
ar
X

iv
:1

40
7.

42
35

v1
 [

cs
.D

S]
 1

6
Ju

l 2
01

4

The List Coloring Reconfiguration Problem

for Bounded Pathwidth Graphs

Tatsuhiko Hatanaka, Takehiro Ito, and Xiao Zhou

Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai 980-8579, Japan.

{hatanaka, takehiro, zhou}@ecei.tohoku.ac.jp

Abstract. We study the problem of transforming one list (vertex) col-
oring of a graph into another list coloring by changing only one vertex
color assignment at a time, while at all times maintaining a list col-
oring, given a list of allowed colors for each vertex. This problem is
known to be PSPACE-complete for bipartite planar graphs. In this pa-
per, we first show that the problem remains PSPACE-complete even for
bipartite series-parallel graphs, which form a proper subclass of bipartite
planar graphs. We note that our reduction indeed shows the PSPACE-
completeness for graphs with pathwidth two, and it can be extended for
threshold graphs. In contrast, we give a polynomial-time algorithm to
solve the problem for graphs with pathwidth one. Thus, this paper gives
precise analyses of the problem with respect to pathwidth.

1 Introduction

Graph coloring is one of the most fundamental research topics in the field of
theoretical computer science. Let C = {1, 2, . . . , k} be the set of k colors. A
(proper) k-coloring of a graph G = (V,E) is a mapping f : V → C such that
f(v) 6= f(w) for every edge vw ∈ E. In list coloring, each vertex v ∈ V has a
set L(v) ⊆ C of colors, called the list of v. Then, a k-coloring f of G is called
a k-list coloring of G if f(v) ∈ L(v) holds for every vertex v ∈ V . Figure 1(b)
illustrates four k-list colorings of the same graph G with the same list L depicted
in Fig. 1(a); the color assigned to each vertex is attached to the vertex. Clearly,
a k-coloring of G is a k-list coloring of G for which L(v) = C holds for every
vertex v of G, and hence k-list coloring is a generalization of k-coloring.

Graph coloring has several practical applications, such as in scheduling, fre-
quency assignments. For example, in the frequency assignment problem, each
vertex corresponds to a base station and each edge represents the physical prox-
imity and hence the two corresponding base stations have the high potential of
interference. Each color represents a channel of a particular frequency, and we
wish to find an assignment of channels to the base stations without any interfer-
ence. Furthermore, in list coloring, each base station can have a list of channels
that can be assigned to it.

http://arxiv.org/abs/1407.4235v1

{c1 , c2 , c3}

{c3 , c4}

{c2 , c3}{c1 , c4}

c1

c3

c2c4

c
3

c3

c2c4

c3

c3

c2c
1

c3

c
4

c2c1

(a) (b)

Fig. 1. (a) Graph G and its list L, and (b) a sequence of k-list colorings of G.

1.1 Our problem

However, a practical issue in channel assignments requires that the formulation
should be considered in more dynamic situations. One can imagine a variety of
practical scenarios where a k-list coloring (e.g., representing a feasible channel
assignment) needs to be transformed (to use a newly found better solution or to
satisfy new side constraints) by individual color changes (keeping the network
functionality and preventing the need for any coordination) while maintaining
feasibility (so that the users receive service even during the reassignment).

In this paper, we thus study the following problem: Suppose that we are
given two k-list colorings of a graph G (e.g., the leftmost and rightmost ones in
Fig. 1(b)), and we are asked whether we can transform one into the other via
k-list colorings of G such that each differs from the previous one in only one
vertex color assignment. We call this decision problem the k-list coloring

reconfiguration problem. For the particular instance of Fig. 1(b), the answer
is “yes,” as illustrated in Fig. 1(b), where the vertex whose color assignment was
changed from the previous one is depicted by a black circle.

1.2 Known and related results

Recently, similar settings of problems have been extensively studied in the frame-
work of reconfiguration problems [13], which arise when we wish to find a step-
by-step transformation between two feasible solutions of a problem such that
all intermediate solutions are also feasible. This reconfiguration framework has
been applied to several well-studied combinatorial problems, including satisfia-
bility [11, 21], independent set [6, 12, 13, 20, 22], set cover, matching [13], shortest
path [3, 4, 19], list edge-coloring [14, 16], list L(2, 1)-labeling [15], and so on.

In particular, the k-coloring reconfiguration problem (i.e., k-list col-

oring reconfiguration in which L(v) = C holds for every vertex v) is one of
the most well-studied reconfiguration problems, from the various viewpoints [1,
2, 5, 7, 10, 18, 25], as follows.

Bonsma and Cereceda [5] proved that k-coloring reconfiguration is
PSPACE-complete for k ≥ 4; they also proved that k-list coloring recon-

figuration is PSPACE-complete, even for bipartite planar graphs and k = 4.
On the other hand, Cereceda et al. [10] proved that k-coloring reconfigura-

tion is solvable for any graph in polynomial time for the case where 1 ≤ k ≤ 3.
Then, some sufficient conditions have been proposed so that any pair of k-

colorings of a graph has a desired transformation. Cereceda [9] gave a sufficient

2

condition with respect to the number k of colors: if k is at least the treewidth of
a graph G plus two, then there is a desired transformation between any pair of
k-colorings of G; the length of the transformation (i.e., the number of recoloring
steps) is estimated by Bonamy and Bousquet [2]. Bonamy et al. [1] gave a suf-
ficient condition with respect to graph structures: for example, chordal graphs
and chordal bipartite graphs satisfy their sufficient condition.

Recently, Bonsma et al. [7] and Johnson et al. [18] independently developed
a fixed-parameter algorithm to solve k-coloring reconfiguration when pa-
rameterized by k + ℓ, where k is the number of colors and ℓ is the number of
recoloring steps. In contrast, if the problem is parameterized only by ℓ, then
it is W[1]-hard [7] and does not admit a polynomial kernelization unless the
polynomial hierarchy collapses [18].

In this way, even for the non-list version, only a few results are known from
the viewpoint of polynomial-time solvability. Furthermore, as far as we known,
no algorithmic result has been obtained for the list version.

1.3 Our contribution

In this paper, we study the k-list coloring reconfiguration problem from
the viewpoint of graph classes, especially pathwidth of graphs. (The definition
of pathwidth will be given in Section 2.)

We first show that the problem remains PSPACE-complete even for graphs
with pathwidth two. In contrast, we give a polynomial-time algorithm to solve
the problem for graphs with pathwidth one. Thus, this paper gives precise anal-
yses of the problem with respect to pathwidth.

Indeed, our reduction for the PSPACE-completeness proof constructs a bi-
partite series-parallel graph (whose treewidth is two), which is a bipartite planar
graph. We note that the problem of finding one k-list coloring of a given graph
can be solved in polynomial time for bounded treewidth graphs (and hence for
bounded pathwidth graphs) [17]. However, our proof shows that the reconfigura-
tion variant is PSPACE-complete even if treewidth and pathwidth are two. Fur-
thermore, as a byproduct, our reduction can be extended for threshold graphs.

2 Preliminaries

We assume without loss of generality that graphs are simple and connected. Let
G = (V,E) be a graph with vertex set V and edge set E; we sometimes denote
by V (G) and E(G) the vertex set and edge set of G, respectively. For a vertex
v in G, we denote by d(v) the degree of v in G. For a vertex subset V ′ ⊆ V , we
denote by G[V ′] the subgraph of G induced by V ′.

We now define the notion of pathwidth [24]. A path-decomposition of a graph
G is a sequence of subsets Xi of vertices in G such that
(1)

⋃

i Xi = V (G);
(2) for each vw ∈ E(G), there is at least one subset Xi with v, w ∈ Xi; and
(3) for any three indices p, q, r such that p ≤ q ≤ r, Xp ∩Xr ⊆ Xq.

3

The width of a path-decomposition is defined as maxi |Xi|−1, and the pathwidth
of G is the minimum t such that G has a path-decomposition of width t.

