Skip to main content

A Hybrid Global Optimization Algorithm: Particle Swarm Optimization in Association with a Genetic Algorithm

  • Chapter
  • First Online:

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 319))

Abstract

The genetic algorithm (GA) is an evolutionary optimization algorithm operating based upon reproduction, crossover and mutation. On the other hand, particle swarm optimization (PSO) is a swarm intelligence algorithm functioning by means of inertia weight, learning factors and the mutation probability based upon fuzzy rules. In this paper, particle swarm optimization in association with genetic algorithm optimization is utilized to gain the unique benefits of each optimization algorithm. Therefore, the proposed hybrid algorithm makes use of the functions and operations of both algorithms such as mutation, traditional or classical crossover, multiple-crossover and the PSO formula. Selection of these operators is based on a fuzzy probability. The performance of the hybrid algorithm in the case of solving both single-objective and multi-objective optimization problems is evaluated by utilizing challenging prominent benchmark problems including FON, ZDT1, ZDT2, ZDT3, Sphere, Schwefel 2.22, Schwefel 1.2, Rosenbrock, Noise, Step, Rastrigin, Griewank, Ackley and especially the design of the parameters of linear feedback control for a parallel-double-inverted pendulum system which is a complicated, nonlinear and unstable system. Obtained numerical results in comparison to the outcomes of other optimization algorithms in the literature demonstrate the efficiency of the hybrid of particle swarm optimization and genetic algorithm optimization with regard to addressing both single-objective and multi-objective optimization problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Kader, R. F. (2010). Generically improved PSO algorithm for efficient data clustering. In The 2010 Second International Conference on Machine Learning and Computing (ICMLC), February 9–11, 2010, Bangalore (pp. 71–75). doi:10.1109/ICMLC.2010.19.

  • Ahmadi, M. H., Aghaj, S. S. G., & Nazeri, A. (2013). Prediction of power in solar stirling heat engine by using neural network based on hybrid genetic algorithm and particle swarm optimization. Neural Computing and Applications, 22(6), 1141–1150.

    Article  Google Scholar 

  • Altun, A. A. (2013). A combination of genetic algorithm, particle swarm optimization and neural network for palmprint recognition. Neural Computing and Applications, 22(1), 27–33.

    Article  Google Scholar 

  • Aziz, A. S. A., Azar, A. T., Salama, M. A., Hassanien, A. E., & Hanafy, S. E. O. (2013). In The 2013 Federated Conference on Computer Science and Information Systems (FedCSIS), September 8-11, 2013, Kraków (pp. 769–774).

    Google Scholar 

  • Bhuvaneswari, R., Sakthivel, V. P., Subramanian, S., & Bellarmine, G. T. (2009). Hybrid approach using GA and PSO for alternator design. In The 2009. SOUTHEASTCON ‘09. IEEE Southeastcon, March 5–8, 2009, Atlanta (pp. 169–174). doi:10.1109/SECON.2009.5174070.

  • Blake, A. (1989). Comparison of the efficiency of deterministic and stochastic algorithms for visual reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(1), 2–12.

    Article  MATH  MathSciNet  Google Scholar 

  • Castillo-Villar, K. K., Smith, N. R., & Herbert-Acero, J. F. (2014). Design and optimization of capacitated supply chain networks including quality measures. Mathematical Problems in Engineering, 2014, 17, Article ID 218913. doi:10.1155/2014/218913.

  • Castillo-Villar, K. K., Smith, N. R., & Simonton, J. L. (2012). The impact of the cost of quality on serial supply-chain network design. International Journal of Production Research, 50(19), 5544–5566.

    Article  Google Scholar 

  • Chang, W. D. (2007). A multi-crossover genetic approach to multivariable PID controllers tuning. Expert Systems with Applications, 33(3), 620–626.

    Article  Google Scholar 

  • Chen, J. L., & Chang, W. D. (2009). Feedback linearization control of a two link robot using a multi-crossover genetic algorithm. Expert Systems with Applications, 36(2), 4154–4159.

