
Logic Programming and Logarithmic Space

Clément Aubert1, Marc Bagnol1, Paolo Pistone1, and Thomas Seiller2 ∗

1 Aix Marseille Université, CNRS, I2M UMR 7373, 13453, Marseille, France
2 I.H.É.S., Le Bois-Marie, 35, Route de Chartres, 91440 Bures-sur-Yvette, France

Abstract. We present an algebraic view on logic programming, related to
proof theory and more specifically linear logic and geometry of interaction.
Within this construction, a characterization of logspace (deterministic
and non-deterministic) computation is given via a synctactic restriction,
using an encoding of words that derives from proof theory.
We show that the acceptance of a word by an observation (the counterpart
of a program in the encoding) can be decided within logarithmic space, by
reducing this problem to the acyclicity of a graph. We show moreover that
observations are as expressive as two-ways multi-heads finite automata, a
kind of pointer machines that is a standard model of logarithmic space
computation.

Keywords: Implicit Complexity, Unification, Logic Programming, Logarithmic
Space, Proof Theory, Pointer Machines, Geometry of Interaction, Automata

1 Introduction
Proof Theory and Implicit Complexity Theory Very generally, the aim of
implicit complexity theory (ICC) is to describe complexity classes with no explicit
reference to cost bounds: through a type system or a weakened recursion scheme
for instance. The last two decades have seen numerous works relating proof
theory (more specifically linear logic [14]) and ICC, the basic idea being to look
for restricted substructural logics [18] with an expressiveness that corresponds
exactly to some complexity class.

This has been achieved by various syntactic restrictions, which entail a less
complex (any function provably total in second-order Peano Arithmetic [14] can
be encoded in second-order linear logic) cut-elimination procedure: control over
the modalities [29,9], type assignments [13] or stratification properties [5], to
name a few.

Geometry of Interaction Over the recent years, the cut-elimination procedure
and its mathematical modeling has become a central topic in proof theory. The
aim of the geometry of interaction research program [15] is to provide the tools
for such a modeling [1,24,30].
∗This work was partly supported by the ANR-10-BLAN-0213 Logoi and the ANR-

11-BS02-0010 Récré.

ar
X

iv
:1

40
6.

21
10

v1
 [

cs
.L

O
]

 9
 J

un
 2

01
4

As for complexity theory, these models allow for a more synthetic and abstract
study of the resources needed to compute the normal form of a program, leading
to some complexity characterization results [6,19,2].

Unification The unification technique is one of the key-concepts of theoretical
computer science: it is a classical subject of study for complexity theory and a
tool with a wide range of applications, including logic programming and type
inference algorithms.

Unification has also been used to build syntactic models of geometry
of interaction [17,6,20] where first-order terms with variables allow for a
manipulation of infinite sets through a finite language.

Logic Programming After the work of Robinson on the resolution procedure,
logic programming has emerged as a new computation paradigm with concrete
realizations such as the languages Prolog and Datalog.

On the theoretical side, a lot of efforts has been made to clarify expressiveness
and complexity issues [10]: most problems arising from logic programming are
undecidable in their most general form and some restrictions must be introduced
in order to make them tractable. For instance, the notion of finitely ground
program [8] is related to our approach.

Pointer Machines Multi-heads finite automata provide an elegant character-
ization of logspace computation, in terms of the (qualitative) type of memory
used rather than the (quantitative) amount of tape consumed. Since they can
scan but not modify the input, they are usually called “pointer machines”.

This model was already at the heart of previous works relating geometry of
interaction and complexity theory [19,3,2].

Contribution and Outline We begin by exposing the idea of relating geometry
of interaction and logic programming, already evoked [17] but never really
developed, and by recalling the basic notions on unification theory needed for
this article and some related complexity results.

We present in Sect. 2 the algebraic tools used later on to define the encoding
of words and pointer machines. Section 2.2 and Sect. 2.3 introduce the syntactical
restriction and associated tools that allow us to characterize logarithmic space
computation. Note that, compared to earlier work [2], we consider a much wider
class of programs while preserving bounded space evaluation.

The encoding of words enabling our results, which comes from the classical
(Church) encoding of lists in proof theory, is given in Sect. 3. It allows to define
the counterpart of programs, and a notion of acceptance of a word by a program.

Finally, Sect. 4 makes use of the tools introduced earlier to state and prove
our complexity results. While the expressiveness part is quite similar to earlier
presentations [3,2], the proof that acceptance can be decided within logarithmic
space has been made more modular by reducing it to cycle search in a graph.

1.1 Geometry of Interaction and Logic Programming

The geometry of interaction program (GoI for short), started in 1989 [16], aims at
describing the dynamics of computation by developing a fully mathematical model
of cut-elimination. The original motivations of GoI must be traced back, firstly, to
the Curry-Howard correspondence between sequent calculus derivations and typed
functional programs: it is on the basis of this correspondence that cut-elimination
had been proposed by proof-theorists as a paradigm of computation; secondly,
to the finer analysis of cut-elimination coming from linear logic [14] and the
replacement of sequent calculus derivations with simpler geometrical structures
(proof-nets), more akin to a purely mathematical description.

In the first formulation of GoI [15], derivations in second order intuitionistic
logic LJ2 (which can be considered, by Curry-Howard, as programs in System F)
are interpreted as pairs (U, σ) of elements (called wirings) of a C∗-algebra, U
corresponding to the axioms of the derivation and σ to the cuts.

The main property of this interpretation is nilpotency: there exists an integer
n such that (σU)n = 0. The cut-elimination (equivalently, the normalization)
procedure is then interpreted by the application of an execution operator

EX(U, σ) =
∑
k(σU)k

From the viewpoint of proof theory and computation, nilpotency corresponds
to the strong normalization property: the termination of the normalization
procedure with any strategy.