To develop our algorithm in Section 4, it is important to notice that every
connected graph of pathwidth one is a caterpillar [23]. A caterpillar will be
defined in Section 4, but an example can be found in Fig. 4.

For a graph G with a list L, we define the reconfiguration graph R
L
G as follows:

each node of RL
G corresponds to a k-list coloring of G, and two nodes of RL

G

are joined by an edge if their corresponding k-list colorings f and f ′ satisfy
|{v ∈ V : f(v) 6= f ′(v)}| = 1, that is, f ′ can be obtained from f by changing
the color assignment of a single vertex v. We will refer to a node of RL

G in order
to distinguish it from a vertex of G. Since we have defined k-list colorings as
the nodes of RL

G, we use graph terms such as adjacency and path for k-list
colorings. For notational convenience, we sometimes identify a node of RL

G with
its corresponding k-list coloring of G if it is clear from the context.

Given a graph G with a list L and two k-list colorings f0 and fr of G, the
k-list coloring reconfiguration problem asks whether the reconfiguration
graph RL

G has a path between the two nodes f0 and fr.

3 PSPACE-completeness

In this section, we first prove that the problem is PSPACE-complete even for
graphs with pathwidth two. Then, we show in Section 3.3 that the reduction can
be extended to proving the PSPACE-completeness of threshold graphs.

A graph is series-parallel if it does not contain a subdivision of a complete
graph K4 on four vertices [8]. Note that series-parallel graphs may have super-
constant pathwidth, although their treewidth can be bounded by two. We give
the following theorem.

Theorem 1. The k-list coloring reconfiguration problem is PSPACE-
complete even for bipartite series-parallel graphs of pathwidth two.

It is known that k-list coloring reconfiguration is in PSPACE [5].
Therefore, as a proof of Theorem 1, we give a polynomial-time reduction from
the shortest path rerouting problem [4] (defined in Section 3.1) to our
problem for bipartite series-parallel graphs of pathwidth two.

3.1 Reconfiguration problem for shortest path

Let H be an unweighted graph, and let s and t be two vertices in H . We call a
shortest path in H between s and t simply an S-path in H . Note that, since H

is unweighted, an S-path indicates a path between s and t having the minimum
number of edges. We say that two S-paths P and P ′ in H are adjacent if they
differ in exactly one vertex, that is, |V (P ′) \ V (P)| = 1 and |V (P) \ V (P ′)| =
1 hold. Given two S-paths P0 and Pr in H , the shortest path rerouting

problem asks whether there exists a sequence P = 〈P0, P1, . . . , Pℓ〉 of S-paths

4

v1,1

u1 u2 u3

v1,2

{c1,1 , c1,2}

{c1,1 , c2,3}

{c1,2 , c2,1}

{c2,1 , c3,2}

{c2,2 , c3,1}

{c2,3 , c3,1}

{c2,1 , c2,2 , c2,3} {c3,1 , c3,2}

v2,1

v2,2

v2,3

v3,1

v3,2
t = v4,1s = v0,1

(a) H

(b) G , L

Fig. 2. (a) Graph H for shortest path rerouting, and (b) the corresponding graph
G and its list L for k-list coloring reconfiguration.

such that Pℓ = Pr, and Pi−1 and Pi are adjacent for each i = 1, 2, . . . , ℓ. This
problem is known to be PSPACE-complete [4].

To construct our reduction, we introduce some terms. Let d be the number
of edges of an S-path in a graph H . For two vertices v and w in H , we denote
by dist(v, w) the number of edges of a shortest path in H between v and w;
then dist(s, t) = d. For each i ∈ {0, 1, . . . , d}, the layer Ds,i from s is defined
to be the set of all vertices in H that are placed at distance i from s, that is,
Ds,i = {v ∈ V (H) : dist(s, v) = i}. Similarly, let Dt,j = {v ∈ V (H) : dist(t, v) =
j} for each j ∈ {0, 1, . . . , d}. Then, for each i ∈ {0, 1, . . . , d}, the layer Di

of H is defined as follows: Di = Ds,i ∩ Dt,d−i. Notice that any S-path in H

contains exactly one vertex from each layer Di, 0 ≤ i ≤ d. Then, observe that
two S-paths P and P ′ in H are adjacent if and only if there exists exactly one
index j ∈ {1, 2, . . . , d} such that V (P) ∩ Dj 6= V (P ′) ∩ Dj. Therefore, we may
assume without loss of generality that H consists of only vertices in

⋃

0≤i≤dDi,
as illustrated in Fig. 2(a). In the example of Fig. 2(a), all vertices in the same
layer Di are depicted by the same shape, that is, D0 = {s}, D1 = {v1,1, v1,2},
D2 = {v2,1, v2,2, v2,3}, D3 = {v3,1, v3,2} and D4 = {t}. Note that both D0 = {s}
and Dd = {t} always hold.

3.2 Reduction

Given an instance (H,P0, Pr) of shortest path rerouting, we construct the
corresponding instance (G,L, f0, fr) of k-list coloring reconfiguration.

Construction of G and L.
We first construct the corresponding graph G with a list L. For each i ∈

{1, 2, . . . , d − 1}, let Di = {vi,1, vi,2, . . . , vi,q}; and we introduce a vertex ui,
called a layer vertex, to G. The list of each layer vertex ui is defined as L(ui) =
{ci,1, ci,2, . . . , ci,q}, where each color ci,j in L(ui) corresponds to the vertex vi,j
in Di; assigning color ci,j represents selecting the vertex vi,j as an S-path in H .

5

We denote by Ulayer the set of all layer vertices u1, u2, . . . , ud−1 in G. In Fig. 2(b),
each layer vertex ui is illustrated as a black vertex which is the same shape as
the vertices in Di.

We then connect layer vertices in G by forbidden paths of length two, as
follows. Let vi,x ∈ Di and vi+1,y ∈ Di+1 be an arbitrary pair of vertices in H

such that vi,xvi+1,y 6∈ E(H). We introduce a vertex w to G, and join w and each
of the two layer vertices ui and ui+1 by an edge. The list L(w) of w consists
of two colors ci,x and ci+1,y which correspond to the vertices vi,x and vi+1,y

in H , respectively. (See the vertices depicted by white circles in Fig. 2(b).) We
call such a vertex w in G a (vi,x, vi+1,y)-forbidden vertex or simply a forbidden

vertex. Notice that there is no proper k-list coloring f such that f(ui) = ci,x and
f(ui+1) = ci+1,y; otherwise there is no color in L(w) that can be assigned to w.
This property ensures that every k-list coloring of G corresponds to an S-path
in H . Let Uforbid be the set of all forbidden vertices, then |Uforbid| = O(|E(H̄)|)
where H̄ is the complement graph of H .

This completes the construction of G and L. Since |V (G)| = O(d+ |E(H̄)|) =
O(|V (H)|2) and |E(G)| = O(|E(H̄)|) = O(|V (H)|2), we can construct G in
polynomial time. Clearly, G is a bipartite series-parallel graph of pathwidth two,
whose bipartition consists of Ulayer and Uforbid.

Construction of f0 and fr.
We now construct two k-list colorings f0 and fr of G which correspond to

S-paths P0 and Pr in H , respectively. For each i ∈ {1, 2, . . . , d−1}, let vi,0 be the
vertex in the layer Di passed through by the S-path P0; then we let f0(ui) = ci,0
for each layer vertex ui ∈ Ulayer. For each (vi,x, vi+1,y)-forbidden vertex w ∈
Uforbid, we choose an arbitrary color from ci,x and ci+1,y which is assigned to
neither ui nor ui+1. We note that such an available color always exists, because
P0 has an edge between the two vertices corresponding to the colors f0(ui) and
f0(ui+1), and hence at least one of f0(ui) 6= ci,x and f0(ui+1) 6= ci+1,y holds for
each (vi,x, vi+1,y)-forbidden vertex. Similarly, we construct fr. This completes
the construction of the corresponding instance (G,L, f0, fr).

Correctness of the reduction.
To show the correctness of this reduction, we give the following lemma.

Lemma 1. (H,P0, Pr) is a yes-instance if and only if (G,L, f0, fr) is a yes-

instance.

Proof. We first prove the if-part. Suppose that the reconfiguration graph RL
G

has a path between the two nodes f0 and fr. We can classify the recoloring
steps into the following two types: (1) recoloring a layer vertex in Ulayer, and (2)
recoloring a forbidden vertex in Uforbid. Therefore, the path in RL

G can be divided
into sub-paths, intermittently at each edge corresponding to a recoloring step of
type (1) above; all edges in a sub-path correspond to recoloring steps of type (2)
above. Therefore, all nodes in each sub-path correspond to the same S-path in
H . Furthermore, any two consecutive sub-paths correspond to two adjacent S-
paths (that differ in only one vertex), because the sub-paths are divided by a

6

ui-1

w

ui ui+1
{ci-1, z , ci, y}

vi, x

ci, x

Pj-1
vi+1, bvi-1, a

ci-1, a ci+1, b

vi, y

ci, y

Pj
ts

(a) H

(b) G , L

Fig. 3. (a) Two adjacent S-paths Pj−1 (blue) and Pj (red), and (b) the corresponding
recoloring steps.

recoloring step of type (1). Thus, we can construct a sequence of adjacent S-paths
that transforms P0 into Pr.

We then prove the only-if-part. Suppose that there exists a sequence P =
〈P0, P1, . . . , Pℓ〉 of S-paths such that Pℓ = Pr, and Pj−1 and Pj are adjacent
for each j = 1, 2, . . . , ℓ. For two adjacent S-paths Pj−1 and Pj , j ∈ {1, 2, . . . , ℓ},
assume that Pj is obtained from Pj−1 by replacing vi,x ∈ V (Pj−1) ∩ Di with
vi,y ∈ V (Pj)∩Di. (See Fig. 3(a).) This rerouting step from vi,x to vi,y corresponds
to recoloring the layer vertex ui ∈ Ulayer from the color ci,x to ci,y. (See Fig. 3(b).)
To do so, if there is a forbidden vertex w ∈ Uforbid which is adjacent with ui and
receives the color ci,y, we first need to recolor w from ci,y to another color
cq,z ∈ L(w) \ {ci,y}, where q ∈ {i− 1, i+1}. (Note that, since Pj−1 corresponds
to a feasible k-list coloring of G, no forbidden vertex adjacent with ui receives
the color ci,x.) Since w is a forbidden vertex, we know that |L(w)| = 2. Let vq,a
be the vertex in the layer Dq which is adjacent with vi,x and vi,y in Pj−1 and
Pj , respectively; and hence the layer vertex uq receives the color cq,a. (Figure 3
illustrates the case where q = i− 1.) Then, since each forbidden vertex is placed
only for a pair of vertices in H which is not joined by an edge, we observe that
the color cq,z ∈ L(w) \ {ci,y} is different from cq,a. Therefore, we can recolor w
from ci,y to another color cq,z without recoloring any other vertices. Since Uforbid

forms an independent set of G, we can apply this recoloring step to all forbidden
vertices independently. Now, any neighbor of ui is colored with neither ci,x nor
ci,y, and hence we can recolor ui from ci,x to ci,y. Thus, R

L
G has a path between

f0 and fr which corresponds to P . ⊓⊔

3.3 Threshold graphs

In this subsection, we extend our reduction in Section 3.2 to threshold graphs. A
graph G is threshold if there exist a real number s and a mapping ω : V (G) → R

such that xy ∈ E(G) if and only if ω(x) + ω(y) ≥ s [8], where R is the set of all
real numbers.

7

Theorem 2. The k-list coloring reconfiguration problem is PSPACE-
complete even for threshold graphs.

Proof. We modify the graph G constructed in Section 3.2, as follows: join all
pairs of vertices in Ulayer, and join each vertex in Uforbid with all vertices in Ulayer.
Let G′ be the resulting graph, then G[Ulayer] forms a clique and G[Uforbid] forms
an independent set. Notice that G′ is a threshold graph; set the threshold s = 1,
and the mapping ω(v) = 1 for each layer vertex v ∈ Ulayer and ω(u) = 0 for each
forbidden vertex u ∈ Uforbid.

Consider any pair of vertices u and v such that uv ∈ E(G′) \ E(G), that
is, they are joined by a new edge for constructing G′ from G. Then, by the
construction in Section 3.2, the two lists L(u) and L(v) contain no color in
common. Therefore, adding new edges to G does not affect the existence of k-
list coloring: more formally, any k-list coloring of G is a k-list coloring of G′,
and vice versa. Thus, by Lemma 1, an instance (H,P0, Pr) of shortest path

rerouting is a yes-instance if and only if (G′, L, f0, fr) is a yes-instance. ⊓⊔

4 Algorithm for Graphs with Pathwidth One

In contrast to Theorem 1, we give the following theorem in this section.

Theorem 3. The k-list coloring reconfiguration problem can be solved

in polynomial time for graphs with pathwidth one.

As a proof of Theorem 3, we give such an algorithm. However, since every
connected graph of pathwidth one is a caterpillar [23], it suffices to develop a
polynomial-time algorithm for caterpillars.

A caterpillar G is a tree whose vertex set V (G) can be partitioned into two
subset VS and VL such that G[VS] forms a path and each vertex in VL is incident
to exactly one vertex in VS. We may assume without loss of generality that the
two endpoints of the path G[VS] are of degree one in the whole graph G. (See
v1 and v10 in Fig. 4.) We call each vertex in VS a spine vertex of G, and each
vertex in VL a leaf of G.

We assume that all vertices in G are ordered as v1, v2, . . . , vn by the breadth-
first search starting with the endpoint (degree-1 vertex) of the spine path G[VS]
with the priority to leaves; that is, when we visit a spine vertex v, we first visit
all leaves of v and then visit the unvisited spine vertex. (See Fig. 4 for example.)

v1 v2

v3 v5 v6 v8 v9

v4 v7 v10

G8

Fig. 4. A caterpillar G and its vertex ordering, where the subgraph surrounded by a
dotted rectangle corresponds to G8.

8

For each index i ∈ {1, 2, . . . , n}, we let Vi = {v1, v2, . . . , vi} and Gi = G[Vi].
Then, clearly Gn = G. For each index i ∈ {1, 2, . . . , n}, let sp(i) be the latest
spine vertex in Vi, that is, sp(i) = vi if vi is a spine vertex, otherwise sp(i) is the
unique neighbor of vi. Then, vi is adjacent with only the spine vertex sp(i − 1)
in Gi for each i ∈ {2, 3, . . . , n}.

We can restrict the length of each list without loss of generality, as follows.
Note that the following lemma holds for any graph.

Lemma 2. For an instance (G′, L′, f ′
0, f

′
r), one can obtain another instance

(G,L, f0, fr) in polynomial time such that 2 ≤ |L(v)| ≤ d(v) + 1 for each vertex

v ∈ V (G), and (G′, L′, f ′
0, f

′
r) is a yes-instance if and only if (G,L, f0, fr) is a

yes-instance.

Proof. If |L(v)| = 1 for a vertex v ∈ V (G′), then any k-list coloring f ′ of G′

assigns the same color c ∈ L(v) to v. Therefore, f ′ never assigns c to any neighbor
u of v. We can thus delete v from G′ and set L(u) := L(u)\ {c} for all neighbors
u of v in G′. Clearly, this modification does not affect the reconfigurability (i.e.,
the existence or non-existence of a path in the reconfiguration graph).

If |L(v)| ≥ d(v) + 2 for a vertex v ∈ V (G′), we simply delete v from G′

without any modification of lists; let G be the resulting graph. Let f be any
k-list coloring of G, and consider a recoloring step for a neighbor u of v from
the current color c = f(u) to another color c′. If c′ is not assigned to v in G′,
we can directly recolor u from c to c′. Thus, suppose that c′ is assigned to v in
G′. Then, since |L(v)| ≥ d(v) + 2, there is at least one color c∗ ∈ L(v) which
is not c′ and is not assigned to any of d(v) neighbors of v by f . Therefore, we
first recolor v from c′ to c∗, and then recolor u from c to c′. In this way, any
recoloring step in G can be simulated in G′, and hence the modification does
not affect the reconfigurability.

Thus, we can obtain an instance such that 2 ≤ |L(v)| ≤ d(v)+1 holds for each
vertex v without affecting the reconfigurability. Clearly, the modified instance
can be constructed in polynomial time. ⊓⊔

Therefore, in the remainder of this section, we assume that G is a (connected)
caterpillar and 2 ≤ |L(v)| ≤ d(v) + 1 holds for every vertex v ∈ V (G). In
particular, |L(v)| = 2 for every leaf v of G.

4.1 Idea and definitions

The main idea of our algorithm is to extend techniques developed for shortest
path rerouting [3], and apply them to k-list coloring reconfiguration

for caterpillars. Our algorithm employs a dynamic programming method based
on the vertex ordering v1, v2, . . . , vn of G.

For each i ∈ {1, 2, . . . , n}, let RL
Gi

be the reconfiguration graph for the sub-

graph Gi and the list L. Then, RL
Gi

contains all k-list colorings of Gi as its

nodes. Our algorithm efficiently constructs RL
Gi

for each i = 1, 2, . . . , n, in this

order. However, of course, the number of nodes in RL
Gi

cannot be bounded by a

9

polynomial size in general. We thus use the property that the vertex vi+1 (will
be added to Gi) is adjacent with only the spine vertex sp(i) in Gi+1; and we
“encode” the reconfiguration graph RL

Gi
into a polynomial size with keeping the

information of (1) the color assigned to sp(i), and (2) the connectivity of nodes
in RL

Gi
.

Before explaining the encoding methods, we first note that it suffices to focus
on only one connected component in RL

Gi
which contains the restriction of f0,

where the restriction of a k-list coloring f of a graph G to a subgraph G′ is a
k-list coloring g of G′ such that g(v) = f(v) hold for all vertices v ∈ V (G′). For
notational convenience, we denote by f [Vi] the restriction of a k-list coloring f

of a caterpillar G to its subgraph Gi. Then, we have the following lemma.

Lemma 3. Let g be a k-list coloring of Gi such that f0[Vi] and g are contained

in the same connected component in RL
Gi
. Then, for each j ∈ {1, 2, . . . , i − 1},

f0[Vj] and g[Vj] are contained in the same connected component in RL
Gj

.

Proof. Assume that f0[Vi] and g are contained in the same connected component
in RL

Gi
. Then, there exists a path in RL

Gi
between f0[Vi] and g. We contract all

edges in the path that correspond to recoloring vertices in Vi \ Vj . Since each
edge in the resulting path corresponds to recoloring only one vertex in Vj , the
resulting path must be contained as a path in RL

Gj
between f0[Vj] and g[Vj].

Therefore f0[Vj] and g[Vj] are contained in the same connected component in
RL
Gj

, and hence the lemma follows. ⊓⊔

From now on, we thus focus on only the connected component of RL
Gi

which
contains f0[Vi]. Since the list is fixed to be L in the remainder of this section,
we simply denote by Ri the reconfiguration graph RL

Gi
, and by R0

i the connected

component of Ri = RL
Gi

containing f0[Vi].

Encoding graph.
We now partition the nodes of R0

i into several subsets with respect to (1) the
color assigned to sp(i), and (2) the connectivity of nodes in R0

i . For two nodes g
and g′ of R0

i with g(sp(i)) = g′(sp(i)), we write g ∼sp(i) g
′ if g can be reconfigured

into g′ without recoloring the color assigned to the vertex sp(i), that is, R0
i has a

path 〈g1, g2, . . . , gℓ〉 such that g1 = g, gℓ = g′, and gj(sp(i)) = g(sp(i)) = g′(sp(i))
holds for every j ∈ {1, 2, . . . , ℓ}. Since the adjacency relation on k-list colorings
is symmetric (i.e., Ri is an undirected graph), it is easy to see that ∼sp(i) is an
equivalence relation. Thus, the node set of R0

i can be uniquely partitioned by
the relation ∼sp(i). We denote by G0

i the partition of the node set of R0
i into

equivalence classes with respect to ∼sp(i).
We finally define our dynamic programming table. For each subgraph Gi,

i ∈ {1, 2, . . . , n}, our algorithm keeps track of four information (Hi, coli, inii, tari),
defined as follows.

– The encoding graph Hi of R
0
i which can be obtained from R0

i by contracting
each node set in G0

i into a single node. (See Fig. 5 as an example.) We will
refer to an e-node of Hi in order to distinguish it from a node of R0

i . (Thus,

10

R
4

R
4

0

v1 v2 v3 sp(4) = v4

c1 c2

c2

c3

c1 c2 c3

c4 c1

c1

c2

c2

c3

c3

c1c2 c3

c4 c1c2 c2 c4

c2 c2 c4c3 c2 c4

{c1 , c2} {c2 , c3}{c1 , c2 , c3} {c2 , c4}

(a) G , L

(b) R
4

(c) H
4

f0

ini
4
(x) = 1

fr

tar
4
(x) = 0

col
4
(x) = c

4

ini
4
(y) = 0

tar
4
(y) = 1

col
4
(y) = c

2

x

y

Fig. 5. (a) A caterpillar G = G4, (b) the reconfiguration graph R4 consisting of all
k-list colorings of G, and (c) the encoding graph H4 of R0

4 consisting of two e-nodes x
and y, where each k-list coloring in (b) is represented as the sequence of colors assigned
to the vertices in G from left to right.

each node refers to a k-list coloring of Gi, and each e-node refers to a set
of k-list colorings of Gi.) For each e-node x ∈ V (Hi), we denote by Φi(x)
the set of all nodes in R0

i that were contracted into x. (Note that we do not
compute Φi(x), but use it only for definitions and proofs.)

– The color coli(x) ∈ L(sp(i)) for each e-node x ∈ V (Hi), which is assigned to
sp(i) in common by the nodes (i.e., k-list colorings of Gi) in Φi(x).

– The label inii(x) ∈ {0, 1} for each e-node x ∈ V (Hi), such that inii(x) = 1 if
f0[Vi] ∈ Φi(x), otherwise inii(x) = 0.

– The label tari(x) ∈ {0, 1} for each e-node x ∈ V (Hi), such that tari(x) = 1
if fr[Vi] ∈ Φi(x), otherwise tari(x) = 0.

To prove Theorem 3, we give a polynomial-time algorithm which computes
(Hi, coli, inii, tari) for each subgraph Gi, i ∈ {1, 2, . . . , n}, by means of dynamic
programming. Then, the problem can be solved as in the following lemma.

Lemma 4. (G,L, f0, fr) is a yes-instance if and only if the encoding graph Hn

contains a node x such that tarn(x) = 1.

Proof. Since Hn contains a node x such that tarn(x) = 1, we have fr[Vn] = fr ∈
Φn(x). Recall that Hn is the encoding graph of R0

n which contains the k-list
coloring f0 of G as a node. Since Φn(x) ⊆ V (R0

n), the lemma clearly follows. ⊓⊔

4.2 Algorithm

As the initialization, we first consider the case where i = 1, that is, we compute
(H1, col1, ini1, tar1). (See Fig. 6(d) as an example.) Note that G1 consists of a

11

c4 c2

c2

c3 c4 c3 c4

c1

c2 c4

v1 v2

v4

v3 v5

(b) f0[V5
] (c) fr[V5

]

{c2 , c3 , c4}{c3 , c4}

{c1 , c2}

{c1 , c2 , c3} {c2 , c3, c4}

(a) G
5
 , L

c3 c3

c3c1

c2

c2

c4

c2

ini

tar ini

tar

H5

^ ’ H5 H5

^
H5= =H4

^ ’

H4

^
H4=

Case (A) Case (B)

c3

c3

c3

c1

c2

c2 c2

ini
ini ini

tar

tar tar

c4

c4

H2

^ ’ H2

^
H2= = H3

^ ’ H3

^
H3= =(d) H1

Case (B) Case (B)

(e) (f)

(g) (h)

sp(2) = v2 sp(3) = v3

sp(4) = v3 sp(5) = v5

Fig. 6. Application of our algorithm. In (d)–(h), coli(x) ∈ L(sp(i)) is attached to each
e-node x, and the e-nodes x with inii(x) = 1 and tari(x) = 1 have the labels “ini” and
“tar,” respectively. Furthermore, in (e), (f) and (h), the small graph contained in each
e-node x of Hi represents the subgraph of Hi−1 induced by EN(x).

single vertex v1, and recall that v1 is a spine vertex of degree one. By Lemma 2
we then have |L(v1)| = 2. Therefore, the reconfiguration graph R1 is a complete
graph on |L(v1)| = 2 nodes such that each node corresponds to a k-list coloring
of G1 which assigns a distinct color to the vertex sp(1) = v1. Since R1 is complete
and contains the node f0[V1], we have R0

1 = R1. Furthermore, H1 = R0
1 since all

nodes in R0
1 assign distinct colors in L(v1) to sp(1) = v1. Then, for each e-node

x of H1 corresponding to the set consisting of a single k-list coloring g of G1, we
set

col1(x) = g(v1);

ini1(x) =

{

1 if g(v1) = f0(v1),
0 otherwise;

tar1(x) =

{

1 if g(v1) = fr(v1),
0 otherwise.

For i ≥ 2, suppose that we have already computed (Hi−1, coli−1, inii−1, tari−1).
Then, we compute (Hi, coli, inii, tari), as follows.

12

viGi-1

sp(i-1) = sp(i)

vi = sp(i)

Gi-1

sp(i-1)

(a) (b)

Fig. 7. The graph Gi for (a) vi ∈ VL and (b) vi ∈ VS.

Case (A): vi is a leaf in VL. (See Figs. 6(g) and 7(a).)
By Lemma 2 we have |L(vi)| = 2 in this case; let L(vi) = {c1, c2}. Recall

that vi is adjacent with only the spine vertex sp(i − 1) in Gi. Furthermore,
sp(i) = sp(i − 1) in this case.

Let Hc1
i−1 be the subgraph of Hi−1 obtained by deleting all e-nodes y in Hi−1

with coli−1(y) = c1. Then, H
c1
i−1 encodes all nodes of R0

i−1 that do not assign the
color c1 to sp(i− 1). Thus, we can extend each k-list coloring h of Gi−1 encoded
in Hc1

i−1 to a k-list coloring g of Gi such that g(vi) = c1 and g(v) = h(v) for
all vertices v ∈ Vi−1. Similarly, let Hc2

i−1 be the subgraph of Hi−1 obtained by
deleting all e-nodes z in Hi−1 with coli−1(z) = c2.

We define an encoding graph Ĥ ′
i as V (Ĥ ′

i) = V (Hc1
i−1)∪V (Hc2

i−1) and E(Ĥ ′
i) =

E(Hc1
i−1)∪E(Hc2

i−1); and let Ĥi be the connected component of Ĥ ′
i that contains

the e-node x such that inii−1(x) = 1. For each e-node x in Ĥi, let ĉoli(x) =
coli−1(x), ˆinii(x) = inii−1(x) and ˆtari(x) = tari−1(x). Then, we have the following
lemma.

Lemma 5. For a leaf vi ∈ VL, (Hi, coli, inii, tari) = (Ĥi, ĉoli, ˆinii, ˆtari).

Case (B): vi is a spine vertex in VS. (See Figs. 6(e), (f), (h) and 7(b).)
In this case, notice that sp(i) = vi in Gi, and hence we need to update coli

according to the color assigned to vi.
We first define an encoding graph Ĥ ′

i, as follows. For a color c ∈ L(vi), let
Hc

i−1 be the subgraph of Hi−1 obtained by deleting all e-nodes y in Hi−1 with
coli−1(y) = c. For each connected component in Hc

i−1, we add a new e-node x

to Ĥ ′
i such that ĉoli(x) = c; we denote by EN(x) the set of all e-nodes in Hc

i−1

that correspond to x. We apply this operation to all colors in L(vi). We then
add edges to Ĥ ′

i: two e-nodes x and y in Ĥ ′
i are joined by an edge if and only if

EN(x) ∩ EN(y) 6= ∅.
We now define ˆinii(x) and ˆtari(x) for each e-node x in Ĥ ′

i, as follows:

ˆinii(x) =

1 if ĉoli(x) = f0(vi) and
EN(x) contains an e-node y with inii−1(y) = 1;

0 otherwise,

and

ˆtari(x) =

1 if ĉoli(x) = fr(vi) and
EN(x) contains an e-node y with tari−1(y) = 1;

0 otherwise.

13

Let Ĥi be the connected component of Ĥ ′
i that contains the e-node x such

that ˆinii(x) = 1. Then, we have the following lemma.

Lemma 6. For a spine vertex vi ∈ VS, (Hi, coli, inii, tari) = (Ĥi, ĉoli, ˆinii, ˆtari).

4.3 Running time

We now estimate the running time of our algorithm in Section 4.2. The following
is the key lemma for the estimation.

Lemma 7. For each index i ∈ {1, 2, . . . , n},

|V (Hi)| ≤

{

2 if i = 1;
|V (Hi−1)|+ d(vi) otherwise.

In particular, |V (Hn)| = O(n), where n is the number of vertices in G.

By Lemma 7 each encoding graph Hi is of size O(n) for each i ∈ {1, 2, . . . , n}.
Therefore, our algorithm clearly runs in polynomial time.

This completes the proof of Theorem 3. ⊓⊔

5 Concluding Remarks

In this paper, we gave precise analyses of the k-list coloring reconfigura-

tion problem with respect to pathwidth: the problem is solvable in polynomial
time for graphs with pathwidth one, while it is PSPACE-complete for graphs
with pathwidth two.

Very recently,Wrochna [25] gave another proof for the PSPACE-completeness
of k-list coloring reconfiguration for graphs with pathwidth two. His
reduction is constructed from a PSPACE-complete problem, called H-Word

Reachability.

Acknowledgments

We are grateful to Daichi Fukase and Yuma Tamura for fruitful discussions with
them. This work is partially supported by JSPS KAKENHI Grant Numbers
25106504 and 25330003.

References

1. Bonamy, M., Johnson, M., Lignos, I., Patel, V., Paulusma, D.: Reconfiguration
graphs for vertex colourings of chordal and chordal bipartite graphs. J. Combina-
torial Optimization 27, pp. 132–143 (2014)

2. Bonamy, M., Bousquet, N.: Recoloring bounded treewidth graphs. Electronic Notes
in Discrete Mathematics 44, pp. 257–262 (2013)

3. Bonsma, P.: Rerouting shortest paths in planar graphs. Proc. of FSTTCS 2012,
pp. 337–349 (2012)

14

4. Bonsma, P.: The complexity of rerouting shortest paths. Theoretical Computer
Science 510, pp. 1–12 (2013)

5. Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theoretical Computer Science 410,
pp. 5215–5226 (2009)

6. Bonsma, P., Kamiński, M., Wrochna, M.: Reconfiguring independent sets in claw-
free graphs. Proc. of SWAT 2014, LNCS 8503, pp. 86–97 (2014)

7. Bonsma, P., Mouawad, A.E.: The complexity of bounded length graph recoloring.
arXiv:1404.0337 (2014)

8. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM (1999)
9. Cereceda, L.: Mixing Graph Colourings. Ph.D. Thesis, London School of Economics

and Political Science (2007)
10. Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings.

J. Graph Theory 67, pp. 69–82 (2011)
11. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity

of Boolean satisfiability: computational and structural dichotomies. SIAM J. Com-
puting 38, pp. 2330–2355 (2009)

12. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computa-
tion. Theoretical Computer Science 343, pp. 72–96 (2005)

13. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara,
R., Uno, Y.: On the complexity of reconfiguration problems. Theoretical Computer
Science 412, pp. 1054–1065 (2011)

14. Ito, T., Kamiński, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a
graph. Discrete Applied Mathematics 160, pp. 2199–2207 (2012)

15. Ito, T., Kawamura, K., Ono, H., Zhou, X.: Reconfiguration of list L(2, 1)-
labelings in a graph. To appear in Theoretical Computer Science. DOI:

10.1016/j.tcs.2014.04.011

16. Ito, T., Kawamura, K., Zhou, X.: An improved sufficient condition for reconfigu-
ration of list edge-colorings in a tree. IEICE Trans. on Information and Systems
E95-D, pp. 737–745 (2012)

17. Jansen, K., Scheffler, P.: Generalized coloring for tree-like graphs. Discrete Applied
Mathematics 75, pp. 135–155 (1997)

18. Johnson, M., Kratsch, D., Kratsch, S., Patel, V., Paulusma, D.: Colouring recon-
figuration is fixed-parameter tractable. arXiv:1403.6347 (2014)

19. Kamiński, M., Medvedev, P., Milanič, M.: Shortest paths between shortest paths.
Theoretical Computer Science 412, pp. 5205–5210 (2011)

20. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set recon-
figurability problems. Theoretical Computer Science 439, pp. 9–15 (2012)

21. Makino, K., Tamaki, S., Yamamoto, M.: An exact algorithm for the Boolean con-
nectivity problem for k-CNF. Theoretical Computer Science Theor. Comp. Sci.
412, pp. 4613–4618 (2011)

22. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the param-
eterized complexity of reconfiguration problems. IPEC 2013, pp. 281–294 (2013)

23. Proskurowski, A., Telle, J.A.: Classes of graphs with restricted interval models.
Discrete Mathematics & Theoretical Computer Science 3, pp. 167–176 (1999)

24. Robertson, N., Seymour, P.: Graph minors. I. Excluding a forest. J. Combinatorial
Theory, Series B, 35, pp. 39–61 (1983)

25. Wrochna, M.: Reconfiguration in bounded bandwidth and treedepth.
arXiv:1405.0847 (2014)

15

A Proofs Omitted from Section 4

We first introduce some notation.
For i ≥ 2, let h be any node (i.e., a k-list coloring of Gi) in the reconfiguration

graph Ri−1. Recall that the vertex vi is adjacent with only the spine vertex
sp(i − 1) in Gi. Let c be any color in L(vi) \ {f(sp(i − 1))}. Then, we say that
h can be extended by c to a k-list coloring g of Gi such that g(vi) = c and
g(v) = h(v) for all vertices v ∈ Vi−1; we simply denote such an extension by
h+ c = g. Note that g is a node in Ri.

For any e-node y in the encoding graph Hi−1 of R0
i−1, recall that Φi−1(y)

is the set of all nodes in R0
i−1 that were contracted into y. For a color c ∈

L(vi)\{coli−1(y)}, let Φi−1(y)⊕ c = {h+ c : h ∈ Φi−1(y)}, that is, Φi−1(y)⊕ c is
the set of nodes in Ri that are extended by c from nodes in Φi−1(y)

(

⊆ V (R0
i−1)

)

.

A.1 Proof of Lemma 5

In this subsection, we prove Lemma 5. Therefore, suppose that we have already
computed (Hi−1, coli−1, inii−1, tari−1) for i ≥ 2, and assume that vi ∈ VL and
L(vi) = {c1, c2}.

We first prove that V (Hi) ⊆ V (Ĥ ′
i) holds, as in the following lemma.

Lemma 8. Let x be any e-node in Hi. Then, there exists an e-node x̂ in V (Ĥ ′
i) =

V (Hc1
i−1)∪ V (Hc2

i−1) such that
⋃
{

Φi−1(x̂)⊕ c : c ∈ L(vi) \ {coli−1(x̂)}
}

= Φi(x).

Proof. Let g be any node in Φi(x) ⊆ V (R0
i). Then, by Lemma 3 the node g[Vi−1]

is contained in R0
i−1, and hence there exists an e-node x̂ in Hi−1 such that

g[Vi−1] ∈ Φi−1(x̂). Notice that, since L(vi) = {c1, c2}, we have V (Hc1
i−1) ∪

V (Hc2
i−1) = V (Hi−1). Thus, the e-node x̂ is contained in Ĥ ′

i, too. Therefore,

we prove that
⋃
{

Φi−1(x̂)⊕ c : c ∈ L(vi) \ {coli−1(x̂)}
}

= Φi(x).
Let g′ be any node in Φi(x). Then, g ∼sp(i) g

′, and hence R0
i contains a path

〈g1, g2, . . . , gℓ〉 such that g1 = g, gℓ = g′ and gj(sp(i)) = g(sp(i)) = g′(sp(i)) for
all j ∈ {1, 2, . . . , ℓ}. Thus, we can obtain a path 〈g1[Vi−1], g2[Vi−1], . . . , gℓ[Vi−1]〉
in which the spine vertex sp(i) always receives the same color g(sp(i)) = g′(sp(i));
note that gj [Vi−1] = gj+1[Vi−1] may hold if vi is recolored, but we can simply
drop gj+1[Vi−1] in such a case. Since sp(i) = sp(i−1) for the case where vi ∈ VL,
we have g[Vi−1] ∼sp(i−1) g

′[Vi−1]. Therefore, g
′[Vi−1] ∈ Φi−1(x̂). Since coli−1(x̂)

represents the color assigned to sp(i) = sp(i−1) and vi is adjacent with sp(i−1)
in Gi, the color g′(vi) is clearly contained in L(vi) \ {coli−1(x̂)}. We thus have
g′[Vi−1] + g′(vi) = g′ ∈

⋃
{

Φi−1(x̂)⊕ c : c ∈ L(vi) \ {coli−1(x̂)}
}

.

Let g′′ be any node in
⋃
{

Φi−1(x̂)⊕c : c ∈ L(vi)\{coli−1(x̂)}
}

such that g′′ =
h+ c for some node h in Φi−1(x̂) and c ∈ L(vi) \ {coli−1(x̂)}. Since h ∈ Φi−1(x̂)
and g[Vi−1] ∈ Φi−1(x̂), we have g[Vi−1] ∼sp(i−1) h and hence R0

i−1 contains a path
〈h1, h2, . . . , hℓ〉 such that h1 = g[Vi−1], gℓ = h and hj(sp(i − 1)) = h(sp(i − 1))
for all j ∈ {1, 2, . . . , ℓ}. Since sp(i) = sp(i − 1) and g(vi) ∈ L(vi) \ {coli−1(x̂)},
the sequence 〈h1 + g(vi), h2 + g(vi), . . . , hℓ + g(vi)〉 is a path in R0

i . If g(vi) 6= c,
we add one more adjacent node hℓ + c to the last. Since h1 + g(vi) = g and
hℓ + c = g′′, we thus have g ∼sp(i) g

′′ and hence g′′ ∈ Φi(x). ⊓⊔

16

By Lemma 8 we may identify each e-node x in Hi with the corresponding
e-node x̂ in Ĥ ′

i.
We then prove the following lemma.

Lemma 9. Let x and y be two e-nodes in Hi, and let x̂ and ŷ be two e-nodes

in Ĥ ′
i corresponding to x and y, respectively. Then, x̂ŷ ∈ E(Ĥ ′

i) = E(Hc1
i−1) ∪

E(Hc2
i−1) if and only if xy ∈ E(Hi).