    Article  Google Scholar 

  • Chen, C.-H., & Liao, Y.- Y. (2014). Tribal particle swarm optimization for neurofuzzy inference systems and its prediction applications. Communications in Nonlinear Science and Numerical Simulation, 19(4), 914–929.

    Article  Google Scholar 

  • Chen, Z., Meng, W., Zhang, J., & Zeng, J. (2009). Scheme of sliding mode control based on modified particle swarm optimization. Systems Engineering-Theory & Practice, 29(5), 137–141.

    Article  Google Scholar 

  • Chutarat, A. (2001). Experience of light: The use of an inverse method and a genetic algorithm in day lighting design. Ph.D. Thesis, Department of Architecture, MIT, Massachusetts, USA.

    Google Scholar 

  • Cordella, F., Zollo, L., Guglielmelli, E., & Siciliano, B. (2012). A bio-inspired grasp optimization algorithm for an anthropomorphic robotic hand. International Journal on Interactive Design and Manufacturing (IJIDeM), 6(2), 113–122.

    Article  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  • Deb, K., & Padhye, N. (2013). Enhancing performance of particle swarm optimization through an algorithmic link with genetic algorithms. Computational Optimization and Applications, 57(3), 761–794.

    Article  MathSciNet  Google Scholar 

  • Dhadwal, M. K., Jung, S. N., & Kim, C. J. (2014). Advanced particle swarm assisted genetic algorithm for constrained optimization problems. Computational Optimization and Applications, 58(3), 781–806.

    Article  MATH  MathSciNet  Google Scholar 

  • Eberhart, R., Simpson, P., & Dobbins, R. (1996). Computational intelligence PC tools. Massachusetts: Academic Press Professional Inc.

    Google Scholar 

  • Eberhart, R. C., Kennedy, J. (1995). A new optimizer using particle swarm theory. In The Proceedings of the Sixth International Symposium on Micro Machine and Human Science, October 4–6, 1995, Nagoya (pp. 39–43). doi:10.1109/MHS.1995.494215.

  • Elsayed, S. M., Sarker, R. A., & Essam, D. L. (2014). A new genetic algorithm for solving optimization problems. Engineering Applications of Artificial Intelligence, 27, 57–69.

    Article  Google Scholar 

  • Elshazly, H. I., Azar, A. T., Hassanien, A. E., & Elkorany, A. M. (2013). Hybrid system based on rough sets and genetic algorithms for medical data classifications. International Journal of Fuzzy System Applications (IJFSA), 3(4), 31–46.

    Article  Google Scholar 

  • Engelbrecht, A. P. (2002). Computational intelligence: An introduction. New York: Wiley.

    Google Scholar 

  • Engelbrecht, A. P. (2005). Fundamentals of computational swarm intelligence. New York: Wiley.

    Google Scholar 

  • Fleming, P. J., & Purshouse, R. C. (2002). Evolutionary algorithms in control systems engineering: A survey. Control Engineering Practice, 10(11), 1223–1241.

    Article  Google Scholar 

  • Fonseca, C. M., & Fleming, P. J. (1994). Multiobjective optimal controller design with genetic algorithms. In The International Conference on Control, March 21–24, 1994, Coventry (pp. 745–749). doi:10.1049/cp:19940225.

  • Gaing, Z. L. (2004). A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Transactions on Energy Conversion, 19(2), 384–391.

    Article  Google Scholar 

  • Gero, J., & Radford, A. (1978). A dynamic programming approach to the optimum lighting problem. Engineering Optimization, 3, 71–82.

    Article  Google Scholar 

  • Gosh, A., Das, S., Chowdhury, A., & Giri, R. (2011). An ecologically inspired direct search method for solving optimal control problems with Bezier parameterization. Engineering Applications of Artificial Intelligence, 24(7), 1195–1203.

    Article  Google Scholar 

  • Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. Ann Arbor, Michigan: University of Michigan Press.

    Google Scholar 

  • Jamili, A., Shafia, M. A., & Tavakkoli-Moghaddam, R. (2011). A hybrid algorithm based on particle swarm optimization and simulated annealing for a periodic job shop scheduling problem. The International Journal of Advanced Manufacturing Technology, 54(1–4), 309–322.

