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Abstract. We study the spanning properties of Theta-Theta graphs.
Similar in spirit with the Yao-Yao graphs, Theta-Theta graphs partition
the space around each vertex into a set of k cones, for some fixed integer
k > 1, and select at most one edge per cone. The difference is in the way
edges are selected. Yao-Yao graphs select an edge of minimum length,
whereas Theta-Theta graphs select an edge of minimum orthogonal pro-
jection onto the cone bisector. It has been established that the Yao-Yao
graphs with parameter k = 6k′ have spanning ratio 11.67, for k′ ≥ 6.
In this paper we establish a first spanning ratio of 7.82 for Theta-Theta
graphs, for the same values of k. We also extend the class of Theta-Theta
spanners with parameter 6k′, and establish a spanning ratio of 16.76 for
k′ ≥ 5. We surmise that these stronger results are mainly due to a tighter
analysis in this paper, rather than Theta-Theta being superior to Yao-
Yao as a spanner. We also show that the spanning ratio of Theta-Theta
graphs decreases to 4.64 as k′ increases to 8. These are the first results
on the spanning properties of Theta-Theta graphs.

Keywords: Yao graph, Theta graph, Yao-Yao, Theta-Theta, spanner

1 Introduction

Let S be a set of n points in the plane, and let G be an undirected plane graph
with vertex set S. The length of a path in G is the sum of the Euclidean lengths
of its constituent edges. The distance in G between any two points a, b ∈ S is
the length of a shortest path between a and b. We say that G is a spanner if
it preserves distances between each pair of points in S, up to a given factor.
Specifically, for a fixed integer t ≥ 1, we say that G is a t-spanner if any two
points a, b ∈ S at distance |ab| in the plane are at distance at most t · |ab| in G.
The smallest integer t for which this property holds is called the spanning ratio
of G. Clearly there is a tradeoff between the spanning ratio and the sparsity of
G: the smaller the spanning ratio, the denser the spanner and the better the
approximation of the original distances.

One way to control the tradeoff between the spanning ratio and the sparsity
of the spanner is to partition the space around each point into equiangular cones
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of angle θ = 2π/k, for some integer k ≥ 1, and connect each point to a “nearest”
point in each cone. Intuitively, this construction promises a short detour between
any two points a, b ∈ S, by following the edge from a aiming in the direction of b
(the one lying in the cone with apex a containing b). The definition of a “nearest”
point comes in two flavors, in the context of Yao graphs [31] and Theta-graphs
(or Θ-graphs) [14,22]. For Yao graphs, the “nearest” point is simply the point
that minimizes the L2-distance, whereas for Theta graphs, the “nearest” point
in a cone C is the point whose orthogonal projection onto the bisector of C
minimizes the L2-distance. Both Yao and Theta graphs are parameterized by a
positive integer k ≥ 1, which controls the cone angle θ = 2π/k. In the following
we will refer to the Yao graph as Yk and Theta graphs as Θk, for a fixed k ≥ 1.
Both Yk and Θk are known to be efficient spanners, for k ≥ 6. The spanning
ratios of these graphs are summarized in Table 1.

Parameter k
Spanning Ratio

Yk Θk Y Yk ΘΘk

< 4 ∞ [25]

4 696.1 [9] 237 [3] ∞ [17]

5 3.74 [2] 9.96 [11] OPEN ∞ [23]

6 5.8 [2] 2 [4] ∞ [25] OPEN

k > 6
1

1−2 sin(θ/2) [8]

1
1−sin(θ/2) [27] 11.67 for 16.76 for

4k + 2 1 + 2 sin(θ/2)

[12,7]

k = 6k′ and k = 6k′ and

4k + 4 1 + 2 sin(θ/2)
cos(θ/2)−sin(θ/2)

k′ ≥ 6 k′ ≥ 5

4k + 3, 4k + 5 1
1−2 sin(3θ/8) [2]

cos(θ/4)
cos(θ/2)−sin(3θ/4 ) [16] [HERE]

Table 1. Spanning ratios of Yao and Theta graphs for various θ = 2π/k values.

Interest in Yao and Theta graphs has increased with the advancement of wire-
less ad hoc networks and the need for efficient communication (see [26,28,21,15]
and the references therein). Designing routing algorithms for wireless ad hoc net-
works is an extremely difficult task and research in this area is still in progress.
The overlay communication graph formed by the wireless links should be a span-
ner to ensure fast delivery of information, and should also have low degree to
ensure a low maintenance cost and reduced MAC-level contention and interfer-
ence [20]. We observe that both Yao and Theta graphs obey the first requirement
(as detailed in Table 1), but fail to satisfy the second requirement. One simple
example consists of n− 1 points equally distributed around a circle centered at
an nth point p. Then, for k ≥ 6, both Θk and Yk will have an edge directed
from each of the n − 1 points towards p, because p is “nearest” in one of their
cones. So each of Θk and Yk has out-degree k, but in-degree n − 1. To reduce
the in-degree, alternate spanner structures based on Yao and Theta graphs have
been proposed, such as Yao-Yao [30], Sink [24,1], Stable Roommates [6], and
Ordered-Yao [29].
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The Yao-Yao graph with integer parameter k ≥ 1, denoted Y Yk, is a sub-
graph of Yk obtained by applying a second Yao step to the set of incoming edges
in each cone. More precisely, for each point p and each cone with apex a con-
taining two or more incoming edges, Y Yk retains only a shortest incoming edge
and discards the rest. Ties are broken arbitrarily. This construction guarantees
a degree of at most 2k at each node in Y Yk (one incoming and one outgoing
edge per cone), however the spanning property of Y Yk is still under investiga-
tion. The only existing result shows that Y Y6k′ , for k′ ≥ 6, is a spanner with
spanning ratio 11.67. For k′ ≥ 8, the spanning ratio of Y Y6k′ drops to 4.75 [16].

Sink spanners [24,1] transform bounded outdegree spanners, such as Yk and
Θk, into bounded degree spanners, by replacing each directed star consisting
of all links directed into a point p and lying in a cone with apex p, by a tree
of bounded degree with “sink” p. The result is a spanner with degree at most
k(k + 2) and spanning ratio 1/(1− 2 sin(θ/2))2.

The Stable Roommates spanner introduced in [6] has degree at most k and
spanning ratio matching the spanning ratio of Yk, so this spanner combines both
qualities – low spanning ratio and low degree – of the Yao and Yao-Yao graphs,
respectively. The only drawback of this approach is that it processes pairs of
points in non-decreasing order by their distances, making it unsuitable for a fast
local implementation. (The authors present a distributed implementation that
requires O(n) rounds of communication.)

The ordered Theta approach [10] reduces the potentially linear degree of the
Theta graph to a logarithmic degree. Similar to the stable roommates approach,
the ordered Theta approach imposes a particular ordering on the input points.
The authors show that careful orderings can produce graphs with spanning ratio
1/(cos θ − sin θ) and degree O(k log n).

Similar in spirit with the Yao-Yao graph, in this paper we introduce the
Theta-Theta graph ΘΘk, parameterized by integer k ≥ 1, and study the span-
ning properties of this graph. The graph ΘΘk is obtained by applying a filtering
step to the edges of Θk as follows. For each point p and each cone C with apex
p, we consider all edges in C directed into p, and maintain only a “shortest”
edge while discarding the rest. Recall that in the context of Theta graphs, a
“shortest” edge minimizes the length of its projection on the cone bisector. Ties
are arbitrarily broken.

Our main result shows that ΘΘ6k′ is a spanner, for any k′ ≥ 5. This result
relies on a result by Bonichon et al. [4], who prove that Θ6 is a 2-spanner.
Our main contribution is showing that ΘΘ6k′ contains a short path between
the endpoints of each edge in Θ6. More precisely, we show that for each edge
ab ∈ Θ6, there is a path between a and b in ΘΘ6k′ no longer than 8.38|ab|, for
k′ ≥ 5. This, combined with the fact that Θ6 is a 2-spanner, yields an upper
bound of 16.76 on the spanning ratio of ΘΘ6k′ . A similar approach has been
used in [16] to establish that Y Y6k′ has spanning ratio 11.67, for k′ ≥ 6. We
observe that the spanning ratio of ΘΘ6k′ decreases to 7.82, 5.63 and 4.64 as k′

increases to 6, 7, and above 8, respectively. The spanning ratios established in
this paper for ΘΘ6k′ are stronger than the ones obtained in [16] for Y Y6k′ , for
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the same parameter values k′ ≥ 6. We surmise that this is mainly due to the
tighter analysis in this paper, rather than ΘΘ6k′ being superior to Y Y6k′ as a
spanner.

1.1 Definitions

Throughout the paper, S will refer to a fixed set of n points in the plane. The
directed Yao graph Yk with integer parameter k ≥ 1 on S is constructed as
follows. For each point a ∈ S, starting with the direction of the positive x-axis,
extend k equally spaced rays r1, r2, . . . , rk originating at a, in counterclockwise
order (see Figure 1a for k = 6). These rays divide the plane into k cones, de-
noted by C{k,1}(a), C{k,2}(a), . . . , C{k,k}(a), each of angle θ = 2π/k. To avoid
overlapping boundaries, we assume that each cone is half-open and half-closed,
meaning that C{k,i}(a) includes ri but excludes ri+1 (here rk+1 ≡ r1 wraps
around). In each cone of a, draw a directed edge from a to its “closest” point
b in that cone (the one that minimizes the L2-distance |ab|). Ties are broken
arbitrarily. These directed edges collectively form the edge set for the directed
Yao graph. The undirected Yao graph (or simply Yao graph) on S is obtained by
simply ignoring the directions of these edges. The Theta graph Θk is defined in a
similar way, with the only difference being in the definition of “closest”: in each
cone C with apex a, draw a directed edge from a to the point b that minimizes
the distance between a and the orthogonal projection of b on the bisector of the
cone. For example, looking at the cone C{6,1}(a) in Figure 1b, notice that b1

r1

r2r3

r4

r5 r6

a

C{6,1}(a)C{6,3}(a)

C{6,4}(a) C{6,6}(a)

C{6,2}(a)

C{6,5}(a)

a

b2

b1

d2

d1

bis
ect

or
of
C{6,1

}(
a)

C{6,3}(a)

(a) (b)

Fig. 1. Definitions (a) Rays defining the cones at point a (b) Theta edges ab2, ad2.

minimizes the L2-distance to a, whereas b2 minimizes the L2-distance between

its projection onto the cone bisector and a. Consequently,
−→
ab1 will be added to

Y6, and
−→
ab2 to Θ6. Similarly,

−→
ad1 ∈ C{6,3}(a) will be added to Y6, and

−→
ad2 to Θ6.

Figure 2a shows the Yao graph Y6 for the point set depicted in Figure 1b, and
Figure 2c shows the Theta graph Θ6 for the same point set.

The Yao-Yao graph Y Yk ⊆ Yk is obtained from Yk by applying a reverse Yao
step to the set of incoming Yao edges in Yk. That is, for each node a and each
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cone with apex a containing two or more incoming edges, Y Yk retains a shortest
incoming edge and discards the rest. Ties are broken arbitrarily. The Theta-
Theta graph ΘΘk ⊆ Θk is obtained from Θk in a similar way, with the only
difference being in the requirement that a “shortest” incoming edge in a cone
minimizes the length of its projection onto the cone bisector. Figure 2b shows
the graph Y Y6 derived from the graph Y6 depicted in Figure 2a, and Figure 2d
shows the graph ΘΘ6 derived from the graph Θ6 depicted in Figure 2c.

When the choice of a particular cone is either irrelevant or is clear from the
context, we ignore the cone subscript and use Ck(a) to denote any of the cones
C{k,1}(a), C{k,2}(a), . . . C{k,k}(a). For any two points a, b ∈ S, let Ck(a, b) denote
the cone with apex a that contains b. Let 4k(a, b) be the canonical triangle with
two of its sides along the rays bounding Ck(a, b), and the third side orthogonal to
the bisector of Ck(a, b) and passing through b. For example, shaded in Figure 1b
are the canonical triangles 46(a, b2) and 46(a, d2).

d2

d1

b1

b2
a

d2

d1

b1

b2
a

(a) (b)

d2

d1

b1

b2
a

d2

d1

b1

b2
a

(c) (d)

Fig. 2. Graph examples (a) Y6 (b) Y Y6 (c) Θ6 (d) ΘΘ6.