Several alternative formulations of geometry of interaction have been proposed
since 1988 (see for instance [1,24,30]); in particular, wirings can be described as
logic programs [17,6,20] made of particular clauses called flows, which will be
defined in Sect. 2.1.

In this setting the resolution rule induces a notion of product of wirings
(Definition 8) and in turn a structure of semiring: the unification semiring U ,
which can replace the C∗-algebras of the first formulations of GoI3.

The EX(.) operator of wirings can be understood as a way to compute the
fixed point semantics of logic programs. The nilpotency property of wirings means
then that the fixed point given by EX(.) is finite, which is close to the notion of
boundedness [10] of logic programs.

In definitive, from the strong normalization property for intuitionistic second
order logic (or any other system which enjoys a GoI interpretation), one obtains
through the GoI interpretation a family of bounded (nilpotent) logic programs
computing the recursive functions typable in System F.

This is quite striking in view of the fact that to decide whenever a program
is bounded4 is – even with drastic constraints – an undecidable problem [21], and
that in general boundedness is a property that is difficult to ensure.

3By adding complex scalar coefficients, one can actually extend U into a C∗-
algebra [17].

4A program is bounded if there is an integer k such that the fixed point computation
of the program is stable after k iterations, independently of the facts inputed.

1.2 Unification and Complexity

Unification is a classical subject of research, at the intersection of practical and
theoretical considerations. We recall in the following some notations and some of
the numerous links between complexity and unification, and by extension logic
programming.

Notations. We consider a set of first-order terms T, assuming an infinite number
of variables x, y, z, . . . ∈ V, a binary function symbol • (written in infix notation),
infinitely many constant symbols a, b, c, . . . including the (multipurpose) dummy
symbol ? and, for any n ∈ N∗, at least one n-ary function symbol An.

Note that the binary function symbol • is not associative. However, we will
write it by convention as right associating to lighten notations: t •u •v := t •(u •v).

For any t ∈ T, we write Var(t) the set of variables occurring in t (a term is
closed when Var(t) = ∅) and h(t) the heigth of t: the maximal distance from the
root to any other subterm in the tree structure of t.

The height of a variable occurrence in a term t is its distance from the root
in the tree structure of the term. A substitution θ is a mapping form variables
to terms such that xθ = x for all but finitely many x ∈ V. A renaming is a
substitution α mapping variables to variables and that is bijective. A term t′ is a
renaming of t if t′ = tα for some renaming α.

Definition 1 (unification, matching and disjointness). Two terms t, u are
• unifiable if there exists a substitution5 θ such that tθ = uθ,
• matchable if t′, u′ are unifiable, where t′, u′ are renamings of t, u such that

Var(t′) ∩ Var(u′) = ∅,
• disjoint if they are not matchable.

It is well-known that the problem of deciding whether two terms are unifiable
is Ptime-complete [11, Theorem 1], which implies that parallel algorithms for
this problem do not improve much on serial ones. Finding classes of terms where
the MGU research can be efficiently parallelized is a real challenge.

It has been proven that this problem remains Ptime-complete even if the
arity of the function symbols or the height of the terms is bounded [26, Theorems
4.2.1 and 4.3.1], if both terms are linear or if they do not share variables [11,12].
More recently [7], an innovative constraint on variables helped to discover an
upper bound of the unification classes that are proven to be in NC.

Regarding space complexity, the result stating that the matching problem is
in DLogspace [11] (recalled as Theorem 35) will be used in Sect. 4.2.

2 The Unification Semiring

This section presents the technical setting of this work, the unification semiring:
an algebraic structure with a composition law based on unification, that can be
seen as an algebraic presentation of a fragment of logic programming.

5Called a unifier. Remember that two terms t, u that are unifiable have a most
general unifier (MGU): a unifier θ such that any other unifier of t, u is an instance of θ.

2.1 Flows and Wirings

Flows can be thought of as very specific Horn clauses: safe (the variables of the
head must occur in the body) clauses with exactly one atom in the body.

As it is not relevant to this work, we make no difference between predicate
symbols and function symbols, for it makes the presentation easier.

Definition 2 (flows). A flow is a pair of terms t ↼ u with Var(t) ⊆ Var(u).
Flows are considered up to renaming: for any renaming α, t ↼ u = tα ↼ uα.

Facts, that are usually defined as ground (using only closed terms) clauses
with an empty body, can still be represented as a special kind of flows.

Definition 3 (facts). A fact is a flow of the form t ↼ ?.

Remark 4. Note that this implies that t is closed.

The main interest of the restriction to flows is that it yields an algebraic
structure: a semigroup with a partially defined product.

Definition 5 (product of flows). Let u ↼ v and t ↼ w be two flows. Suppose
we have representatives of the renaming classes such that Var(v) ∩ Var(w) = ∅.
The product of u ↼ v and t ↼ w is defined if v, t are unifiable with MGU θ as
(u ↼ v)(t ↼ w) := uθ ↼ wθ.

Remark 6. The condition on variables ensures that facts form a “left ideal” of
the set of flows: if u is a fact and f a flow, then fu is a fact when it is defined.

Example 7.
(f(x) ↼ x)(f(x) ↼ g(x)) = f(f(x)) ↼ g(x)
(x •c ↼ (y •y) •x)((c •c) •x ↼ y •x) = x •c ↼ c •x
(f(x •c) ↼ x •d)(d •d ↼ ?) = f(d •c) ↼ ?

The product of flows corresponds to the resolution rule in the following sense:
given two flows f = u ↼ v and g = t ↼ w and a MGU θ of v and t, then the
resolution rule applied to f and g would yield fg.

Wirings then correspond to logic programs (sets of clauses) and the nilpotency
condition can be seen as an algebraic variant of the notion of boundedness of
these programs.

Definition 8 (wirings). Wirings are finite sets of flows. The product of wirings
is defined as FG := { fg | f ∈ F, g ∈ G, fg defined }.

