Skip to main content

Tensor Completion Based on Structural Information

  • Conference paper
Neural Information Processing (ICONIP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8835))

Included in the following conference series:

  • 2437 Accesses

Abstract

In tensor completion, one of the challenges is the calculation of the tensor rank. Recently, a tensor nuclear norm, which is a weighted sum of matrix nuclear norms of all unfoldings, has been proposed to solve this difficulty. However, in the matrix nuclear norm based approach, all the singular values are minimized simultaneously. Hence the rank may not be well approximated. This paper presents a tensor completion algorithm based on the concept of matrix truncated nuclear norm, which is superior to the traditional matrix nuclear norm. Since most existing tensor completion algorithms do not consider of the tensor, we add an additional term in the objective function so that we can utilize the spatial regular feature in the tensor data. Simulation results show that our proposed algorithm outperforms some the state-of-the-art tensor/matrix completion algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Commun. ACM 55(6), 111–119 (2012)

    Article  Google Scholar 

  2. Zhang, Z., Ganesh, A., Liang, X., Ma, Y.: Tilt: Transform invariant low-rank textures. International Journal of Computer Vision 99(1), 1–24 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Candès, E.J., Tao, T.: The power of convex relaxation: Near-optimal matrix completion. IEEE Trans. Inf. Theor. 56(5), 2053–2080 (2010)

    Article  Google Scholar 

  4. Liang, X., Ren, X., Zhang, Z., Ma, Y.: Repairing sparse low-rank texture. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 482–495. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Hu, Y., Zhang, D., Ye, J., Li, X., He, X.: Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans. Pattern Anal. 35(9), 2117–2130 (2013)

    Article  Google Scholar 

  6. Xu, Y., Hao, R., Yin, W., Su, Z.: Parallel matrix factorization for low-rank tensor completion (submitted)

    Google Scholar 

  7. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. 35(1), 208–220 (2013)

    Article  Google Scholar 

  8. Donoho, D.L., Elad, M.: Maximal sparsity representation via l 1 minimization. Proc. Nat. Aca. Sci. 100, 1297–2202 (2003)

    MathSciNet  Google Scholar 

  9. Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low-rank representation. In: Proc. NIPS 2011, pp. 612–620 (2012)

    Google Scholar 

  10. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Donoho, C.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432), 1200–1224 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Han, ZF., Feng, R., Huang, LT., Xiao, Y., Leung, CS., So, H.C. (2014). Tensor Completion Based on Structural Information. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds) Neural Information Processing. ICONIP 2014. Lecture Notes in Computer Science, vol 8835. Springer, Cham. https://doi.org/10.1007/978-3-319-12640-1_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12640-1_58

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12639-5

  • Online ISBN: 978-3-319-12640-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics