Skip to main content

Swarm Intelligence Techniques and Their Adaptive Nature with Applications

  • Chapter
  • First Online:
Book cover Complex System Modelling and Control Through Intelligent Soft Computations

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 319))

Abstract

Swarm based techniques have huge application domain covering multiple disciplines, which include power system, fuzzy system, forecasting, bio-medicine, sociological analysis, image processing, sound processing, signal processing, data analysis, process modeling, process controlling etc. In last two decades numerous techniques and their variations have been developed. Despite many variations are being carried out, main skeleton of these techniques remain same. With diverse application domains, most of these techniques have been modified to fit into a particular application. These changes undergo mostly in perspective of encoding scheme, parameter tuning and search strategy. Sources of real world problems are different, but their nature sometimes found similar to other problems. Hence, swarm based techniques utilized for one of these problems can be applied to others as well. As sources of these problems are different, applicability of such techniques are very much dependent on the problem. Same encoding scheme may not be suitable for the other similar kind of problems, which has led to development of problem specific encoding schemes. Sometimes found that, even though encoding scheme is compatible to a problem, parameters used in the technique does not utilized in favor of the problem. So, parameter tuning approaches are incorporated into the swarm based techniques. Similarly, search strategy utilized in swarm based techniques are also vary with the application domain. In this chapter we will study those problem specific adaptive nature of swarm based techniques. Essence of this study is to find pros and cons of such adaptation. Our study also aims to draw some aspects of such problem specific variations through which it can be predicted that what kind of adaptation is more convenient for any real world problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Rashidi, M. R., & El-Hawary, M. E. (2009). A survey of particle swarm optimization applications in electric power systems. IEEE Transactions on Evolutionary Computation, 13(4), 913–918.

    Article  Google Scholar 

  • Alzalg, B., Anghel, C., Gan, W., Huang, Q., Rahman, M., & Shum, A. (2011). A computational analysis of the optimal power problem. In Institute of Mathematics and its Application. IMA Preprint Series 2396. University of Minnesota.

    Google Scholar 

  • Amit, Y. (2002). 2D object detection and recognition: Models, algorithms, and networks. Cambridge: MIT Press.

    Google Scholar 

  • Borwein, J. M. & Lewis, A. S. (2010). Convex analysis and nonlinear optimization: Theory and examples (2nd ed.). Berlin, Springer.

    Google Scholar 

  • Bullnheimer, B., Hartl, R. F., & Strauss, C. (1997). A new rank based version of the ant system. A computational study. SFB Adaptive Information Systems and Modelling in Economics and Management Science, 7, 25–38.

    MathSciNet  Google Scholar 

  • Chakraborty, B., & Chakraborty, G. (2013). Fuzzy consistency measure with particle swarm optimization for feature selection. In 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 4311–4315), October 13–16, 2013, Manchester. IEEE. doi:10.1109/SMC.2013.735.

  • Chandra Mohan, B., & Baskaran, R. (2012). A survey: Ant colony optimization based recent research and implementation on several engineering domain. Expert Systems with Applications, 39(4), 4618–4627.

    Article  Google Scholar 

  • Chandrasekhar, U., & Naga, P. (2011). Recent trends in ant colony optimization and data clustering: A brief survey. In 2011 2nd International Conference on Intelligent Agent and Multi-agent Systems (IAMA) (pp. 32–36), September 79, 2011, Chennai. IEEE. doi:10.1109/IAMA.2011.6048999.

  • Chu, S.-C., Roddick, J. F., & Pan, J.-S. (2003). Parallel particle swarm optimization algorithm with communication strategies. Journal of Information Science and Engineering, 21(4), 809–818.

    Google Scholar 

  • Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73.

    Article  Google Scholar 

  • Das, G., Pattnaik, P. K., & Padhy, S. K. (2014). Artificial neural network trained by particle swarm optimization for non-linear channel equalization. Expert Systems with Applications, 41(7), 3491–3496.

    Article  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  • Dorigo, M. (1992). Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico di Milano, Italy.

    Google Scholar 

  • Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. Computational Intelligence Magazine, IEEE, 1(4), 28–39.

    Article  Google Scholar 

  • Eslami, M., Shareef, H., Khajehzadeh, M., & Mohamed, A. (2012). A survey of the state of the art in particle swarm optimization. Research Journal of Applied Sciences, Engineering and Technology, 4(9), 1181–1197.

    Google Scholar 

  • Ganapathy, K., Vaidehi, V., Kannan, B., & Murugan, H. (2014). Hierarchical particle swarm optimization with ortho-cyclic circles. Expert Systems with Applications, 41(7), 3460–3476.

    Article  Google Scholar 

  • Gonzalez, R. C., & Woods, R. E. (2002). Digital image processing. New Jersey: Prentice Hall.

    Google Scholar 

  • Graefe, V., & Efenberger, W. (1996). A novel approach for the detection of vehicles on freeways by real-time vision. In Proceedings of the 1996 IEEE Intelligent Vehicles Symposium (pp. 363–368), September 19–20, 1996, Tokyo. IEEE. doi:10.1109/IVS.1996.566407.

  • Hancer, E., Ozturk, C., & Karaboga, D. (2012). Artificial bee colony based image clustering method. In 2012 IEEE Congress on Evolutionary Computation (CEC) (pp. 1–5), June 10–15, 2012, Brisbane. IEEE. doi:10.1109/CEC.2012.6252919.

  • Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. Michigan: University Michigan Press.

    Google Scholar 

  • Honghao, C., Zuren, F., & Zhigang, R. (2013). Community detection using ant colony optimization. In 2013 IEEE Congress on Evolutionary Computation (CEC) (pp. 3072–3078), June 20–23, 2013, Cancun. IEEE. doi:10.1109/CEC.2013.6557944.

  • Itti, L. (2000). Models of bottom-up and top-down visual attention. PhD thesis, California Institute of Technology.

    Google Scholar 

  • Janacik, P., Orfanus, D., & Wilke, A. (2013). A survey of ant colony optimization-based approaches to routing in computer networks. In 2013 4th International Conference on Intelligent Systems Modelling and Simulation (ISMS) (pp. 427–432), January 29–31, 2013, Bangkok. IEEE. doi:10.1109/ISMS.2013.20.

  • Kameyama, K. (2009). Particle swarm optimization-a survey. IEICE Transactions on Information and Systems, 92(7), 1354–1361.

    Article  Google Scholar 

  • Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical report, (Technical report-tr06), Erciyes university, Engineering Faculty, Computer Engineering Department.

    Google Scholar 

  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of IEEE international conference on neural networks, (Vol. 4, pp. 1942–1948), 27 Nov 1995–2001 Dec 1995, Perth. IEEE. doi:10.1109/ICNN.1995.488968.

  • Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. In Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE International Conference on, Vol. 5, October 12–15, 1997, Orlando, IEEE (pp. 4104–4108). doi:10.1109/ICSMC.1997.637339.

  • Kennedy, J. F., Kennedy, J., & Eberhart, R. C. (2001). Swarm intelligence. Los Altos: Morgan Kaufmann.

    Google Scholar 

  • Kothari, V., Anuradha, J., Shah, S., & Mittal, P. (2012). A survey on particle swarm optimization in feature selection. In Global Trends in Information Systems and Software Applications (pp. 192–201). Berlin: Springer

    Google Scholar 

  • Kulkarni, R. V., & Venayagamoorthy, G. K. (2011). Particle swarm optimization in wireless-sensor networks: A brief survey. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 41(2), 262–267.

    Article  Google Scholar 

  • Kumar, G. K., & Jayaraman, V. (2013). Clustering of complex networks and community detection using group search optimization. CoRR, (abs/1307.1372).

    Google Scholar 

  • Matoušek, J., & Gärtner, B. (2007). Understanding and using linear programming. 7th edition. Berlin: Springer.

    Google Scholar 

  • Mendes, A. (2004). Building generating functions brick by brick. San Diego: University of California.

    Google Scholar 

  • Monteiro, M. S., Fontes, D. B., & Fontes, F. A. (2012). Ant colony optimization: a literature survey. Technical report, Universidade do Porto, Faculdade de Economia do Porto.

    Google Scholar 

  • Nguyen, T. T., Li, Z., Zhang, S., & Truong, T. K. (2014). A hybrid algorithm based on particle swarm and chemical reaction optimization. Expert Systems with Applications, 41(5), 2134–2143.

    Article  Google Scholar 

  • Ranaee, V., Ebrahimzadeh, A., & Ghaderi, R. (2010). Application of the pso–svm model for recognition of control chart patterns. ISA Transactions, 49(4), 577–586.

    Article  Google Scholar 

  • Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). Gsa: A gravitational search algorithm. Information Sciences, 179(13), 2232–2248.

    Article  MATH  Google Scholar 

  • Ratnaweera, A., Halgamuge, S., & Watson, H. C. (2004). Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation, 8(3), 240–255.

    Article  Google Scholar 

  • Rechenberg, I. (1994). Evolution strategy Computational intelligence: Imitating life, (pp. 147–159). Piscataway: IEEE Press.

    Google Scholar 

  • Reyes-Sierra, M., & Coello, C. C. (2006). Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International journal of computational intelligence research, 2(3), 287–308.

    MathSciNet  Google Scholar 

  • Ruszczyński, A. P. (2006). Nonlinear optimization (Vol. 13). NJ: Princeton University Press.

    MATH  Google Scholar 

  • Schutte, J. F., Reinbolt, J. A., Fregly, B. J., Haftka, R. T., & George, A. D. (2004). Parallel global optimization with the particle swarm algorithm. International Journal for Numerical Methods in Engineering, 61(13), 2296–2315.

    Article  MATH  Google Scholar 

  • Schwefel, H.-P. (1994). On the evolution of evolutionary computation, Computational intelligence: Imitating life, (pp. 116–124). IEEE Press: Piscataway.

    Google Scholar 

  • Selvaraj, G., & Janakiraman, S. (2013). Improved feature selection based on particle swarm optimization for liver disease diagnosis. In Swarm, Evolutionary, and Memetic Computing (pp. 214–225). Berlin: Springer.

    Google Scholar 

  • Shah-Hosseini, H. (2008). Intelligent water drops algorithm: A new optimization method for solving the multiple knapsack problem. International Journal of Intelligent Computing and Cybernetics, 1(2), 193–212.

    Article  MATH  MathSciNet  Google Scholar 

  • Shah-Hosseini, H. (2009). The intelligent water drops algorithm: A nature-inspired swarm-based optimization algorithm. International Journal of Bio-Inspired Computation, 1(1), 71–79.

    Article  Google Scholar 

  • Shi, Y., & Eberhart, R. (1998a). A modified particle swarm optimizer. In The 1998 IEEE International Conference on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence (pp. 69–73), May 4-9, 1998, Anchorage. IEEE. doi:10.1109/ICEC.1998.699146.

  • Shi, Y., & Eberhart, R. C. (1998b). Parameter selection in particle swarm optimization. In Evolutionary Programming VII, March 25-27, 1998, San Diego, California, USA, Springer (pp. 591–600). doi:10.1007/BFb0040810.

  • Shi, Y., & Eberhart, R. C. (1999). Empirical study of particle swarm optimization. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, Vol. 3, July 6-9, 1999, Washington, IEEE. doi:10.1109/CEC.1999.785511.

  • Singh, N., Arya, R., & Agrawal, R. (2014). A novel approach to combine features for salient object detection using constrained particle swarm optimization. Pattern Recognition, 47(4), 1731–1739.

    Article  Google Scholar 

  • Stützle, T., & Hoos, H. H. (2000). Max–min ant system. Future generation computer systems, 16(8), 889–914.

    Article  Google Scholar 

  • Todd, M. J. (2002). The many facets of linear programming. Mathematical Programming, 91(3), 417–436.

    Article  MATH  MathSciNet  Google Scholar 

  • Vanneschi, L., Codecasa, D., & Mauri, G. (2012). An empirical study of parallel and distributed particle swarm optimization. In Parallel Architectures and Bioinspired Algorithms (pp. 125–150). Berlin: Springer.

    Google Scholar 

  • Wiki (2014). Mathematical optimization. http://en.wikipedia.org/wiki/Mathematical_optimization. Accessed 2014-02-30.

  • Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

    Article  Google Scholar 

  • Yan, X.-S., Li, C., Cai, Z.-H., & Kang, L.-S. (2005). A fast evolutionary algorithm for combinatorial optimization problems. In Proceedings of 2005 International Conference on Machine Learning and Cybernetics (Vol. 6, pp. 3288–3292) August 18-21, 2005, Guangzhou. IEEE. doi:10.1109/ICMLC.2005.1527510.

  • Yang, B., Chen, Y., & Zhao, Z. (2007). Survey on applications of particle swarm optimization in electric power systems. In IEEE International Conference on Control and Automation (ICCA 2007) (pp. 481–486), May 30 2007–June 1 2007, Guangzhou. IEEE. doi:10.1109/ICCA.2007.4376403.

  • Zhan, Z.-H., Zhang, J., Li, Y., & Shi, Y.-H. (2011). Orthogonal learning particle swarm optimization. IEEE Transactions on Evolutionary Computation, 15(6), 832–847.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Biswas, A., Biswas, B. (2015). Swarm Intelligence Techniques and Their Adaptive Nature with Applications. In: Zhu, Q., Azar, A. (eds) Complex System Modelling and Control Through Intelligent Soft Computations. Studies in Fuzziness and Soft Computing, vol 319. Springer, Cham. https://doi.org/10.1007/978-3-319-12883-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12883-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12882-5

  • Online ISBN: 978-3-319-12883-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics