1, p2, p3) are set [15]. They
reflect the case of univariate estimation, where the points μ + {−p1, 0, p1} and
μ + {−p3,−p2, 0, p2, p3} are used to estimate certain moments of a univariate
Gaussian distribution transformed by a nonlinear function. If all parameters are
different the sigma-points used in the level-3 SGQF are shown in equations (7)
and (8), where C = L(L−1)/2, while ω̂1, . . . , ω̂5 are defined from the parameters
p1, . . . , p3 using moment matching method.
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The complete discrete-time nonlinear system created from the T1DM model
(1) using Euler method, and the sensor model (2) is of the following form:

x[k + 1] = f(x[k]) +Bw[k] y[k] = Cx[k] + z[k] (9)

where x[k] = (C[k], Q1[k], Q2[k], x1[k], S2[k], S1[k], G2[k], G1[k], xd[k])
T

and

y[k] = (y1[k], y2[k])
T or only y1[k] depending on whether manual measurement

is available or not.

5 Fuzzy Calibration Supervisor

Since the CGM has drift, it needs to be repeatedly re-calibrated. The used filter
can compensate to some degree; however, the state estimation will eventually
deviate from the true value, and the controller relying on those estimations will
malfunction as well. The goal is to keep the glucose concentration levels within
normoglycemic range, and most importantly to avoid hypoglycemia. However,
the manual measurements needed for calibration cannot be made too frequently.
Furthermore, the patient must sleep, and hence calibration is only allowed at
night if it is to avoid a potentially life-threatening situation. Mamdani Fuzzy
Interference System was used to determine the timing of the calibration. There
are six inputs:

1. Time passed since the last manual measurement. The fuzzy sets associated
with this input represent that the last calibration was: not long ago (< 60-90
min), really long ago (> 12 hours), or neither;
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2. Actual time. The fuzzy sets associated are that the patient is probably sleep-
ing (from around 11 pm to around 6 am), or that the patient is about to go
to sleep;

3. 7.8− Ĉ[k]−
√
[Σxx]1,1 [k], where Ĉ[k] is the estimated glucose concentration

in the subcutaneous tissue, [Σxx]1,1 [k] is the variance of the estimation error

C[k]− Ĉ[k]. 7.8 mmol/L is the lower bound of severe hyperglycemia. There
are three fuzzy sets: one associated with severe hyperglycemia, one repre-
senting when the signal might be close to the border, finally one capturing
the case when the signal is far even considering the estimation error;

4. The time derivative of the above signal; The decreasing and increasing trend
of this signal is captured by two fuzzy sets.

5. Ĉ[k]−
√
[Σxx]1,1 [k]− 3.9, since the glucose concentration decreasing below

3.9 mmol/L is considered hypoglycemia. The fuzzy sets are the same as for
the third input;

6. The time derivative of the above signal. Same fuzzy sets as in the case of the
4th input;

The rules used are as follows:

– If a lot of time has passed since the last calibration, a manual measurement
is needed, however

– If the last measurement was only a short time ago, there must not be a
measurement.

– If the patient is probably asleep, and the estimation does not strongly indi-
cate hypoglycemia, there should be no measurement.

– If the patient is about to go to sleep, there should be a measurement, unless
both hypo-, and hyperglycemia is highly unlikely.

– If there is a hyperglycemic episode, and the blood glucose levels are assumed
to be increasing, calibration is needed.

– If there is a hypoglycemic episode, or the patient is close to a hypoglycemic
episode, calibration is needed.

– If the patient is in or close to a hyperglycemic episode, and the blood glucose
levels are assumed to be increasing, calibration is needed.

– If the patient is close to a hyperglycemic episode, but the blood glucose levels
are assumed to be decreasing, measurement is not needed.

– If the patient is close to a hypoglycemic episode, but the blood glucose levels
are assumed to be increasing, measurement is not needed.

It is needless to see that the actual parameters of this module can depend
on various factors, such as lifestyle or sensor properties. Furthermore, the pa-
rameters of the fuzzy sets should reflect the uneven significance of hypo- and
hyperglycemia.

6 Results

Simulations were conducted to show the capabilities of the proposed system.
The numerical values of the model parameters were randomly chosen from the
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6 patient parameter sets presented in [12] and 50 virtual patient parameter sets
generated using the parameter bounds also presented in [12]. The meal intake and
physical activity was randomized as well. Each simulation covered 48 hours and
assumed unusually high carbohydrate (CHO) intake (180g CHO to 310g CHO).
The details are summarized in Table 1. Furthermore there is 50% chance of
physical activity starting between 9:00-12:00 for 1-4 hours. Uniform distribution
was used in all cases. The SGQF is assumed to have 10% initial estimation error,
and that the patient does not miss any of the manual measurements requested
by the so-created Calibration Supervisory unit. Fig. 1 shows an example for one
of the simulations. The acquired results are summarized in Table 2.

Table 1. High carbohydrate intake simulation parameters

Breakfast Snack 1 Lunch Snack 2 Dinner Snack 3

Chance of occurrence 100% 50% 100% 50% 100% 50%

Amount [g] 40-60 5-25 70-110 5-25 55-75 5-15

Time [hour] 6-10am 8-11am 11am-3pm 3-6pm 6-10pm 10pm-12am

6 12 18 24 6 12 18 6 
2.2

3.9
4.9

7.8

11 

B
G

 c
on

t. 
[m

m
ol

/L
]

time [hour]

Fig. 1. Example of simulation results. The real (solid blue line), measured (dashed
green line) and estimated (dash-dotted magenta line) blood glucose concentration are
displayed, as well as the estimated error bounds (dotted red line) and the instances
of the manual measurement (black asterisk). The three solid horizontal lines in the
background mark the upper (7.8 mmol/L) and lower (3.9 mmol/L) bounds of the
normoglycemic region, as well as the threshold for severe hyperglycemia (11 mmol/L).

Table 2. Simulation results for high CHO intake scenario. The percentage represents
the time spent in the designated regions through all 500 Monte Carlo simulations.

Hypoglycemia (< 3.9 mmol/L) 1.10%

Normoglycemia (3.9-6 mmol/L) 33.56%

Mild hyperglycemia (6-7.8 mmol/L) 26.01%

Hyperglycemia (6-11 mmol/L) 63.26%

Severe hyperglycemia (>11.1 mmol/L) 2.08%

Average number of calibrations 10.91
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7 Conclusion

The proposed controller, aided by the sparse-grid quadrature filter and the cal-
ibration supervisor could reduce both hypoglycemic and severe hyperglycemic
episodes for all virtual patients in the case of extreme meal intake and sen-
sor drift. A more sophisticated control algorithm and the optimization of filter
parameters and the calibration supervisor could improve these results further.
In future works the robustness of the solution must be examined, since it is
safe to assume that the used T1DM model is inaccurate, let it be parameter
inaccuracy or additive/multiplicative uncertainty defined in frequency domain.
Furthermore, additional safety measures must be taken if the patient is less co-
operative and reliable with the sensor calibration. It is also possible to use the
filter for prediction, hence providing more information for the supervisor unit.
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