For any pair of vertices a and b in an undirected graph G, let ξG(a, b) denote
a shortest path in G between a and b. For example, ξΘ6

(a, b) refers to a shortest
path in Θ6 from a to b.

Our main goal is to establish a short path in ΘΘk between the endpoints
of each edge in Θ6. Our arguments will rely on the assumption that, for each
point a ∈ S, each cone Ck(a) is entirely contained in C6(a), hence k = 6k′.
Throughout the rest of the paper, will will work with a quadruple of distinct

points a, b, b′, a′ ∈ S in the following configuration:
−→
ab is an arbitrary edge in

Θ6;
−→
ab′ is the edge in Θk that lies in the cone Ck(a, b) ⊂ C6(a, b); and

−→
a′b′

is the edge in ΘΘk that lies in the cone Ck(b′, a) ⊂ C6(b′, a). We will refer
to this configuration as a canonical Θ-configuration, to avoid repeating these
definitions in different contexts. For a snapshot of a canonical Θ-configuration,
see ahead to Figure 4a. We will further assume, without loss of generality, that

in a canonical Θ-configuration
−→
ab lies in C{6,1}(a), and the bisector of Ck(a, b)
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lies below, or aligns with, the bisector of 46(a, b). Any other configuration is
equivalent to this canonical Θ-configuration under rotational and/or reflectional
symmetry.

2 Preliminaries

In this section we present a few isolated lemmas that will be used in our main
proof from Section 3. For the sake of clarity and continuity in the flow of our
exposition, we defer the proofs of most of these lemmas to the appendix. We
encourage the reader to skip ahead to Section 3, and refer back to these lemmas
from the context of Theorem 2, where their role will become evident. We begin
this section with the statement of an existing result.

Theorem 1. [4] For any pair of points a, b ∈ S, there is a path in Θ6 whose
total length is bounded above by 2|ab|.

The key ingredient in the result of Theorem 1 is a specific subgraph of Θ6,
called half-Θ6. This graph preserves half of the edges in Θ6, those belonging
to non-consecutive cones. Bonichon et al. [4] show that half-Θ6 is a triangular-
distance1 Delaunay triangulation, computed as the dual of the Voronoi diagram
based on the triangular distance function. Combined with Chew’s proof that
any triangular-distance Delaunay triangulation is a 2-spanner [13], this result
settles Theorem 1. The structure of Θ6, viewed as the union of two planar 2-
spanners, has been used in establishing spanning properties of other graphs as
well [5,18,16].

a

b

y

x

pΘ
6
(a
, b
)

Fig. 3. Lemma 1: |ξΘ6(a, b)| ≤ |ay|+ |by|.

1 The triangular distance from a point a to a point b is the side length of the smallest
equilateral triangle centered at a that touches b and has one horizontal side.
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b

b′

a′

46(a, b)

θ

θ

a

4k(a, b)4k(b
′, a) b

b′

a′

46(a, b)

θ

θ

a
γ

β

i

r

(a) (b)

Fig. 4. (a) Canonical Θ-configuration: ab ∈ Θ6, ab′ ∈ Θk and a′b′ ∈ ΘΘk (b) Bounding
|ab′|, |a′b′| and |bb′|.

Before stating our preliminary results, we define the term T (α) parameterized
by angle α ∈ [0, π/3] as

T (α) =
sin(π/3− α)− sinα

sin(π/3)
≤ 1 (1)

This term will occur frequently in our analysis, and this definition will come in
handy. The upper bound of 1 follows from the fact that T (α) decreases as α
increases, therefore T (α) ≤ T (0) = 1. The following lemma plays a central role
in the proofs of Lemmas 3 and 4.

Lemma 1. [16] Let a, b ∈ S and let x and y be the other two vertices of 46(a, b).
If 46(b, x) is empty of points in S, then |ξΘ6

(a, b)| ≤ |ay|+ |by|. Moreover, each
edge of ξΘ6

(a, b) is no longer than |ay|. [Refer to Figure 3.]

Note that Lemma 1 does not specify which of the two sides ax and ay lies
clockwise from 46(a, b), so the lemma applies in both situations. The following
lemma establishes fundamental relationships on the distances between points in
a canonical Θ-configuration.

Lemma 2. Let a, b, b′, a′ ∈ S be points in a canonical Θ-configuration. Then
each of |ab′| and |a′b′| is no longer than |ab|/ cos(θ/2). In addition, if β and γ
are the angles formed by the horizontal through a with ab′ and the lower ray of
Ck(a, b), respectively, and if β ≤ π/6, then

|ab′| ≥ |ab| sin(π/3 + γ)

sin(π/3 + β)

[Refer to Figure 4b.]

Lemmas 3 through 5 isolate specific situations that will arise in the analysis of
our main result. We state them independently in this section.
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b

b′

46(a, b)

a

a′

x′ x

y′ y

u

c
d

β
γ

b

b′

46(a, b)

a′

x
αγ

o y c
d

u

ea

(a) (b)

Fig. 5. Bounding |ξΘ6(a, a′)| + |ξΘ6(b, b′)| (a) Lemma 3: a′ above a (b) Lemma 4: a′

below a.

Lemma 3. Let a, b, b′, a′ ∈ S be points in a canonical Θ-configuration, with the
additional constraint that a′ ∈ C{6,2}(a). Let β and γ be the angles formed by the
horizontal through a with ab′ and the lower ray of Ck(a, b), respectively. Then

|ξΘ6
(a, a′)|+ |ξΘ6

(b, b′)| ≤ (|ab|+ |a′b′|) · T (γ)− 2|ab′| · T (β)

Here the term T is as defined in (1). Furthermore, each edge of ξΘ6
(a, a′) and

ξΘ6(b, b′) is strictly smaller than ab, for θ ≤ π/6. [Refer to Figure 5a.]

Lemma 4. Let a, b, b′, a′ ∈ S be points in a canonical Θ-configuration, with the
additional constraints that a′ ∈ C{6,6}(a), and the angle α formed by ab with the
horizontal through a is at most π/6. Then

|ξΘ6
(a, a′)|+ |ξΘ6

(b, b′)| ≤ |ab| − |a′b′| · sin(π/3− α− θ)− sin θ

sin(π/3− α)

Furthermore, each edge of ξΘ6
(a, a′) and ξΘ6

(b, b′) is strictly shorter than ab, for
θ ≤ π/12. [Refer to Figure 5b.]

Lemma 5. Let a, b, b′, a′ ∈ S be points in a canonical Θ-configuration, with the
additional constraint that either a′ ∈ C{6,5}(a), or a′ ∈ C{6,6}(a) and the angle
formed by ab with the horizontal through a is above π/6. Then

|ξΘ6(a, a′)|+ |ξΘ6(b, b′)| ≤ 8|ab| sin(θ/2)

Furthermore, each edge of ξΘ6(a, a′) and ξΘ6(b, b′) is strictly shorter than ab, for
θ ≤ π/15.
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Our approach to finding a short path in ΘΘk between the endpoints of each
edge in Θ6 uses induction on the Euclidean lengths of the edges in Θ6. The
following lemma will be useful in proving the inductive step in various situations.

Lemma 6. Let a, b, b′, a′ ∈ S be points in a canonical Θ-configuration, and let
t ≥ 1 be a fixed real value. Assume that, for each edge xy ∈ Θ6 no longer than
ab, the inequality |ξΘΘk

(x, y)| ≤ t · |xy| holds. Let ξΘΘk
(a, b) = ξΘΘk

(a, a′) ⊕
a′b′ ⊕ ξΘΘk

(b′, b). If |ξΘ6(a, a′)| < |ab| and |ξΘ6(b, b′)| < |ab|, then

|ξΘΘk
(a, b)| ≤ t · |ξΘ6(a, a′)|+ t · |ξΘ6(b′, b)|+ |a′b′|

Furthermore, if |ab| − |ξΘ6
(a, a′)− |ξΘ6

(b′, b)| > 0, then |ξΘΘk
(a, b)| ≤ t · |ab| for

any real value t such that

t ≥ |ab|/ cos(θ/2)

|ab| − |ξΘ6
(a, a′)| − |ξΘ6

(b′, b)| . (2)

Here the symbol ⊕ is used to denote the path concatenation operator.

Proof. Because |ξΘ6(a, a′)| < |ab|, each edge on ξΘ6(a, a′) must be shorter than
ab. This along with the lemma statement implies that, for each edge xy on
the path ξΘ6

(a, a′), the inequality |ξΘΘk
(x, y)| ≤ t · |xy| holds. Summing up

these inequalities for all edges along the path ξΘ6
(a, a′) yields |ξΘΘk

(a, a′)| ≤
t · |ξΘ6

(a, a′)|. Similar arguments show that |ξΘΘk
(b, b′)| ≤ t · |ξΘ6

(b, b′)|. Thus
the first inequality stated by this lemma holds. Using the upper bound on |a′b′|
from Lemma 2, and the assumption that |ab| − |ξΘ6(a, a′)− |ξΘ6(b′, b)| > 0, this
inequality can be easily reorganized into |ξΘΘk

(a, b)| ≤ t · |ab| for any real value
t that satisfies (2).

3 ΘΘ6k′ is a Spanner, for k′ ≥ 4

This section presents our main result, which shows that ΘΘk is a spanner, pro-
vided that k = 6k′ and k′ ≥ 5 (and so θ ≤ π/15). In particular, we show that
for each edge ab ∈ Θ6, there is a path in ΘΘ6k′ no longer than 8.38|ab|. This,
combined with the result of Theorem 1, yields our main result that ΘΘ6k′ is
a 16.76-spanner, for k′ ≥ 5. The spanning ratio decreases to 7.82 for k′ ≥ 6,
which is superior to the spanning ratio of 11.67 established in [18] for Y Y6k′ ,
with k′ ≥ 6. We also show that the spanning ratio of ΘΘ6k′ drops to 4.64 for
k′ ≥ 8.

Our approach takes advantage of the fact that each edge ab ∈ Θ6 is embedded
in an equilateral triangle 46(a, b) empty of points in S. The restriction k = 6k′

is necessary in our analysis to guarantee that each cone used in constructing Θk
and ΘΘk is a subset of a cone used in constructing Θ6, therefore it inherits a
large area empty of points in S. This property is crucial in establishing a “short”
path in ΘΘk between the endpoints of each edge in Θ6. Although we search for
undirected paths in the undirected version of ΘΘk, we sometimes point out the
direction of an edge if significant in the context.
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Theorem 2. Let k = 6k′ be a positive integer, with k′ ≥ 5. For each edge−→
ab ∈ Θ6, a shortest path in ΘΘk between a and b satisfies |ξΘΘk

(a, b)| ≤ t · |ab|,
where t is a positive real with values 8.38, 3.91, 2.811 and 2.32 corresponding to
k′ values 5, 6, 7, and above 8, respectively.

Proof. Recall that θ = 2π/k, so in the context of this theorem θ ≤ π/15.
Throughout this proof will refer to the value t from the theorem statement
as the stretch factor, with the understanding that it measures the “stretch” in
ΘΘk of an edge ab ∈ Θ6, and to be distinguished from the spanning ratio of
ΘΘk (which by Theorem 1 is at most 2t).

The proof is by induction on the Euclidean length of the edges in Θ6. The

base case corresponds to a shortest edge
−→
ab ∈ Θ6. In this case we show that−→

ab ∈ Θk and
−→
ab ∈ ΘΘk. Assume to the contrary that

−→
ab 6∈ Θk and let

−→
ab′ ∈ Θk

be the edge that lies in Ck(a, b). Lemma 3 does not impose any restrictions
on the relative position of the b and b′, therefore the result that each edge on
ξΘ6(b, b′) is strictly shorter than ab applies in this context. This contradicts our

assumption that ab is a shortest edge in Θ6. This shows that
−→
ab ∈ Θk. Similar

arguments, used in conjunction with Lemmas 3, 4 and 5 (which distinguish

between different locations of a′ relative to a), show that
−→
ab ∈ ΘΘk.