Proof. We first prove the only-if-part. Suppose that x̂ŷ ∈ E(Hc1
i−1); it is sym-

metric for the other case where x̂ŷ ∈ E(Hc2
i−1). Then, there exist two adja-

cent nodes hx ∈ Φi−1(x̂) and hy ∈ Φi−1(ŷ) such that hx(sp(i − 1)) 6= c1 and
hy(sp(i − 1)) 6= c1. Therefore, by Lemma 8 we have hx + c1 ∈ Φi(x) and
hy + c1 ∈ Φi(y). Note that, since x̂ 6= ŷ, we know that only the spine vertex
sp(i− 1) = sp(i) is recolored between hx and hy. Thus, hx + c1 and hy + c1 are
adjacent in R0

i , and hence we have xy ∈ E(Hi).
We then prove the if-part. Since xy ∈ E(Hi), there exist two adjacent nodes

gx ∈ Φi(x) and gy ∈ Φi(y) in R0
i . Since x 6= y, only the spine vertex sp(i) is

recolored between gx and gy, and hence gx(vi) = gy(vi). Therefore, gx[Vi−1]
and gy[Vi−1] are adjacent. We assume that c1 = gx(vi) = gy(vi) without loss of
generality. Then, since vi and sp(i) are adjacent, gx(sp(i)) 6= c1 and gy(sp(i)) 6=
c1. By Lemma 8 we have gx ∈

⋃
{

Φi−1(x̂) ⊕ c : c ∈ L(vi) \ {coli−1(x̂)}
}

; this
implies that gx[Vi−1] ∈ Φi−1(x̂). Similarly, gy[Vi−1] ∈ Φi−1(ŷ). Since gx[Vi−1]
and gy[Vi−1] are adjacent, x̂ŷ ∈ E(Hi−1). Furthermore, since coli−1(x̂) 6= c1 and

coli−1(ŷ) 6= c1, we have x̂ŷ ∈ E(Hc1
i−1). Therefore, x̂ŷ ∈ E(Hc1

i−1) ⊆ E(Ĥ ′
i). ⊓⊔

We now prove the following lemma.

Lemma 10. Ĥi = Hi.

Proof. Recall that Hi consists of a single connected component which contains
the e-node z such that f0[Vi] ∈ Φi(z). Consider the set of all e-nodes x̂ in Ĥ ′

i

that correspond to the e-nodes x in Hi. By Lemma 9 the e-node set forms a
connected subgraph of a single connected component in Ĥ ′

i. Furthermore, by

Lemma 8 the component in Ĥ ′
i contains the e-node ẑ such that f0[Vi] ∈ Φi(ẑ);

by the construction, ẑ is contained in Ĥi. We thus have V (Hi) ⊆ V (Ĥi).
Therefore, to show Hi = Ĥi, by Lemma 9 it suffices to prove that there exists

no edge xŷ ∈ E(Ĥi) which joins two e-nodes x ∈ V (Hi) and ŷ ∈ V (Ĥi) \V (Hi).
Suppose for a contradiction that there exists such an edge xŷ ∈ E(Ĥi). By the
construction, xŷ ∈ E(Hc1

i−1) ∪ E(Hc2
i−1); we may assume that xŷ ∈ E(Hc1

i−1)
without loss of generality. Then, there exist two adjacent nodes hx ∈ Φi−1(x)
and hŷ ∈ Φi−1(ŷ) such that hx(sp(i− 1)) 6= c1 and hŷ(sp(i− 1)) 6= c1. Therefore
hx and hŷ can be extended by c1, and hx + c1 ∈ Φi(x) and hŷ + c1 ∈ Φi(ŷ)
are adjacent in R0

i . By Lemma 8 we then have ŷ ∈ V (Hi); this contradicts the

assumption that ŷ ∈ V (Ĥi) \ V (Hi). ⊓⊔

Finally, we show the following lemma.

Lemma 11. ĉoli = coli, ˆinii = inii and ˆtari = tari.

17

Proof. Recall that sp(i) = sp(i − 1) if vi ∈ VL. Then, the lemma follows imme-
diately from Lemma 8. ⊓⊔

This completes the proof of Lemma 5.

A.2 Proof of Lemma 6

In this subsection, we prove Lemma 6. Therefore, suppose that we have already
computed (Hi−1, coli−1, inii−1, tari−1) for i ≥ 2, and assume that vi ∈ VS.

We first prove that V (Hi) ⊆ V (Ĥ ′
i) holds, as in the following lemma.

Lemma 12. Let x be any e-node in Hi with coli(x) = c. Then, there exists

exactly one connected component H in Hc
i−1 such that

⋃

{Φi−1(y) ⊕ c : y ∈
V (H)} = Φi(x).

Proof. Let g be any node in Φi(x) ⊆ V (R0
i). Then, by Lemma 3 the node g[Vi−1]

is contained in R0
i−1, and hence there exists an e-node z in Hi−1 such that

g[Vi−1] ∈ Φi−1(z). Since sp(i) 6= sp(i − 1) and sp(i) is adjacent with sp(i − 1),
the assumption coli(x) = c implies that g(sp(i)) = c and hence g(sp(i− 1)) 6= c.
Therefore, we have coli−1(z) 6= c, and hence Hc

i−1 has exactly one connected
component H that contains z. We thus prove that

⋃

{Φi−1(y)⊕ c : y ∈ V (H)} =
Φi(x) for the connected component H .

Let g′ be any node in Φi(x). Then, g
′(sp(i)) = c and hence it suffices to

show that H contains an e-node y such that g′[Vi−1] ∈ Φi−1(y). Since g ∼sp(i) g
′,

there exists a path 〈g1, g2, . . . , gℓ〉 in R0
i such that g1 = g, gℓ = g′ and gj(sp(i)) =

g(sp(i)) = g′(sp(i)) = c for all j ∈ {1, 2, . . . , ℓ}. Since sp(i) is adjacent with sp(i−
1), gj(sp(i− 1)) 6= c holds for all j ∈ {1, 2, . . . , ℓ}. Therefore, there exists a con-
nected componentH ′ inHc

i−1 such that the path 〈g1[Vi−1], g2[Vi−1], . . . , gℓ[Vi−1]〉
is contained in

⋃

{Φi−1(y
′) : y′ ∈ V (H ′)}. Because z ∈ V (H) and g1[Vi−1] =

g[Vi−1] ∈ Φi−1(z), we have H ′ = H . Thus, H contains an e-node y such that
g′[Vi−1] ∈ Φi−1(y). Then, we have g′ ∈

⋃

{Φi−1(y)⊕ c : y ∈ V (H)}.
Conversely, let g′′ be any node in

⋃

{Φi−1(y) ⊕ c : y ∈ V (H)}. Since H

is connected, the subgraph of R0
i−1 induced by

⋃

{Φi−1(y) : y ∈ V (H)} is
connected, too. Then, the induced subgraph contains a path 〈h1, h2, . . . , hℓ〉
such that h1 = g[Vi−1] and hℓ = g′′[Vi−1]. Furthermore, since H is a con-
nected component in Hc

i−1, we know that hj(sp(i − 1)) 6= c for all nodes hj ,
j ∈ {1, 2, . . . , ℓ}. Therefore, we can extend each node hj by c, and obtain a path
〈h1 + c, h2 + c, . . . , hℓ + c〉. Since h1 + c = g and hℓ + c = g′′, we thus have
g ∼sp(i) g

′′. Since g ∈ Φi(x), we have g′′ ∈ Φi(x). ⊓⊔

For each e-node x ∈ V (Hi), let Hx be the connected component in H
coli(x)
i−1

which satisfies Lemma 12. Then, we can identify the e-node x in Hi with the
e-node x̂ in Ĥ ′

i such that EN(x̂) = V (Hx).
We then prove the following lemma.

Lemma 13. Let x and y be two e-nodes in Hi, and let x̂ and ŷ be two e-nodes

in Ĥ ′
i corresponding to x and y, respectively. Then, EN(x̂) ∩ EN(ŷ) 6= ∅ if and

only if xy ∈ E(Hi).

18

Proof. We first prove the only-if-part. Suppose that the set EN(x̂) ∩ EN(ŷ) con-
tains an e-node a in Hi−1. Choose an arbitrary node h ∈ Φi−1(a), then two
nodes h + coli(x) ∈ Φi(x) and h + coli(y) ∈ Φi(y) are adjacent in R0

i . Thus,
xy ∈ E(Hi).