    Article  Google Scholar 

  • Jeong, S., Hasegawa, S., Shimoyama, K., & Obayashi, A. (2009). Development and investigation of efficient GA/PSO-hybrid algorithm applicable to real-world design optimization. IEEE Computational Intelligence Magazine, 4(3), 36–44.

    Article  Google Scholar 

  • Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In The IEEE International Conference on Neural Networks, November/December, 1995, Perth (pp. 1942–1948). doi:10.1109/ICNN.1995.488968.

  • Ker-Wei, Y., & Shang-Chang, H. (2006). An application of AC servo motor by using particle swarm optimization based sliding mode controller. In The IEEE International Conference on Systems, Man and Cybernetics, October 8-11, 2006, Taipei (pp. 4146–4150). doi:10.1109/ICSMC.2006.384784.

  • Knowles, J., & Corne, D. (1999). The Pareto archived evolution strategy: A new baseline algorithm for multiobjective optimization. In The Proceedings of the 1999 Congress on Evolutionary Computation, July, 1999, Washington (pp. 98–105). doi:10.1109/CEC.1999.781913.

  • Li, Z., Yang, K., Bogdan, S., & Xu, B. (2013). On motion optimization of robotic manipulators with strong nonlinear dynamic coupling using support area level set algorithm. International Journal of Control, Automation and Systems, 11(6), 1266–1275.

    Article  Google Scholar 

  • Mahmoodabadi, M. J., Safaie, A. A., Bagheri, A., & Nariman-zadeh, N. (2013). A novel combination of particle swarm optimization and genetic algorithm for pareto optimal design of a five-degree of freedom vehicle vibration model. Applied Soft Computing, 13(5), 2577–2591.

    Article  Google Scholar 

  • Mahmoodabadi, M. J., Bagheri, A., Arabani Mostaghim, S., & Bisheban, M. (2011). Simulation of stability using Java application for Pareto design of controllers based on a new multi-objective particle swarm optimization. Mathematical and Computer Modelling, 54(5–6), 1584–1607.

    Article  MATH  Google Scholar 

  • Mahmoodabadi, M. J., Momennejad, S., & Bagheri, A. (2014a). Online optimal decoupled sliding mode control based on moving least squares and particle swarm optimization. Information Sciences, 268, 342–356.

    Article  MathSciNet  Google Scholar 

  • Mahmoodabadi, M. J., Taherkhorsandi, M., & Bagheri, A. (2014b). Optimal robust sliding mode tracking control of a biped robot based on ingenious multi-objective PSO. Neurocomputing, 124, 194–209.

    Article  Google Scholar 

  • Mahmoodabadi, M. J., Taherkhorsandi, M., & Bagheri, A. (2014c). Pareto design of state feedback tracking control of a biped robot via multiobjective PSO in comparison with sigma method and genetic algorithms: Modified NSGAII and MATLAB’s toolbox. The Scientific World Journal, 2014, 8, Article ID 303101.

    Google Scholar 

  • Mavaddaty, S., & Ebrahimzadeh, A. (2011). Blind signals separation with genetic algorithm and particle swarm optimization based on mutual information. Radioelectronics and Communications Systems, 54(6), 315–324.

    Article  Google Scholar 

  • McGookin, E. W., Murray-Smith, D. J., Li, Y., & Fossen, T. I. (2000). The optimization of a tanker autopilot control system using genetic algorithms. Transactions of the Institute of Measurement and Control, 22(2), 141–178.

    Article  Google Scholar 

  • Mizumoto, M. (1996). Product-sum-gravity method = fuzzy singleton-type reasoning method = simplified fuzzy reasoning method. In The Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, September 8–11, 1996, New Orleans (pp. 2098–2102). doi:10.1109/FUZZY.1996.552786.

  • Nickabadi, A., Ebadzadeh, M. M., & Safabakhsh, R. (2012). A competitive clustering particle swarm optimizer for dynamic optimization problems. Swarm Intelligence, 6(3), 177–206.