Our inductive hypothesis states that the theorem holds for all edges in Θ6 of
length strictly lower than some fixed value δ > 0. To prove the inductive step,

pick a shortest edge
−→
ab ∈ Θ6 of length δ or higher, and find a “short” path

ξΘΘk
(a, b) that satisfies the conditions of the theorem. Let a′ and b′ be the other

two points in S which, along with a and b, complete a canonical Θ-configuration:−→
ab′ ∈ Θk lies in Ck(a, b), and

−→
a′b′ ∈ ΘΘk lies in Ck(b′, a). Refer to Figure 4a. Also

recall our general assumptions that in a canonicalΘ-configuration ab ∈ C{6,1}(a),
and the bisector of Ck(a, b) aligns with, or lies below, the bisector of 46(a, b).
The locus of b′ is4k(a, b)\46(a, b), which is an area completely inside C{6,1}(a).
The locus of a′ is 4k(b′, a) \ 46(a, b), which is an area that may overlap two or
three of the cones C{6,2}(a), C{6,5}(a) and C{6,6}(a). Note that a′ may not lie in
C{6,3}(a), due to our assumption that the bisector of 4k(a, b) is no higher than
the bisector of 46(a, b).

Our intent is to use the result of Lemma 6 to establish the existence of a
path between a and b of length at most t · |ab|, for some fixed real constant t > 1.
The two key ingredients needed by Lemma 6 are “short” paths in Θ6 between a
and a′, and between b and b′. We discuss three cases, depending on whether a′

lies in C{6,2}(a), C{6,5}(a) or C{6,6}(a). The case a′ ∈ C{6,5}(a) is the simplest,
so we will save it for last. Let α, β and γ be the angles formed by the horizontal
through a with ab, ab′, and the lower ray of Ck(a, b), respectively.

Case a′ ∈ C{6,2}(a). This case is depicted in Figure 5a. By Lemma 3, we have

|ξΘ6
(a, a′)|+ |ξΘ6

(b, b′)| ≤ (|ab|+ |a′b′|) · T (γ)− 2|ab′| · T (β) (3)
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where T is as defined in (1). Notice the restrictions on the angles β and γ:

0 ≤ γ ≤ π/6− θ/2
γ ≤ β ≤ γ + θ (4)

The upper bound on γ is due to our assumption that the bisector of 4k(a, b)
is no higher than the bisector of 46(a, b). The bounds on β follow immediately
from the definitions of γ and β. Next we determine a maximum for the quantity
on the right hand side of (3). We consider two situations, depending on ranges
of β, which affect the sign of T (β). Observe that T (γ) is always positive, since
π/3− γ > γ for any γ < π/6.

Assume first that β ≤ π/6, so ab′ is no higher than the bisector of 46(a, b).
In this case β ≤ π/3 − β and sinβ ≤ sin(π/3 − β), therefore T (β) is posi-
tive. Substituting in (3) the upper bound on |a′b′| and the lower bound on |ab′|
from Lemma 2 yields

|ξΘ6
(a, a′)|+ |ξΘ6

(b, b′)|
|ab| ≤ T (γ) +

T (γ)

cos(θ/2)
− 2T (β) · sin(π/3 + γ)

sin(π/3 + β)

Let X(θ, γ, β) denote the quantity on the right hand side of the inequality above.
Note thatX(θ, γ, β) increases as θ increases, thereforeX(θ, γ, β) ≤ X(π/15, γ, β)
for θ ≤ π/15. Figure 6a shows how X(θ, γ, β) varies with γ ∈ [0, π/6− θ/2] and
β ∈ (γ,min{π/6, γ+ θ}], for fixed θ = π/15. It can be verified that |ξΘ6

(a, a′)|+

γ

β

X(π/15, γ, β)

γ

β

Y (π/15, γ, β)

(a) (b)

Fig. 6. Case a′ ∈ C{6,2}(a): upper bound on |ξΘ6(a, a′)|+ |ξΘ6(b, b′)| for θ = π/15 and
γ ∈ [0, π/6− θ/2] (a) α ∈ (γ,min{π/6, γ + θ}] (b) α ∈ (π/6,min{π/6 + θ/2, γ + θ}]

|ξΘ6
(b, b′)| < 0.88|ab|, for any 0 < θ ≤ π/15. This along with Lemma 6 yields

a stretch factor t = 8.3760 for the path in ΘΘk between a and b. The stretch
factor t decreases with θ as shown in the second column of Table 2.

Assume now that π/6 < β ≤ π/6 + θ/2, so ab′ lies above the bisector of
4k(a, b). In this case T (β) is negative, and by (4) we have γ ≥ π/6− θ. Substi-
tuting in (3) the upper bound on |ab′| and |a′b′| from Lemma 2 yields

|ξΘ6(a, a′)|+ |ξΘ6(b, b′)|
|ab| ≤ T (γ) +

T (γ)− 2T (β)

cos(θ/2)
(5)
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θ
Case a′ ∈ C{6,2}(a): stretch factor t from Lemma 6

0 < β ≤ π/6 π/6 < β ≤ π/6 + θ/2
π/15 8.3760 6.2720
π/18 3.9058 3.3377
π/21 2.8109 2.5014
π/24 2.3159 2.1057

Table 2. Case a′ ∈ C{6,2}(a): real constant t from Lemma 6 for various θ values.

Let Y (θ, γ, β) denote the quantity on the right hand side of the inequality
above. Because T (γ) is positive and T (β) is negative, T (γ) − 2T (β) is posi-
tive and therefore Y (θ, γ, β) increases as θ increases. It follows that Y (θ, γ, β) ≤
Y (π/15, γ, β) for θ ≤ π/15. Figure 6b shows how Y (θ, γ, β) varies with γ ∈
[π/6 − θ, π/6 − θ/2] and β ∈ (π/6, γ + θ], for θ = π/15. It can be verified
that |ξΘ6(a, a′)| + |ξΘ6(b, b′)| < 0.8397|ab|, for any 0 < θ ≤ π/15. This along
with Lemma 6 yields a stretch factor t = 6.2720 for the path in ΘΘk between
a and b. The stretch factor t decreases with θ as shown in the third column of
Table 2.

Case a′ ∈ C{6,6}. This case is depicted in Figure 5b. We discuss two situations,
depending on whether ab lies above or below the bisector of46(a, b). Assume first
that ab is no higher than the bisector of 46(a, b), so α ≤ π/6. Thus we are in the
context of Lemma 4, which gives us an upper bound |ξΘ6(a, a′)|+ |ξΘ6(b, b′)| ≤
|ab| − |a′b′| · Z(θ, α), where

Z(θ, α) =
sin(π/3− θ − α)− sin θ

sin(π/3− α)

Note that Z(θ, α) decreases as θ increases, therefore Z(θ, α) ≥ Z(π/15, α) for
any θ ≤ π/15. It can be verified that Z(θ, α) ≥ m = 0.2022, for any θ ≤ π/15.
By Lemma 6, we have

ξΘΘk
(a, b) ≤ t|ab| − t|a′b′| · Z(θ, α) + |a′b′|

Simple calculations show that the right hand side of the inequality above does
not exceed t|ab| for any t ≥ 4.945 ≥ 1/m. This bound decreases with θ as shown
in the second column of Table 3.

Assume now that ab lies above the bisector of 46(a, b), so α > π/6. Intu-
itively, this forces a and a′ to lie close to each other (for sufficiently small θ
values), and similarly for b and b′, so we can work with somewhat looser upper
bounds without exceeding the spanning ratio established so far. Our context
matches the context of Lemma 5, which tells us that |ξΘ6

(a, a′)|+ |ξΘ6
(b, b′)| ≤

X(θ) = 8|ab| sin(θ/2). The bound X(θ) increases with θ, therefore X(θ) ≤
X(π/15) ≤ 0.8363. This together with Lemma 6 yields |ξΘΘk

(a, b)| < t · |ab|
for any t ≥ 6.1397. This bound decreases with θ as shown in the third column
of Table 3.
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θ
Case a′ ∈ C{6,6}(a): stretch factor t from Lemma 6

0 ≤ α ≤ π/6 π/6 < α ≤ π/6 + θ/2
π/15 4.9454 6.1397
π/18 2.9697 3.3157
π/21 2.3117 2.4936
π/24 1.9829 2.1020

Table 3. Case a′ ∈ C{6,6}(a): real constant t from Lemma 6 for various θ values.

Case a′ ∈ C{6,5}. The bound on |ξΘ6
(a, a′)|+ |ξΘ6

(b, b′)| provided by Lemma 5
applies here as well, therefore the analysis for this case is identical to the one
for the previous case (with b′ ∈ C{6,6} and ab above the bisector of 46(a, b)),
yielding the spanning ratios listed in the third column of Table 3.

To derive the results listed in Tables 2 and 3, we worked with a quadruplet of
distinct points a, b, a′, b′ in a Θ-configuration. The cases where a and a′ coincide,
or b and b′ coincide, are special instances of this general case and yield lower
stretch factors. The results listed in Tables 2 and 3 indicate that the stretch
factor is highest when a′ lies above a and ab′ is below the bisector of 46(a, b).
The largest stretch factor value is t = 8.376 for θ = π/15, and it drops to 3.91,
2.82 and 2.32 for θ values π/18, π/21 and π/24, respectively. This completes the
proof.

Combined with the result of Theorem 1, the result of Theorem 2 yields the main
result of this paper, stated by Theorem 3 below.

Theorem 3. The graph ΘΘk, with k = 6k′ and k′ ≥ 5, is a 16.76-spanner. The
spanning ratio decreases to 7.82, 5.63 and 4.64 as k′ increases to 6, 7, and above
8, respectively.

4 Conclusions

In this paper we present the first results on the spanning property of ΘΘk-graphs.
We show that, for any integer k′ ≥ 5, the graph ΘΘ6k′ is a spanner with spanning
ratio 16.76. The spanning ratio drops to 7.82 for k′ ≥ 6, which is superior to the
spanning ratio of 11.67 established in [18] for Y Y6k′ , with k′ ≥ 6. The framework
of our analysis seems inadequate to handle all graphs ΘΘk, for all k > 6, because
it relies on the fact that each cone used in constructing ΘΘk is a subset of a cone
used in constructing Θ6. It is unclear whether a fundamentally new technique is
required to handle all ΘΘk graphs, for k ≥ 6. Proving or disproving that these
graphs are spanners remains the main open problem in this area.
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Michiel H. M. Smid, and Stefanie Wuhrer. Pi/2-angle Yao graphs are spanners.
CoRR, abs/1001.2913, 2010.

9. Prosenjit Bose, Mirela Damian, Karim Doüıeb, Joseph O’Rourke, Ben Seamone,
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Appendix: Deferred Proofs

4.1 Proof of Lemma 2

Lemma 2. Let a, b, b′, a′ ∈ S be points in a canonical Θ-configuration. Then
each of |ab′| and |a′b′| is no longer than |ab|/ cos(θ/2). In addition, if β and γ
are the angles formed by the horizontal through a with ab′ and the lower ray of
Ck(a, b), respectively, and if β ≤ π/6, then

|ab′| ≥ |ab| sin(π/3 + γ)

sin(π/3 + β)

[Refer to Figure 4b.]

Proof. Let h be the height of the isosceles triangle 4k(a, b), and let s be the
length of its two equal sides. They are related by h = s cos(θ/2). Because both
ab and ab′ lie inside 4k(a, b), their length may not exceed s. Also |ab| may not
be lower than h, since b is on the base of 4k(a, b). This implies |ab| ≥ h =
s cos θ/2 ≥ |ab′| cos θ/2, so the upper bound on |ab′| holds. Observe now that
4k(a, b) and 4k(b′, a) are similar, and the side length of 4k(b′, a) does not
exceed s (because b′ lies inside 4k(a, b)). Similar arguments can then be used to
establish the same upper bound on |a′b′|.

Let i be the intersection point between ab′ and the right side of 46(a, b).
Then |ab′| ≥ |ai|. By the Law of Sines applied on 4abi, we have |ab|/ sin]aib =
|ai|/ sin]abi. Let r be the lower right corner of46(a, b). Note that ]aib = π/3−
β (as angle interior to 4air) and ]abi = π/3+]bar ≥ π/3+γ (as angle exterior
to4abr). Also because β ≤ π/6, ]abi is acute, therefore sin]abi ≥ sin(π/3+γ).
These together show that |ai| ≥ |ab| sin(π/3+γ)/ sin(π/3+α), so the lower bound
on |ab′| holds. This completes the proof.