We then prove the if-part. Suppose that xy ∈ E(Hi), then there exist two
adjacent nodes gx ∈ Φi(x) and gy ∈ Φi(y) in R0

i . Since gx and gy are adjacent
and coli(x) 6= coli(y), we know that gx[Vi−1] = gy[Vi−1]. By Lemma 12, there
exists an e-node a ∈ EN(x̂) such that gx[Vi−1] ∈ Φi−1(a). Similarly, there exists
an e-node b ∈ EN(ŷ) such that gy[Vi−1] ∈ Φi−1(b). Since gx[Vi−1] = gy[Vi−1], we
have a = b. Therefore, a = b ∈ EN(x̂) ∩ EN(ŷ) 6= ∅. ⊓⊔

By Lemmas 12 and 13, we have Hi ⊆ Ĥ ′
i and coli = ĉoli.

We now prove the following lemma.

Lemma 14. inii = ˆinii and tari = ˆtari.

Proof. We prove only inii = ˆinii; it is similar to prove tari = ˆtari.

Let x be any e-node in Hi such that inii(x) = 1. Then, f0[Vi] ∈ Φi(x), and

coli(x) = ĉoli(x) = f0(vi) holds. By Lemma 12 there exists an e-node y ∈ EN(x)
such that f0[Vi−1] ∈ Φi−1(y) and inii−1(y) = 1. Since f0[Vi] = f0[Vi−1] + coli(x),
we thus have ˆinii(x) = 1.

Conversely, let x̂ be any e-node in Ĥ ′
i such that ˆinii(x̂) = 1. Then, EN(x̂)

contains an e-node y such that f0[Vi−1] ∈ Φi−1(y) and inii−1(y) = 1. Note that

y is in H
coli(x̂)
i−1 , and f0[Vi−1] + coli(x̂) = f0[Vi]. By Lemma 12 we thus have

f0[Vi] ∈ Φi(x̂) and hence inii(x̂) = 1. ⊓⊔

Finally, we show following lemma.

Lemma 15. Ĥi = Hi.

Proof. Recall that Hi consists of a single connected component which contains
the e-node z such that f0[Vi] ∈ Φi(z). By Lemma 13 Hi is contained in one con-
nected component of Ĥ ′

i as a subgraph, and the connected component contains

an e-node ẑ such that f0[Vi] ∈ Φi(ẑ). By Lemma 14 we have ˆinii(ẑ) = 1, and
hence the connected component is indeed Ĥi. We thus have Hi ⊆ Ĥi.

Therefore, to showHi = Ĥi, by Lemma 13 it suffices to prove that there exists
no edge xŷ ∈ E(Ĥi) which joins two e-nodes x ∈ V (Hi) and ŷ ∈ V (Ĥi) \V (Hi).
Suppose for a contradiction that there exists such an edge xŷ ∈ E(Ĥi). Then, the
set EN(x) ∩ EN(ŷ) contains an e-node z. Choose an arbitrary node h ∈ Φi−1(z),
then two nodes h+coli(x) and h+coli(ŷ) are adjacent in R0

i . Then, h+coli(ŷ) ∈
⋃

z′∈EN(ŷ)(Φi−1(z
′)⊕ coli(ŷ)). By Lemma 12 the corresponding e-node y should

be contained in Hi; this contradicts the assumption that ŷ ∈ V (Ĥi)\V (Hi). ⊓⊔

This completes the proof of Lemma 6.

19

A.3 Proof of Lemma 7

In this subsection, we prove Lemma 7. Since |V (Ĥi)| ≤ |V (Ĥ ′
i)| holds, it suffices

to prove the following inequality: for each index i ∈ {1, 2, . . . , n},

|V (Ĥ ′
i)| ≤

{

2 if i = 1;
|V (Hi−1)|+ d(vi) otherwise.

(1)

Consider the case where vi is a leaf. Then, V (Ĥ ′
i) = V (Hi−1), and hence

Eq. (1) clearly holds. In the remainder of this subsection, we thus consider the
case where vi is a spine vertex.

For a graph G = (V,E), we denote by cc(G) the number of connected com-
ponents in G. For a connected graph G, that is, cc(G) = 1, we denote by TG

any spanning tree of G. Since E(TG) ⊆ E(G), we clearly have the following
proposition.

Proposition 1. Let G be a connected graph, and let V0 be any vertex subset of

G. Then, cc(G[V0]) ≤ cc(TG[V0]) holds.

We now apply Case (B) of our algorithm to any spanning tree THi−1
of Hi−1,

instead of applying the operation to Hi−1. Let ĤT
i be the obtained encoding

graph, instead of Ĥ ′
i. Then, we have the following lemma.

Lemma 16. |V (Ĥ ′
i)| ≤ |V (ĤT

i)|.

Proof. For each color c ∈ L(vi), let H
T,c
i−1 be the subgraph of THi−1

obtained by
deleting all e-nodes y in THi−1

with coli−1(y) = c. Then,

|V (Ĥ ′
i)| =

∑

c∈L(vi)

cc(Hc
i−1),

and

|V (ĤT
i)| =

∑

c∈L(vi)

cc(HT,c
i−1). (2)

By Proposition 1 we have cc(Hc
i−1) ≤ cc(HT,c

i−1) for each color c ∈ L(vi), and

hence |V (Ĥ ′
i)| ≤ |V (ĤT

i)|. ⊓⊔

We finally show the following lemma, which verifies Eq. (1) and hence com-
pletes the proof of Lemma 7.

Lemma 17. If vi is a spine vertex, then |V (Ĥ ′
i)| ≤ |V (Hi−1)|+ d(vi).

Proof. We first consider the case where |V (Hi−1)| = 1. Then, cc(Hc
i−1) ≤ 1 for

any color c ∈ L(vi), and hence

|V (Ĥ ′
i)| =

∑

c∈L(vi)

cc(Hc
i−1) ≤ |L(vi)|.

20

By Lemma 2 we have |L(vi)| ≤ d(vi) + 1, and hence

|V (Ĥ ′
i)| ≤ 1 + d(vi) = |V (Hi−1)|+ d(vi).

We then consider the case where |V (Hi−1)| ≥ 2. Recall that THi−1
is a

spanning tree of Hi−1, and hence V (THi−1
) = V (Hi−1). For each color c ∈ L(vi),

let Xi−1(c) = {x ∈ V (THi−1
) : coli−1(x) = c}. For each vertex x ∈ V (THi−1

),
we denote by d(THi−1

, x) the degree of x in THi−1
. Then, by deleting x from

THi−1
, the number of connected components in the resulting graph is increased

by d(THi−1
, x)− 1. We thus have

cc(HT,c
i−1) = cc(THi−1

) +
∑

{

d(THi−1
, x)− 1 : x ∈ Xi−1(c)

}

= 1 +
∑

{

d(THi−1
, x) − 1 : x ∈ Xi−1(c)

}

. (3)

By Lemma 16 and Eq. (2) we have

|V (Ĥ ′
i)| ≤ |V (ĤT

i)| =
∑

c∈L(vi)

cc(HT,c
i−1).

Therefore, by Eq. (3) we have

|V (Ĥ ′
i)| ≤

∑

c∈L(vi)

(

1 +
∑

{

d(THi−1
, x)− 1 : x ∈ Xi−1(c)

})

≤ |L(vi)|+
∑

{

d(THi−1
, x)− 1 : x ∈ V (THi−1

)
}

= |L(vi)|+ 2|E(THi−1
)| − |V (THi−1

)|. (4)

Since THi−1
is a tree, |E(THi−1

)| = |V (THi−1
)|−1. Furthermore, recall that THi−1

is a spanning tree of Hi−1, and hence V (THi−1
) = V (Hi−1). By Eq. (4) we thus

have |V (Ĥ ′
i)| ≤ |L(vi)|+ |V (Hi−1)|−2. By Lemma 2 we have |L(vi)| ≤ d(vi)+1,

and hence

|V (Ĥ ′
i)| ≤ |L(vi)|+ |V (Hi−1)| − 2 ≤ |V (Hi−1)|+ d(vi)− 1,

as required. ⊓⊔

21