We write U the set of wirings and refer to it as the unification semiring.

The set of wirings U has a structure of semiring. We use an additive notation
for sets of flows to stress this point:
• The symbol + will be used in place of ∪.
• We write sets as the sum of their elements: { f1, . . . , fn } := f1 + · · ·+ fn.
• We write 0 for the empty set.

• The unit is I := x ↼ x.
We will call semiring any subset A of U such that
• 0 ∈ A,
• if F1, . . . , Fn ∈ A, then F1 + · · · + Fn ∈ A,
• if F ∈ A and G ∈ A then FG ∈ A.

Definition 9 (nilpotency). A wiring F is nilpotent if Fn = 0 for some n ∈ N.
We may use the notation Nil(F) to express the fact that F is nilpotent.

As mentionned in Sect. 1.1, nilpotency is related with the notion of
boundedness [10] of a logic program. Indeed, if we have a wiring F and a finite
set of facts U, let us consider the set of facts that can be obtained through F
{ u | u ∈ FnU for some n } which can also be written as (I + F + F 2 + · · ·)U
or EX(F)U (where EX(.) is the execution operator of Sect. 1.1).

If F is nilpotent, one needs to compute the sum only up to a finite rank that
does not depend on U, which implies the boundedness property.

Among wirings, those that can produce at most one fact from any fact will
be of interest when considering deterministic vs. non-deterministic computation.

Definition 10 (deterministic wirings). A wiring F is deterministic if given
any fact u, card(Fu) ≤ 1. We will write Ud the set of deterministic wirings.

It is clear from the definition that Ud forms a semiring. The lemma below
gives us a class of wirings that are deterministic and easy to recognize, due to its
more syntactic definition.

Lemma 11. Let F =
∑
i ui ↼ ti. If the ti are pairwise disjoint (Definition 1),

then F is deterministic.

Proof. Given a closed term t there is at most one of the ti that matches t,
therefore F (t ↼ ?) is either a single fact or 0. ut

2.2 The Balanced Semiring

In this section, we study a constraint on variable height of flows which we call
balance. This syntactic constraint can be compared with similar ones proposed
in order to get logic programs that are finitely ground [8]: balanced wirings are a
special case of argument-restricted programs in the sense of [25].

Balanced wirings will enjoy properties (see Sect. 2.3) that will allow to decide
their nilpotency efficiently.

Definition 12 (balance). A flow f = t ↼ u is balanced if for any variable
x ∈ Var(t) ∪ Var(u), all occurrences of x in either t or u have the same height
(recall notations p. 4) which we write hf (x), the height of x in f . A wiring F is
balanced if it is a sum of balanced flows.

We write Ub the set of balanced wirings and refer to it as the balanced semiring.

Note that in Example 7, only the second line shows product of balanced flows.

Definition 13 (height). The height h(f) of a flow f = t ↼ u is max{h(t), h(u)}.
The height h(F) of a wiring F is the maximal height of flows in it.

The following lemma summarizes the properties that are preserved by the
product of balanced flows. It implies in particular that Ub is indeed a semiring.

Lemma 14. When it is defined, the product fg of two balanced flows f and g is
still balanced and its height is at most max{h(f), h(g)}.

Proof (sketch). By showing that the variable height condition and the global
height are both preserved by the basic steps of the unification procedure. ut

2.3 The Computation Graph

The main tool for a space-efficient treatment of balanced wirings is an associated
notion of graph. This section focuses on the algebraic aspects of this notion,
proving various technical lemmas, and leaves the complexity issues to Sect. 4.2.

A separating space can be thought of as a finite subset of the Herbrand
universe associated with a logic program, containing enough information to
decide the problem at hand.

Definition 15 (separating space). A separating space for a wiring F is a set
of facts S such that
• For all u ∈ S, Fu ⊆ S.
• Fnu = 0 for all u ∈ S implies Fn = 0.

We can define such a space for balanced wirings with Lemma 14 in mind:
balanced wirings behave well with respect to height of terms.

Definition 16 (computation space). Given a balanced wiring F , we define
its computation space Comp(F) as the set of facts of height at most h(F), built
using only the symbols appearing in F and the constant symbol ?.

Lemma 17 (separation). If F is balanced, then Comp(F) is separating for F .

Proof. By Lemma 14, F (u ↼ ?) is of height at most max{h(F), h(u)} ≤ h(F)
and it contains only symbols occurring in F and u, therefore if u ∈ Comp(F)
we have Fu ⊆ Comp(F).

By Lemma 14 again, Fn is still of height at most h(F). If (Fn)u = 0 for all
u ∈ Comp(F), it means the flows of Fn do not match any closed term of height
at most h(F) built with the symbols occurring in F (and eventually ?). This is
only possible if F contains no flow, ie. F = 0. ut

As F is a finite set, thus built with finitely many symbols, Comp(F) is also
a finite set. We can be a little more precise and give a bound to its cardinal.

Proposition 18 (cardinality). Let F be a balanced wiring, A the maximal
arity of function symbols occurring in F and S the set of symbols occurring in F ,
then card(Comp(F)) ≤ (card(S)+1)Ph(F)(A), where Pk(X) = 1+X+ · · ·+Xk.

Proof. The number of terms of height h(F) built over the set of symbols S ∪ {?}
of arity bounded by A is at most as large as the number of complete trees of
degree A and height h(F) (that is, trees where nodes of height less than h(F)
have exactly A childs), with nodes labeled by elements of S ∪ {?}. ut

Then, we can encode in a directed graph6 the action of the wiring on its
computation space.

Definition 19 (computation graph). If F is a balanced wiring, we define its
computation graph G(F) as the directed graph:
• The vertices of G(F) are the elements of Comp(F).
• There is an edge from u to v in G(F) if v ∈ Fu.

We state finally that the computation graph of a wiring contains enough
information on the latter to determine its nilpotency. This is a key ingredient
in the proof of Theorem 34, as the research of paths and cycles in graphs are
problems that are well-known to be solvable within logarithmic space.

Lemma 20. A balanced wiring F is nilpotent (Definition 9) iff G(F) is acyclic.

Proof. Suppose there is a cycle of length n in G(F), and let u be the label of a
vertex which is part of this cycle. By definition of G(F), u ∈ (Fn)ku for all k,
which means that (Fn)k 6= 0 for all k and therefore F cannot be nilpotent.

Conversely, suppose there is no cycle in G(F). As it is a finite graph, this
entails a maximal length N of paths in G(F). By definition of G(F), this means
that FN+1u = 0 for all u ∈ Comp(F) and with Lemma 17 we get FN+1 = 0. ut

Moreover, the computation graph of a deterministic (Definition 10) wiring
has a specific shape, which in turn induces a deterministic procedure in this case.

Lemma 21. If F is a balanced and deterministic wiring, G(F) has an out-degree
(the maximal number of edges a vertex can be the source of) bounded by 1.

Proof. It is a direct consequence of the definitions of G(F) and determinism. ut

2.4 Tensor product and other semirings

Finally, we list a few other semirings that will be used in the next section, where
we define the notions of representation of a word and observation.

The binary function symbol • can be used to define an operation that is
similar to the algebraic notion of tensor product.

6Here by directed graph we mean a set of vertices V together with a set of edges
E ⊆ V × V . We say that there is an edge from e ∈ V to f ∈ V when (e, f) ∈ E.

Definition 22 (tensor product). Let u ↼ v and t ↼ w be two flows. Suppose
we have chosen representatives of their renaming classes that have disjoint sets of
variables. We define their tensor product as (u ↼ v) ⊗̇ (t ↼ w) := u •t ↼ v •w.
The operation is extended to wirings by (

∑
i fi) ⊗̇ (

∑
j gj) :=

∑
i,j fi ⊗̇ gj. Given

two semirings A,B, we define A⊗̇B := {
∑
i Fi ⊗̇Gi | Fi ∈ A , Gi ∈ B }.

The tensor product of two semirings is easily shown to be a semiring.

Example 23.
(f(x) •y ↼ y •x) ⊗̇ (x ↼ g(x)) = (f(x) •y) •z ↼ (y •x) •g(z)

Notation. As the symbol • , the ⊗̇ operation is not associative. We carry on the
convention for • and write it as right associating: A⊗̇B ⊗̇ C := A⊗̇ (B ⊗̇ C).

Semirings can also naturally be associated to any set of closed terms or to
the restriction to a certain set of symbols.

Definition 24. Given a set of closed terms E, we define the following semiring
E↼ := {

∑
i ti ↼ ui | ti, ui ∈ E }. If S is a set of symbols and A a semiring, we

write A\S the semiring of wirings of A , that do not use the symbols in S.

This operation yields semirings because composition of flows made of closed
terms involves no actual unification: it is just equality of terms and therefore one
never steps out of E↼.

Finally, the unit I = x ↼ x of U yields a semiring.

Definition 25 (unit semiring). We call unit semiring the semiring I := { I }.

3 Words and Observations

We define in this section the global framework that will be used later on to obtain
the characterization of logarithmic space computation. In order to discuss the
contents of this section, let us first define two specific semirings.

Definition 26 (word and observation semirings). We fix two (disjoint)
infinite sets of constant symbols P and S, and a unary function symbol M. We
denote by M(P) the set of terms M(p) with p ∈ P. We define the following two
semirings that are included in Ub:
• The word semiring is the semiring W := I ⊗̇ I ⊗̇ M(P)↼.
• The observation semiring is the semiring O := S↼ ⊗̇ Ub\P.

These two semirings will be used as parameters of a constructionMΣ (.) to
define the representation of words and a notion of abstract machine, that we
shall call observations, on an alphabet Σ (we suppose ? 6∈ Σ).

Definition 27. We fix the set of constant symbols LR := {L, R}.
Given a set of constant symbols Σ and a semiring A we define the semiring

MΣ (A) := (Σ ∪ {?})↼ ⊗̇ LR↼ ⊗̇A.

In the following of this section, we will show how to represent lists of elements
of Σ by wirings in the semiringMΣ (W). Then, we will explain how the semiring
MΣ (O) captures a notion of abstract machine. In the last section of the paper
we will explain further how observations and words interact, and prove that this
interaction captures logarithmic space computation.

3.1 Representation of Words

We now show how one can represent words by wirings in MΣ (W). We recall
this semiring is defined as

(
(Σ ∪ {?})↼ ⊗̇ LR↼

)
⊗̇ I ⊗̇ I ⊗̇ M(P)↼.

The part (Σ ∪ {?})↼ ⊗̇ LR↼ deals with, and is dependent on, the alphabet
Σ considered; this is where the integer and the observation will interact. The
two instances of the unit semiring I correspond to the fact that the word cannot
affect parts of the observation that correspond to internal configurations. The
last part, namely the semiring M(P)↼, will contain the position constants of the
representation of words.

Notation. We write t� u for t ↼ u+ u ↼ t.

Definition 28 (word representations). Let W = c1 . . . cn be a word over an
alphabet Σ and p = p0, p1, . . . , pn be pairwise distinct constant symbols.

Writing pn+1 = p0 and c0 = cn+1 = ?, we define the representation of W
associated with p0, p1, . . . , pn as the following wiring:

W̄p =
n∑
i=0

ci •L •x •y •M(pi) � ci+1 •R •x •y •M(pi+1) (1)

We will write R(W) the set of representations of a given word W .

To understand better this representation, consider that each symbol in the
alphabet Σ comes in two “flavors”, left and right. Then, one can easily construct
the “context” W̄ =

∑n
i=0 ci •L •x •y •M([]i) � ci+1 •R •x •y •M([]i+1) from the list

as the sums of the arrows in the following picture (where x and y are omitted):

? •R•L
M([]0)

c1 •R•L
(M[]1)

c2 •R•L
M([]2)

. . . cn •R•L
M([]n)

Then, choosing a set p = p0, . . . , pn of position constants, intuitively representing
physical memory addresses, the representation W̄p of a word associated with p is
obtained by filling, for all i = 0, . . . , n, the hole []i by the constant pi.

This abstract representation of words is not an arbitrary choice. It comes
from the interpretation of lists in geometry of interaction.

Indeed, in System F, the type of binary lists corresponds to the formula
∀X (X ⇒ X) ⇒ (X ⇒ X) ⇒ (X ⇒ X). Any lambda-term in normal form
of this type can be written as λf0f1x. fc1fc2 · · · fck

x, where c1 · · · ck is a word
on {0, 1}. The GoI representation of such a lambda-term yields the abstract

representation just defined7. Notice that the additional symbol ? used to represent
words corresponds to the variable x in the preceding lambda-term. Note also the
fact that the representation of integer is cyclic, and that the symbol ? serves as
a reference for the starting/ending point of the word.

Let us finally stress that the words are represented as deterministic wirings.
This implies that the restriction to deterministic observations will correspond to
restricting ourselves to deterministic pointer machines. The framework, however,
allows for a number of generalization and variants. For instance, one can define a
representation of trees by adapting Definition 28 in such a way that every vertex
is related to its descendants; doing so would however yield non-deterministic
wirings. In the same spirit, a notion of “one-way representations of words”, defined
by replacing the symbol � by the symbol ↼ in (1) of Definition 28, could be
used to characterize one-way multi-heads automata.

3.2 Observations

We now define observations. We will then explain how these can be thought of as
a kind of abstract machines. An observation is an element of the semiring

(Σ ∪ {?})↼ ⊗̇ LR↼ ⊗̇ (S↼ ⊗̇ Ub\P)

Once again, the part of the semiring (Σ ∪ {?})↼ ⊗̇ LR↼ is dependent on the
alphabet Σ considered and represents the point of interaction between the words
and the machine. The semiring S↼ intuitively corresponds to the states of the
observation, while the part Ub\P forbids the machine to act non-trivially on the
position constant of the representation of words. The fact that the machine
cannot perform any operation on the memory addresses – the position constants –
of the word representation explains why observations are naturally though of as
a kind of pointer machines.

Definition 29 (observation). An observation is any element O ofMΣ (O).

We can define the language associated to an observation. The condition of
acceptance will be represented as the nilpotency of the product OW̄p where
W̄p ∈ R(W) represents a word W and O is an observation.

Definition 30 (language of an observation). Let O be an observation on
the alphabet Σ. We define the language accepted by O as

L(O) :=
{
W ∈ Σ∗

∣∣ ∀p, Nil(OW̄p)
}

One important point is that the semirings MΣ (W) and MΣ (O) are not
completely disjoint, and therefore allow for non-trivial interaction of observations
and words. However, they are sufficiently disjoint so that this computation does
not depend on the choice of the representative of a given word.

7A thorough explanation can be found in previous work by Aubert and Seiller [3].

Lemma 31. Let W be a word, and W̄p, W̄q ∈ R(W). For every observation
O ∈MΣ (O), Nil(OW̄p) if and only if Nil(OW̄q).

Proof. As we pointed out, the observation cannot act on the position constants
of the representations W̄p and W̄q. This implies that for all integer k the wirings
(OW̄p)k and (OW̄q)k are two instances of the same context, i.e. they are equal
up to the interchange of the positions constants p0, . . . , pn and q0, . . . , qn. This
implies that (OW̄p)k = 0 if and only if (OW̄q)k = 0. ut

Corollary 32. Let O be an observation on the alphabet Σ. The set L(O) can be
equivalently defined as the set

L(O) =
{
W ∈ Σ∗

∣∣ ∃p, Nil(OW̄p)
}

This result implies that the notion of acceptance has the intended sense and
is finitely verifyable: whether a word W is accepted by an observation O can be
checked without considering all representations of W .

This kind of situation where two semirings W and O are disjoint enough
to obtain Corollary 32 can be formalized through the notion of normative pair
considered in earlier works [19,3,2].

4 Logarithmic Space

This section starts by explaining the computation one can perform with the
observations, and prove that it corresponds to logarithmic space computation by
showing how pointer machines can be simulated. Then, we will prove how the
language of an observation can be decided within logarithmic space.

This section uses the complexity classes DLogspace and coNLogspace, as
well as notions of completeness of a problem and reduction between problems.
We use in Sect. 4.2 the classical theorem of coNLogspace-completeness of the
acyclicity problem in directed graphs, and in Sect. 4.1 a convenient model of
computation, two-ways multi-heads finite automata, a generalization of automata
also called “pointer machine”. The reader who would like some reminders may
have a look at any classical textbook [28]. Note that the non-deterministic part of
our results concerns coNLogspace, or equivalently NLogspace by the famous
Immerman-Szelepcsényi theorem.

4.1 Completeness: Observations as Pointer Machines

This section describes the kind of computation one can model with observations.
Let h0, x, y be variables, p0, p1, A0 constants and Σ = {0, 1}, the excerpt

of a dialogue in Figure 1 between an observation O = o1 + o2 + · · · and the
representation of a word W̄p = w1 +w2 + · · · should help the reader to grasp the
mechanism.

We just depicted two transitions corresponding to an automata that reads the
first bit of the word, and if this bit is a 1, goes back to the starting position, in
state b. Remark that the answer of w1 differs from the one of w2: there is no need

? •L • init •A0 •M(h0) ↼ ? •R • init •A0 •M(h0) (o1)
? •R •x •y •M(p0) ↼ 1 •L •x •y •M(p1) (w1)

1 •L • init •A0 •M(h0) ↼ 1 •L •b •A0 •M(h0) (o2)
1 •L •x •y •M(p1) ↼ ? •R •x •y •M(p0) (w2)

By unification,
? •L • init •A0 •M(p0) ↼ 1 •L • init •A0 •M(p1) (o1w1)
? •L • init •A0 •M(p0) ↼ 1 •L •b •A0 •M(p1) (o1w1o2)
? •L • init •A0 •M(p0) ↼ ? •R •b •A0 •M(p0) (o1w1o2w2)

This can be understood as the small following dialogue:

o1: [Is in state init] “I read ? from left to right, what do I read now?”
w1: “Your position was p0, you are now in position p1 and read 1.”
o2: [Change state to b] “I do an about-turn, what do I read now?”
w2: “You are now in position p0 and read ?.”

Fig. 1. An example of dialogue between an observation and the representation of a
word

to clarify the position (the variable argument of M), since h0 was already replaced
by p1. Such an information is needed only in the first step of computation: after
that, the updates of the position of the pointer take place on the word side.
Remark that neither the state nor the constant A0 is an object of dialogue.

Note also that this excerpt corresponds to a deterministic computation. In
general, several elements of the observation could get unified with the current
configuration, yielding non-deterministic transitions.

Multiple Pointers and Swapping We now add some computational power
to our observation by adding the possibility to handle several pointers. The
observations will now use a k-ary function Ak that allows to “store” k positions.
This part of the observation is not affected by the word, which means that
only one head (the main pointer) can move. The observation can exchange the
position of the main pointer and the position stored in Ak: we therefore refer to
the arguments of Ak as auxiliary pointers that can become the main pointer at
some point of the computation. This is of course strictly equivalent to several
heads that have the ability to move.

Consider the following flow, that encodes the transition “if the observation
reads 1 •R in state s, it stores the position of the main pointer (the variable h0)
at the i-th position in Ak and start reading the input with a new pointer”:

1 •R •s •Ak(h1, . . . , hi, . . . , hk) •M(h0) ↼ ? •R •s′ •Ak(h1, . . . , h0, . . . , hk) •M(hi)

Suppose now we want to write an observation that, if it reads 0 •L in state r,
then it restores the value that was stored in the i-th position of Ak, it stores the

position in M and changes to state r′, how should we proceed? The point is that
the flow above did not “memorize” the value that was stored at that position.

0 •L •r •Ak(h1, . . . , h0, . . . , hk) •M(hi) ↼ x •_ •r′ •Ak(h1, . . . , hi, . . . , hk) •M(h0)

The variable x should be free and will be unified with the flow of the word
that corresponds to the position constant that was substituted to h0. But there
are two such flows in the word, so the direction of the next movement should be
indicated in the _ slot. Such an information could be encoded in the state r′8
and in the transition function.

Acceptance and Rejection Remember (Corollary 32) that the language of an
observation is the set of words such that the wiring composed of the observation
applied to a representation of the word is nilpotent. So one could add a flow with
the head corresponding to the desired situation leading to acceptance, and the
body being 0. But in fact, it is sufficient not to add any flow: doing nothing is
accepting!

The real challenge is to reject a word: it means to loop forever. We cannot
simply add the unit (I := x ↼ x) to our observation, since that would make
our observation loop no matter the word in input. So we have to be clever than
that, and to encode rejection as a re-initialization of the observation: we want
the observation to put all the pointers on ? and to go back to an init state. So,
a loop is in fact a “perform for ever the same computation”.

If we reject, suppose the main pointer was reading from right to left, and
that we changed to b. Then, for every c ∈ Σ, it is enough to add the transitions
(go-back-c) and (re-init) to the observation,

c •R •b •A(h1, . . . , hk) •M(h0) ↼ c •L •b •A(h1, . . . , hk) •M(h0) (go-back-c)
? •R •b •A(h1, . . . , hk) •M(h0) ↼ ? •R • init •A(h0, . . . , h0) •M(h0) (re-init)

Once the main pointer is back on ?, (re-init) re-initializes all the positions of
the auxiliary pointers to the position of ? and changes the state for init.

There is another justification for this design: as the observation and the
representation of the word are sums, and as the computation is the application,
any transition that can be applied will be applied, i.e. if the body (the right-
member) of a flow of our observation and the head (the left-member) of a flow
of the word can be unified, the computation will start in a possibly “wrong”
initialization. That some of this incorrect runs accept for incorrect reason is
no trouble, since only rejection is “meaningful” due to the nilpotency criterion.
But, with this framework, an incorrect run will be re-initialized to the “right”
initialization, and performs the correct computation: in that case, it will loop if
and only if the input is rejected.

Two-Ways Multi-Heads Finite Automata and Completeness The model
we just developed has clearly the same expressivity as two-ways multi-heads finite

8That is, we could have two states r′L and r′R and two flows accordingly.

automata, a model of particular interest to us for it is well studied, tolerant to
a lot of enhancements or restrictions9 and gives an elegant characterization of
DLogspace and NLogspace [22,27].

Then, by a plain and uniform encoding of two-ways multi-heads finite
automata, we get Theorem 33. That acceptance and rejection in the non-
deterministic case are “reversed” (i.e. all path have to accept for the computation
to accepts) makes us characterize coNLogspace instead of NLogspace.

Note that encoding a deterministic automaton yields a wiring of the form of
Lemma 11, which would be therefore a deterministic wiring.
Theorem 33. If L ∈ coNLogspace, then there is an observation O such that
L(O) = L. Moreover, if L ∈ DLogspace, O can be chosen deterministic.

4.2 Soundness of Observations

We now use the results of Sect. 2.3 and Sect. 3.2 to design a procedure that decides
whether a word belongs to the language of an observation within logarithmic
space. This procedure will use the classical reduction from a problem to testing
the acyclicity of a graph, a problem well-known to be tractable with logarithmic
space resources.

First, we show how the computation graph of the product of the observation
and the word representation can be constructed deterministically using only
logarithmic space; then, we prove that testing the acyclicity of such a graph can
be done within the same bounds. Here, depending on the shape of the graph
(which is dependent in itself of determinism of the wiring, recall Lemma 21), the
procedure will be deterministic or non-deterministic.

Finally, using classical composition of logspace algorithms10, Lemma 20 and
Corollary 32, we will obtain the result expected, that is:

Theorem 34. If O is an observation, then L(O) ∈ coNLogspace. If moreover
O is deterministic, then L(O) ∈ DLogspace.

A Foreword on Word and Size Given a word W over Σ, to build a
representation W̄p as in Definition 28 is clearly in DLogspace: it is a plain matter
of encoding. By Lemma 31, it is sufficient to consider a single representation.
So for the rest of this procedure, we consider given W̄p ∈ R(W) and write
F := OW̄p. The size of Σ is a constant, and it is clear that the maximal arity
and the height of the balanced wiring F remain fixed when W varies. The only
point that fluctuates is the cardinality of the set of symbols that occurs in F ,
and it is linearly growing with the length of W , corresponding to the number
of positions constant. In the following, any mention to a logarithmic amount of
space is to be completed by “relatively to the length of W”.

9In fact, most of the variations (the automata can be one-way, sweeping, rotating,
oblivious, etc.) are studied in terms of number of states needed to simulate a variation
with another, but most of the time they characterize the same complexity classes.

10The reader unused to the mechanism of composition of logspace-algorithms may
have a look at a classical textbook [28, Fig. 8.10].

Building the Computation Graph We need two main ingredients to build
the computation graph (Definition 19) of F : to enumerate the computation space
Comp(F) (recall Definition 16), and to determine whether there is an edge
between two vertices.

By Proposition 18, card(Comp(F)) is polynomial in the size of W . Hence,
given a balanced wiring F , a logarithmic amount of memory is enough to
enumerate the members of Comp(F), that is the vertices of G(F).

Now the second part of the construction of G(F) is to determine if there is an
edge between two vertices. Remember that there is an edge from u = u ↼ ? to
v = v ↼ ? in G(F) if v ∈ Fu. So one has to scan the members of F = OW̄p: if
there exists (t1 ↼ t2)(t′1 ↼ t′2) ∈ F such that (t1 ↼ t2)(t′1 ↼ t′2)(u ↼ ?) = v ↼ ?,
then there is an edge from u to v. To list the members of F is in DLogspace,
but unification in general is a difficult problem (see Sect. 1.2). The special case
of matching can be tested with a logarithmic amount of space:

Theorem 35 (Matching is in DLogspace [11, p. 49]). Given two terms
t and u such that either t or u is closed, deciding if they are matchable is in
DLogspace.

Actually, this result relies on a subtle manipulation of the representation of
the terms as simple directed acyclic graphs11, where the variables are “shared”.
Translations between this representation of terms and the usual one can be
performed in logarithmic space [11, p. 38].

Deciding if G(F) is Acyclic We know thanks to Lemma 20 that answering
this question is equivalent to deciding if F is nilpotent. We may notice that G(F)
is a directed, potentially unconnected graph of size card(Comp(F)).

It is well-know that testing for acyclicity of a directed graph is a coNLog-
space [23, p. 83] problem. Moreover, if F is deterministic (which is the case when
O is), then G(F) has out-degree bounded by 1 (Lemma 21) and one can test
its acyclicity without being non-deterministic: it is enough to list the vertices of
Comp(F), and for each of them to follow card(Comp(F)) edges and to test for
equality with the vertex picked at the beginning. If a loop is found, the algorithm
rejects, otherwise it accepts after testing the last vertex. Only the starting vertex
and the current vertex need to be stored, which fits within logarithmic space,
and there is no need to do any non-deterministic transitions.

5 Conclusion

We presented the unification semiring, a construction that can be used both as
an algebraic model of logic programming and as a setting for a dynamic model
of logic. Within this semiring, we were able to identify a class of wirings that
have the exact expressive power of logarithmic space computation.

11The reader willing to learn more about this may have a look at a classical chapter [4].

If we try to step back a little, we can notice that the main tool in the soundness
proof (Sect. 4.2) is the computation graph, defined in Sect. 2.3. More precisely,
the properties of this graph, notably its cardinal (that turns out to be polynomial
in the size of the input), allow to define a decision procedure that needs only
logarithmic space. The technique is modular, hence not limited to logarithmic
space: identifying other conditions on wirings that ensure size bounds on the
computation graph would be a first step towards the characterization of other
space complexity classes.

Concerning completeness, the choice of encoding pointer machines (Sect. 4.1)
rather than log-space bounded Turing machines was quite natural. Balanced
wirings correspond to the idea of computing with pointers: manipulation of data
without writing abilities, and thus with no capacity to store any information
other than a fixed number of positions on the input.

By considering other classes of wirings or by modifying the encoding it might
be possible to capture other notions of machines characterizing some complexity
classes: we already mentioned that a modifcation of the representation of the
input that would model one-way finite automata.

The relation with proof theory needs to be explored further: the approach of
this paper seems indeed to suggest a sort of “Curry-Howard” correspondance for
logic programming.

As Sect. 1.1 highlighted, there are many notions that might be transferable
from one field to the other, thanks to a common setting provided by geometry of
interaction and the unification semiring. Most notably, the notion of nilpotency
(on the proof-theoretic side: strong normalization) corresponds to a variant of
boundedness of logic programs, a property that is usually hard to ensure.

Another direction could be to look for a proof-system counterpart of this
work: a corresponding “balanced” logic of logarithmic space.

References
1. Asperti, A., Danos, V., Laneve, C., Regnier, L.: Paths in the lambda-calculus. In:

LICS. pp. 426–436. IEEE Computer Society (1994)
2. Aubert, C., Bagnol, M.: Unification and logarithmic space. In: Dowek, G. (ed.)

RTA-TLCA 2014. LNCS, vol. 8650, pp. 77––92. Springer (2014)
3. Aubert, C., Seiller, T.: Characterizing co-nl by a group action. Arxiv preprint

abs/1209.3422 (2012)
4. Baader, F., Snyder, W.: Unification theory. In: Robinson, J.A., Voronkov, A. (eds.)

Handbook of Automated Reasoning, pp. 445–532. Elsevier and MIT Press (2001)
5. Baillot, P., Mazza, D.: Linear logic by levels and bounded time complexity. Theoret.

Comput. Sci. 411(2), 470–503 (2010)
6. Baillot, P., Pedicini, M.: Elementary complexity and geometry of interaction. Fund.

Inform. 45(1–2), 1–31 (2001)
7. Bellia, M., Occhiuto, M.E.: N-axioms parallel unification. Fund. Inform. 55(2),

115–128 (2003)
8. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: Theory

and implementation. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP. LNCS,
vol. 5366, pp. 407–424. Springer (2008)

9. Dal Lago, U., Hofmann, M.: Bounded linear logic, revisited. Log. Meth. Comput.
Sci. 6(4) (2010)

10. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

11. Dwork, C., Kanellakis, P.C., Mitchell, J.C.: On the sequential nature of unification.
J. Log. Program. 1(1), 35–50 (1984)

12. Dwork, C., Kanellakis, P.C., Stockmeyer, L.J.: Parallel algorithms for term matching.
SIAM J. Comput. 17(4), 711–731 (1988)

13. Gaboardi, M., Marion, J.Y., Ronchi Della Rocca, S.: An implicit characterization
of pspace. ACM Trans. Comput. Log. 13(2), 18:1–18:36 (2012)

14. Girard, J.Y.: Linear logic. Theoret. Comput. Sci. 50(1), 1–101 (1987)
15. Girard, J.Y.: Geometry of interaction 1: Interpretation of system F. Studies in

Logic and the Foundations of Mathematics 127, 221–260 (1989)
16. Girard, J.Y.: Towards a geometry of interaction. In: Gray, J.W., Ščedrov, A. (eds.)

Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held June
14-20, 1987. Categories in Computer Science and Logic, vol. 92, pp. 69–108. AMS
(1989)

17. Girard, J.Y.: Geometry of interaction III: accommodating the additives. In: Girard,
J.Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic, pp. 329–389. No. 222
in London Math. Soc. Lecture Note Ser., CUP (Jun 1995)

18. Girard, J.Y.: Light linear logic. In: Leivant, D. (ed.) LCC, LNCS, vol. 960, pp.
145–176. Springer (1995)

19. Girard, J.Y.: Normativity in logic. In: Dybjer, P., Lindström, S., Palmgren, E.,
Sundholm, G. (eds.) Epistemology versus Ontology, Logic, Epistemology, and the
Unity of Science, vol. 27, pp. 243–263. Springer (2012)

20. Girard, J.Y.: Three lightings of logic. In: Ronchi Della Rocca, S. (ed.) CSL. LIPIcs,
vol. 23, pp. 11–23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2013)

21. Hillebrand, G.G., Kanellakis, P.C., Mairson, H.G., Vardi, M.Y.: Undecidable
boundedness problems for datalog programs. J. Log. Program. 25(2), 163–190
(1995)

22. Holzer, M., Kutrib, M., Malcher, A.: Multi-head finite automata: Characterizations,
concepts and open problems. In: Neary, T., Woods, D., Seda, A.K., Murphy, N.
(eds.) CSP. EPTCS, vol. 1, pp. 93–107 (2008)

23. Jones, N.D.: Space-bounded reducibility among combinatorial problems. J. Comput.
Syst. Sci. 11(1), 68–85 (1975)

24. Laurent, O.: A token machine for full geometry of interaction (extended abstract).
In: Abramsky, S. (ed.) TLCA. LNCS, vol. 2044, pp. 283–297. Springer (May 2001)

25. Lierler, Y., Lifschitz, V.: One more decidable class of finitely ground programs.
In: Hill, P.M., Warren, D.S. (eds.) ICLP. LNCS, vol. 5649, pp. 489–493. Springer
(2009)

26. Ohkubo, M., Yasuura, H., Yajima, S.: On parallel computation time of unification
for restricted terms. Tech. rep., Kyoto University (May 1987)

27. Pighizzini, G.: Two-way finite automata: Old and recent results. Fund. Inform.
126(2–3), 225–246 (2013)

28. Savage, J.E.: Models of computation - exploring the power of computing. Addison-
Wesley (1998)

29. Schöpp, U.: Stratified bounded affine logic for logarithmic space. In: LICS. pp.
411–420. IEEE Computer Society (2007)

30. Seiller, T.: Interaction graphs: Multiplicatives. Ann. Pure Appl. Logic 163, 1808–
1837 (Dec 2012)

	Logic Programming and Logarithmic Space
	1 Introduction
	1.1 Geometry of Interaction and Logic Programming
	1.2 Unification and Complexity

	2 The Unification Semiring
	2.1 Flows and Wirings
	2.2 The Balanced Semiring
	2.3 The Computation Graph
	2.4 Tensor product and other semirings

	3 Words and Observations
	3.1 Representation of Words
	3.2 Observations

	4 Logarithmic Space
	4.1 Completeness: Observations as Pointer Machines
	4.2 Soundness of Observations

	5 Conclusion
	References