4.2 Proof of Lemma 3

Lemma 3. Let a, b, b′, a′ ∈ S be points in a canonical Θ-configuration, with the
additional constraint that a′ ∈ C{6,2}(a). Let β and γ be the angles formed by the
horizontal through a with ab′ and the lower ray of Ck(a, b), respectively. Then

|ξΘ6(a, a′)|+ |ξΘ6(b, b′)| ≤ (|ab|+ |a′b′|) · T (γ)− 2|ab′| · T (β)

Here the term T is as defined in (1). Furthermore, each edge of ξΘ6(a, a′) and
ξΘ6

(b, b′) is strictly smaller than ab, for θ ≤ π/6. [Refer to Figure 5a.]

Proof. First we determine an upper bound on |ξΘ6
(b, b′)|. Let c and d be the

right and left corners of 46(b′, b), respectively. Because b′ is interior to 4k(a, b),
the perpendicular from b′ to the bisector of 4k(a, b) intersects the line segment
ab, so the perpendicular from b′ to cd falls left of b. This implies that |bc| ≤ |bd|.
Note that 46(b′, b) meets the conditions of Lemma 1, with 46(b, d) empty of
points in S, therefore |ξΘ6

(b, b′)| ≤ |bc| + |b′c| ≤ |bd| + |b′d|. Let the horizontal
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through a intersect the left rays of C{6,5}(b) and C{6,5}(b
′) in points x and x′,

respectively. Then |bd| = |ax| − |ax′| and |b′d| = |b′x′| − |bx|, so we have

|ξΘ6(b, b′)| ≤ (|ax| − |ax′|) + (|b′x′| − |bx|) (6)

We determine |ax| and |bx| in terms of |ab| by applying the Law of Sines on
4abx: |ax|/ sin]abx = |bx|/ sin]bax = |ab|/ sin]axb. Note that ]axb = 2π/3,
therefore both ]bax and ]abx are acute. This along with the fact that ]bax ≥ γ
implies sin]bax ≥ sin γ, and ]abx = π/3− ]bax ≤ π/3− γ implies sin]abx ≤
sin(π/3− γ). Combining these inequalities together yields

|ax| ≤ |ab| · sin(π/3− γ)

sin(π/3)
and |bx| ≥ |ab| · sin γ

sin(π/3)
(7)

Next we determine |b′x′| and |ax′| in terms of |ab′| by applying the Law of Sines
on 4ab′x′: |ax′|/ sin]ab′x′ = |b′x′|/ sin]b′ax′ = |ab′|/ sin(π/3). Plugging in the
angle values ]b′ax′ = β and ]ab′x′ = π/3− β yields

|ax′| = |ab′| · sin(π/3− β)

sin(π/3)
and |b′x′| = |ab′| · sinβ

sin(π/3)
(8)

Combining inequalities (6), (7) and (8) together yields

|ξΘ6(b, b′)| ≤ |ab| · T (γ)− |ab′| · T (β) (9)

Next we determine an upper bound on |ξΘ6(a, a′)|. Let u be the left corner of
46(a′, a) (refer to Figure 5a.) By Lemma 1, |ξΘ6(a′, a)| ≤ |au| + |a′u|. Let the
horizontal through b′ intersect the left side of46(a, b) and the line supporting a′u
in points y and y′, respectively. Then |au| = |b′y′|− |b′y| and |a′u| = |ay|− |a′y′|.
These together imply

|ξΘ6
(a, a′)| ≤ (|ay| − |a′y′|) + (|b′y′| − |b′y|) (10)

Note that |ay| = |b′x′| and |b′y| = |ax′|, so the bounds from (8) apply here as
well. Next we determine |a′y′| and |b′y′| in terms of |a′b′| by applying the Law
of Sines on 4a′b′y′: |a′y′|/ sin]a′b′y′ = |b′y′|/ sin]y′a′b′ = |a′b′|/ sin]a′y′b′.
Because the upper ray of Ck(b′, a′) is parallel to the lower ray of Ck(a, b), we
have ]a′b′y′ ≥ γ and ]y′a′b′ = π/3− ]a′b′y′ ≤ π/3− γ. Since both angles are
acute, we get sin]a′b′y′ ≥ sin γ and sin]y′a′b′ ≤ sin(π/3 − γ). These together
imply

|a′y′| ≥ |a′b′| · sin γ

sin(π/3)
and |b′y′| ≤ |a′b′| · sin(π/3− γ)

sin(π/3)
(11)

Combining inequalities (10), (8) and (11) together yields

|ξΘ6(a, a′)| ≤ |a′b′| · T (γ)− |ab′| · T (β)

This along with (9) settles the first part of the lemma. We now turn to the second
claim of the lemma. By Lemma 1, each edge on ξΘ6(b, b′) is no longer than |b′d| ≤
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|b′x′| = |ab′| sinβ/ sin(π/3) (cf. (8)), and each edge on ξΘ6(a, a′) is no longer
than |a′u| ≤ |ay| = |b′x′|. To simplify discussion, let A = |ab′| sinβ/ sin(π/3). It
suffices to show that A < |ab| in order to settle the second part of the lemma.
Because the bisector of4k(a, b) is no higher than the bisector of46(a, b), we have
that β ≤ π/6 + θ/2, therefore A < |ab′| sin(π/6 + θ/2)/ sin(π/3). Substituting
the upper bound on |ab′| from Lemma 2 yields

A < |ab| sin(π/6 + θ/2)

sin(π/3) cos(θ/2)

It can be verified that the right hand side of this inequality is strictly smaller
than |ab|, for any θ ≤ π/6. This completes the proof.

4.3 Proof of Lemma 4

Lemma 4. Let a, b, b′, a′ ∈ S be points in a canonical Θ-configuration, with the
additional constraints that a′ ∈ C{6,6}(a), and the angle α formed by ab with the
horizontal through a is at most π/6. Then

|ξΘ6
(a, a′)|+ |ξΘ6

(b, b′)| ≤ |ab| − |a′b′| · sin(π/3− α− θ)− sin θ

sin(π/3− α)

Furthermore, each edge of ξΘ6
(a, a′) and ξΘ6

(b, b′) is strictly shorter than ab, for
θ ≤ π/12. [Refer to Figure 5b.]

Proof. We define the following points: c and d are the right and left corners of
46(b′, b); u is the left corner of 46(a′, a); x and e are the points where the right
ray of C{6,2}(a

′) intersects ab and the horizontal through a, respectively; y is
the point where the line supporting b′d intersects ab; and o is the intersection
point between ab and a′b′. Refer to Figure 5b. Arguments similar to the ones
used in the proof of Lemma 3 show that |ξΘ6(b, b′)| ≤ |b′d| + |bd|. This along
with |b′d| ≤ |b′y| and |bd| ≤ |by| implies

|ξΘ6
(b, b′)| ≤ |by|+ |b′y|

By Lemma 1 we have |ξΘ6(a, a′)| ≤ |a′u|+ |au| = |ae|+ |a′e| ≤ |ax|+ |a′x|. This
together with the inequality above and the fact that |by| + |ax| = |ab| − |xy|,
yields

|ξΘ6
(a, a′)|+ |ξΘ6

(b, b′)| ≤ |ab| − |xy|+ (|a′x|+ |b′y|) (12)

Using the similarity property of 4a′ox and 4b′oy, we derive |xy| = |a′b′| ·
|xo|/|a′o| and |a′x|+ |b′y| = |a′b′| · |a′x|/|a′o|. Using the Law of Sines on 4a′ox,
we derive |xo|/|a′o| = sin]xa′o/ sin]a′xo and |a′x|/|a′o| = sin]a′ox/ sin]a′xo.
Observe that ]a′ox ≤ θ (because the ray shooting from b′ towards a, parallel
to ab, lies inside Ck(b′, a′) of angle θ, and ]a′ox is equal to the angle formed by
this ray with a′b′), and ]a′xo = 2π/3 +α (as angle exterior to 4aex). It follows
that ]xa′o > π/3− α− θ. These together imply

|xy| > |a′b′| · sin(π/3− α− θ)
sin(π/3− α)

and |a′x|+ |b′y| < |a′b′| · sin θ

sin(π/3− α)
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These inequalities along with (12) yield the upper bound on |ξΘ6(a, a′)|+|ξΘ6(b, b′)|
stated by this lemma.

For the second part of the lemma, it can be verified that the term (sin(π/3−
α − θ) − sin θ)/ sin(π/3 − α) is strictly positive for any t ∈ (0, π/12] and α ∈
[0, π/3]. This along with the upper bound established by this lemma shows that
|ξΘ6

(a, a′)|+|ξΘ6
(b, b′)| < |ab|, therefore each edge on each of the paths ξΘ6

(a, a′)
and ξΘ6

(b, b′) is strictly shorter than ab. This completes the proof.

4.4 Proof of Lemma 5

Lemma 5. Let a, b, b′, a′ ∈ S be points in a canonical Θ-configuration, with the
additional constraint that either a′ ∈ C{6,5}(a), or a′ ∈ C{6,6}(a) and the angle
formed by ab with the horizontal through a is above π/6. Then

|ξΘ6(a, a′)|+ |ξΘ6(b, b′)| ≤ 8|ab| sin(θ/2)

Furthermore, each edge of ξΘ6
(a, a′) and ξΘ6

(b, b′) is strictly shorter than ab, for
θ ≤ π/15.

Proof. The conditions stated by the lemma suggest that either a and a′ lie close
to each other (if a′ ∈ C{6,5}(a)), or b and b′ lie close to each other (if ab is above
the bisector of 46(a, b)). Intuitively, the upper bounds established for these two
cases must be within a small factor of each other.

Let o be the intersection point between ab and a′b′. By the lemma statement
b′ lies below the horizontal through a, therefore the point o exists. Observe that
a ray shooting from b′ towards a, parallel to ab, lies inside Ck(b′, a′) of angle θ,
and ]aoa′ is equal to the angle formed by this ray with a′b′, therefore ]aoa′ ≤
θ. By the Law of Sines applied on triangle 4aoa′, we have |aa′|/ sin]aoa′ =
|oa′|/ sin]a′ao. This along with Theorem 1 and the fact that ]aoa′ ≤ θ implies

|ξΘ6
(a, a′)| ≤ 2|oa′| · sin θ

sin]a′ao
(13)

Similarly arguments used on 4bob′ show that

|ξΘ6
(b, b′)| ≤ 2|ob′| · sin θ

sin]b′bo
(14)

Consider first the case where a′ ∈ C{6,6}(a), and ab is above the bisector of
46(a, b). In this case ]b′bo > π/2 and ]a′ao > π/6 (since a′ is below the
horizontal through a). By the definition of a Θ-configuration, the bisector of
Ck(a, b) lies below the bisector of 46(a, b), therefore the angle formed by ab
with the bisector of 46(a, b) is at most θ/2. It follows that ]a′ao < π/2 +
θ/2 < π/2 + π/6 and similarly ]b′bo < π/2 + π/6. These together show that
sin]a′ao > sin(π/6) and sin]b′bo > sin(π/6), which along with (13) and (14)
yield

|ξΘ6(a, a′)|+ |ξΘ6(b, b′)| ≤ 2|a′b′| · sin θ

sin(π/6)
= 4|a′b′| sin θ (15)
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Substituting the upper bound on |a′b′| from Lemma 2 results in |ξΘ6(a, a′)| +
|ξΘ6

(b, b′)| ≤ 4|ab| sin θ/ cos(θ/2) = 8|ab| sin(θ/2). Thus the upper bound claimed
by the lemma holds for this case.

Assume now that b′ ∈ C{6,5}(a). In this case ]a′ao ≥ π/3, and similarly
]b′bo ≥ π/3 (because b′ lies exterior to 46(a, b) and above b). Since neither of
these angles can extend as far as π/2+π/3, the inequalities sin]a′ao ≥ sin(π/3)
and sin]b′bo ≥ sin(π/3) hold. These along with (13) and (14) yield

|ξΘ6(a, a′)|+ |ξΘ6(b, b′)| ≤ 2|a′b′| · sin θ

sin(π/3)
< 2|a′b′| · sin θ

sin(π/6)

This shows that the bound from (15) established for the previous case applies
in this case as well. This settles the first part of the lemma. For the second
part, simple calculations show that 8 sin(θ/2) < 1 for any θ <= π/15. This
implies that |ξΘ6(a, a′)|+ |ξΘ6(b, b′)| < |ab|, therefore each edge of ξΘ6(a, a′) and
ξΘ6(b, b′) is strictly shorter than ab. This completes the proof.


	Spanning Properties of Theta-Theta Graphs