    Article  Google Scholar 

  • Premalatha, K., & Natarajan, A. M. (2009). Discrete PSO with GA operators for document clustering. International Journal of Recent Trends in Engineering, 1(1), 20–24.

    Google Scholar 

  • Puri, P., & Ghosh, S. (2013). A hybrid optimization approach for PI controller tuning based on gain and phase margin specifications. Swarm and Evolutionary Computation, 8, 69–78.

    Article  Google Scholar 

  • Qiao, W., Venayagamoorthy, G. K., & Harley, R. G. (2006). Design of optimal PI controllers for doubly fed induction generators driven by wind turbines using particle swarm optimization. In The International Joint Conference on Neural Networks, Vancouver (pp. 1982–1987). doi:10.1109/IJCNN.2006.246944.

  • Ratnaweera, A., Halgamuge, S. K., & Watson, H. C. (2004). Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficient computation. IEEE Transactions on Evolutionary Computation, 8(3), 240–255.

    Article  Google Scholar 

  • Ravindran, A., Ragsdell, K. M., & Reklaitis, G. V. (2006). Engineering optimization: Method and applications (2nd ed.). New Jersey: Wiley.

    Book  Google Scholar 

  • Sakamoto, Y., Nagaiwa, A., Kobayasi, S., & Shinozaki, T. (1999). An optimization method of district heating and cooling plant operation based on genetic algorithm. ASHRAE Transaction, 105, 104–115.

    Google Scholar 

  • Samarghandi, H., & ElMekkawy, T. Y. (2012). A genetic algorithm and particle swarm optimization for no-wait flow shop problem with separable setup times and makespan criterion. The International Journal of Advanced Manufacturing Technology, 61(9–12), 1101–1114.

    Article  Google Scholar 

  • Sanchez, G., Villasana, M., & Strefezza, M. (2007). Multi-objective pole placement with evolutionary algorithms. Lecture Notes in Computer Science, 4403, 417–427. doi:10.1007/978-3-540-70928-2_33.

    Article  Google Scholar 

  • Arumugam, M. S., Rao, M. V. C., & Palaniappan, R. (2005). New hybrid genetic operators for real coded genetic algorithm to compute optimal control of a class of hybrid systems. Applied Soft Computing, 6(1), 38–52.

    Article  Google Scholar 

  • Song, K. S., Kang, S. O., Jun, S. O., Park, H. I., Kee, J. D., Kim, K. H., et al. (2012). Aerodynamic design optimization of rear body shapes of a sedan for drag reduction. International Journal of Automotive Technology, 13(6), 905–914.

    Article  Google Scholar 

  • Talatahari, S., & Kaveh, A. (2007). A discrete particle swarm ant colony optimization for design of steel frames. Asian Journal of Civil Engineering (Building and Housing), 9(6), 563–575.

    Google Scholar 

  • Tang, Y., Wang, Z., & Fang, J. (2011). Controller design for synchronization of an array of delayed neural networks using a controllable probabilistic PSO. Information Sciences, 181(20), 4715–4732.

    Article  Google Scholar 

  • Thakur, M. (2014). A new genetic algorithm for global optimization of multimodal continuous functions. Journal of Computational Science, 5(2), 298–311.

    Article  MathSciNet  Google Scholar 

  • Thangaraj, R., Pant, M., Abraham, A., & Bouvry, P. (2011). Particle swarm optimization: Hybridization perspectives and experimental illustrations. Applied Mathematics and Computation, 217(12), 5208–5226.

    Article  MATH  Google Scholar 

  • Valdez, F., Melin, P., & Castillo, O. (2011). An improved evolutionary method with fuzzy logic for combining particle swarm optimization and genetic algorithm. Applied Soft Computing, 11(2), 2625–2632.

    Article  Google Scholar 

  • Valdez, F., Melin, P., & Castillo, O. (2009). Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making. In The IEEE International Conference on Fuzzy Systems, August 20–24, 2009, Jeju Island (pp. 2114–2119). doi:10.1109/FUZZY.2009.5277165.

  • Wai, R. J., Chuang, K. L., & Lee, J. D. (2007). Total sliding-model-based particle swarm optimization controller design for linear induction motor. In The IEEE Congress on Evolutionary Computation, September 25–28, 2007, Singapore (pp. 4729–4734). doi:10.1109/CEC.2007.4425092.

  • Wang, H.-B., & Liu, M. (2012). Design of robotic visual servo control based on neural network and genetic algorithm. International Journal of Automation and Computing, 9(1), 24–29.

    Article  Google Scholar 

  • Wang, J. S., Zhang, Y., & Wang, W. (2006). Optimal design of PI/PD controller for non-minimum phase system. Transactions of the Institute of Measurement and Control, 28(1), 27–35.

    Article  Google Scholar 

  • Wang, K., & Zheng, Y. J. (2012). A new particle swarm optimization algorithm for fuzzy optimization of armored vehicle scheme design. Applied Intelligence, 37(4), 520–526.

    Article  Google Scholar 

  • Wang, L., Wang, T.-G., & Luo, Y. (2011). Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades. Applied Mathematics and Mechanics, 32(6), 739–748.

    Article  MATH  Google Scholar 

  • Wang, Q., Liu, F., & Wang, X. (2014). Multi-objective optimization of machining parameters considering energy consumption. The International Journal of Advanced Manufacturing Technology, 71(5–8), 1133–1142.

    Article  Google Scholar 

  • Wibowo, W. K., & Jeong, S.-K. (2013). Genetic algorithm tuned PI controller on PMSM simplified vector control. Journal of Central South University, 20(11), 3042–3048.

    Article  Google Scholar 

  • Wright, J., & Farmani, R. (2001). The simultaneous optimization of building fabric construction, HVAC system size, and the plant control strategy. In The Proceedings of the 7th IBPSA Conference: Building Simulation, Rio de Janeiro, August, 2001 (Vol. 2, pp. 865–872).

    Google Scholar 

  • Yang, Y., Wang, L., Wang, Y., Bi, Z., Xu, Y., & Pan, S. (2014). Modeling and optimization of two-stage procurement in dual-channel supply chain. Information Technology and Management, 15(2), 109–118.

    Google Scholar 

  • Yao, X., Lin, Y., & Lin, G. (1999). Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation, 3(2), 82–102.

    Article  MathSciNet  Google Scholar 

  • Zargari, A., Hooshmand, R., & Ataei, M. (2012). A new control system design for a small hydro-power plant based on particle swarm optimization-fuzzy sliding mode controller with Kalman estimator. Transactions of the Institute of Measurement and Control, 34(4), 388–400.

    Article  Google Scholar 

  • Zhao, D., & Yi, J. (2006). GA-based control to swing up an acrobot with limited torque. Transactions of the Institute of Measurement and Control, 28(1), 3–13.

    Article  MathSciNet  Google Scholar 

  • Zhou, X. C., Zhao, Z. X., Zhou, K. J., & He, C. H. (2012). Remanufacturing closed-loop supply chain network design based on genetic particle swarm optimization algorithm. Journal of Central South University, 19(2), 482–487.

    Article  Google Scholar 

  • Zitzler, E., & Thiele, L. (1999). Multi-objective evolutionary algorithms: A comparative case study. IEEE Transactions on Evolutionary Computation, 3(4), 257–271.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable suggestions that enhance the technical and scientific quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Taherkhorsandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Andalib Sahnehsaraei, M., Mahmoodabadi, M.J., Taherkhorsandi, M., Castillo-Villar, K.K., Mortazavi Yazdi, S.M. (2015). A Hybrid Global Optimization Algorithm: Particle Swarm Optimization in Association with a Genetic Algorithm. In: Zhu, Q., Azar, A. (eds) Complex System Modelling and Control Through Intelligent Soft Computations. Studies in Fuzziness and Soft Computing, vol 319. Springer, Cham. https://doi.org/10.1007/978-3-319-12883-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12883-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12882-5

  • Online ISBN: 978-3-319-12883-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics