Skip to main content

Smart Walkers: Advanced Robotic Human Walking-Aid Systems

  • Chapter
Book cover Intelligent Assistive Robots

Abstract

In this book chapter, the authors present the Smart Walkers as robotic functional compensation devices for assisting mobility dysfunctions and empowering the human gait. First, general concepts of locomotion, mobility dysfunctions and assistive devices are presented. A special attention is given to the walkers, considering not only the large number of users, but mainly the rehabilitation and functional compensation potential of empowering the natural mobility. Following, robotic versions of wheeled-walkers for assisting locomotion dysfunctions are presented. In this context, the UFES Smart Walker is presented as an example of a robotic device focused on the user-machine multimodal interaction for obtaining a natural control strategy for the robotic device. Two developments are discussed: (i) an adaptive filtering strategy of the upper-body interaction forces is used in a Fuzzy-Logic based control system to generate navigation commands, and (ii) a robust inverse kinematics controller based on users-motion is presented as a new solution for controlling the Smart Walker motion. Finally, conclusions and future works in the field of walker-assisted gait is presented in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Winter, D.: Biomechanics and motor control of human movement. John Wiley & Sons (2009)

    Book  Google Scholar 

  2. Buchman, A., Boyle, P., Leurgans, S., Barnes, L., Bennet, D.: Cognitive function is associated with the development of mobility impairments in community-dwelling elders. The American Journal of Geriatric Psychiatry 19(6), 571–580 (2011)

    Article  Google Scholar 

  3. Van Hook, F.W., Demonbreun, D., Weiss, B.D.: Ambulatory devices for chronic gait disorders in the elderly. American Family Physician 67(8), 1717–1724 (2003)

    Google Scholar 

  4. Lam, R.: Practice tips: choosing the correct walking aid for patients. Canadian Family Physician Médecin de Famille Canadien 53(12), 2115–2116 (2007)

    Google Scholar 

  5. Ceres, R., Pons, J., Calderón, L., Mesonero-Romanos, A., Jiménez, A., Sánchez, F., Abizanda, P., Saro, B., Bonivardo, G.: Andador activo para la rehabilitación y el mantenimiento de la movilidad natural. In: IMSERSO, pp. 3–8 (2004)

    Google Scholar 

  6. Gross, K.D.: Device use: walking AIDS, braces, and orthoses for symptomatic knee osteoarthritis. Clinics in Geriatric Medicine 26(3), 479–502 (2010)

    Article  Google Scholar 

  7. Bateni, H., Maki, B.E.: Assistive Devices for Balance and Mobility: Benefits, Demands, and Adverse Consequences. Archives of Physical Medicine and Rehabilitation 86(1), 134–145 (2005)

    Article  Google Scholar 

  8. Haubert, L.L., Gutierrez, D.D., Newsam, C.J., Gronley, J.K., Mulroy, S.J., Perry, J.: A comparison of shoulder joint forces during ambulation with crutches versus a walker in persons with incomplete spinal cord injury. Archives of Physical Medicine and Rehabilitation 87(1), 63–70 (2006)

    Article  Google Scholar 

  9. Priebe, J.R., Kram, R.: Why is walker-assisted gait metabolically expensive? Gait & Posture 34(2), 265–269 (2011)

    Article  Google Scholar 

  10. Frizera, A., Ceres, R., Pons, J.L., Abellanas, A., Raya, R.: The Smart Walkers as Geriatric Assistive Device. The SIMBIOSIS Purpose. In: Proceedings of the 6th International Conference of the International Society for Gerontechnology, pp. 1–6 (2008)

    Google Scholar 

  11. Elias, A., Frizera, A., Bastos, T.: Robotic walkers from a clinical point of view: feature-based classification and proposal of a model for rehabilitation programs. In: XIV Reunión de Trabajo en Procesamiento de la Información y Control, pp. 1–5 (2011)

    Google Scholar 

  12. Yu, H., Spenko, M., Dubowsky, S.: Omni-Directional Mobility Using Active Split Offset Castors. Journal of Mechanical Design 126(5), 822 (2004)

    Article  Google Scholar 

  13. MacNamara, S., Lacey, G.: A smart walker for the frail visually impaired. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings, pp. 1354–1359. IEEE (2000)

    Google Scholar 

  14. Hirata, Y., Muraki, A., Kosuge, K.: Motion control of intelligent passive-type Walker for fall-prevention function based on estimation of user state. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 3498–3503 (May 2006)

    Google Scholar 

  15. Hirata, Y., Muraki, A., Kosuge, K.: Standing Up and Sitting Down Support Using Intelligent Walker Based on Estimation of User States. In: 2006 International Conference on Mechatronics and Automation, pp. 13–18. IEEE (June 2006)

    Google Scholar 

  16. Morris, A., Donamukkalat, R., Kapuria, A., Steinfeldt, A., Matthews, J.T., Dunbar-Jacob, J., Thrunti, S.: A Robotic Walker That Provides Guidance. In: Proceedings of the 2003 IEEE lnternational Conference on Robotics & Automation, pp. 25–30 (2003)

    Google Scholar 

  17. Rentschler, A.J., Cooper, R.A., Blasch, B., Boninger, M.L.: Intelligent walkers for the elderly: performance and safety testing of VA-PAMAID robotic walker. Journal of Rehabilitation Research and Development 40(5), 423–431 (2003)

    Article  Google Scholar 

  18. Chugo, D., Asawa, T., Kitamura, T., Takase, K.: A moving control of a robotic walker for standing, walking and seating assistance. In: 2008 IEEE International Conference on Robotics and Biomimetics, pp. 692–697. IEEE (February 2008)

    Google Scholar 

  19. Chugo, D., Kitamura, T., Takase, K.: A rehabilitation walker with standing and walking assistance. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 260–265. IEEE (September 2008)

    Google Scholar 

  20. Médéric, P., Pasqui, V., Plumet, F., Bidaud, P.: Design of a walking-aid and sit to stand transfer assisting device for elderly people 2 Disturbances induced by some particular. In: Proceedings of ROMAN 2004-15th CISM-IFToMM Symposium on Robot Design, Dynamics and Control, pp. 5–12 (2004)

    Google Scholar 

  21. Abellanas, A., Frizera, A., Ceres, R., Raya, R.: Assessment of the laterality effects through forearm reaction forces in walker assisted gait. Procedia Chemistry 1(1), 1227–1230 (2009)

    Article  Google Scholar 

  22. Lacey, G., Namara, S.M., Dawson-Howe, K.M.: Personal adaptive mobility aid for the infirm and elderly blind. In: Mittal, V.O., Yanco, H.A., Aronis, J., Simpson, R.C. (eds.) Assistive Technology and AI. LNCS (LNAI), vol. 1458, pp. 211–220. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  23. Rodriguez-Losada, D., Matia, F., Jimenez, A., Lacey, G.: Guido, the Robotic SmartWalker for the frail visually impaired. In: First International Conference on Domotics, Robotics and Remote Assitence for All - DRT4all, pp. 1–14 (2005)

    Google Scholar 

  24. Graf, B.: An Adaptive Guidance System for Robotic Walking Aids. Journal of Computing and Information Technology 1(1), 109–120 (2008)

    Google Scholar 

  25. Kulyukin, V., Kutiyanawala, A., LoPresti, E., Matthews, J., Simpson, R.: iWalker: Toward a Rollator-Mounted Wayfinding System for the Elderly. In: 2008 IEEE International Conference on RFID, pp. 303–311 (April 2008)

    Google Scholar 

  26. Zong, C., Chetouani, M., Tapus, A.: Automatic gait characterization for a mobility assistance system. In: 11th International Conference in Control, Automation, Robotics and Vision, pp. 473–478 (2010)

    Google Scholar 

  27. Chan, A.D.C., Green, J.R.: Smart Rollator Prototype. In: 2008 IEEE International Workshop on Medical Measurements and Applications, pp. 97–100. IEEE (May 2008)

    Google Scholar 

  28. Alwan, M., Wasson, G., Sheth, P., Ledoux, A., Huang, C.: Passive derivation of basic walker-assisted gait characteristics from measured forces and moments. In: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society, vol. 4, pp. 2691–2694 (January 2004)

    Google Scholar 

  29. Dubowsky, S., Genot, F., Godding, S., Kozono, H., Skwersky, A., Yu, H., Yu, L.S.: PAMM - A Robotic Aid to the Elderly for Mobility Assistance and Monitoring: A “Helping-Hand” for the Elderly. In: Proceedings of the IEEE Conference on Robotics and Automation - ICRA (2000)

    Google Scholar 

  30. Henry, J., Aharonson, V.: Gait monitoring for the elderly using a robotic walking aid. In: IEEE 26th Convention of Electrical and Electronics Engineers in Israel, pp. 392–394 (2010)

    Google Scholar 

  31. Spenko, M., Yu, H., Dubowsky, S.: Robotic personal aids for mobility and monitoring for the elderly. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society 14(3), 344–351 (2006)

    Article  Google Scholar 

  32. Frizera, A., Cifuentes, C.A., Bastos, T.F.: Motion Capture System Based on the Integration of 3D Accelerometer in a Wireless Inertial Measurement Unit. In: Accelerometers: Principles, Structure and Applications, vol. 1, pp. 57–76. Nova Science Publishers, Inc. (2013)

    Google Scholar 

  33. Frizera, A., Ceres, R., Rocon, E., Pons, J.L.: Empowering and Assisting Natural Human Mobility: The Simbiosis Walker 8(3), 34–50 (2011)

    Google Scholar 

  34. Abellanas, A., Frizera, A., Ceres, R., Gallego, J.: Estimation of gait parameters by measuring upper limb-walker interaction forces. Sensors and Actuators A: Physical 162(2), 276–283 (2010)

    Article  Google Scholar 

  35. Frizera Neto, A., Gallego, J.A., Rocon, E., Pons, J.L., Ceres, R.: Extraction of user’s navigation commands from upper body force interaction in walker assisted gait. BioMedical Engineering Online 9(37), 1–16 (2010)

    Google Scholar 

  36. Brookner, E.: Tracking and Kalman Filtering Made Easy. John Wiley and Sons, Inc. (1998)

    Google Scholar 

  37. Mann, K., Werner, F.W., Palmer, A.K.: Frequency spectrum analysis of wrist motion for activities of daily living. Journal of Orthopedic Research 7(2), 304–306 (1989)

    Article  Google Scholar 

  38. Benedict, T.R., Bordner, G.: Synthesis of an optimnal set of radar track-while-scan smoothing equations. IRE Transactions on Automatic Control 7(4), 27–32 (1962)

    Article  Google Scholar 

  39. Widrow, B., Stearns, S.D.: Adaptive signal processing. Prentice Hall (1985)

    Google Scholar 

  40. Frizera, A.: Interfaz multimodal para modelado, estudio y asistencia a la marcha humana mediante andadores robóticos. PhD thesis, Universidad de Alcalá (2010)

    Google Scholar 

  41. Braidot, A., Cifuentes, C., Frizera Neto, A., Frisoli, M., Santiago, A.: Zigbee wearable sensor development for upper limb robotics rehabilitation. Latin America Transactions, IEEE (Revista IEEE America Latina) 11(1), 408–413 (2013)

    Article  Google Scholar 

  42. Frizera, A., Elias, A., del Ama, A., Ceres, R., Bastos, T.: Characterization of spatio-temporal parameters of human gait assisted by a robotic walker. In: 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 1087–1091 (2012)

    Google Scholar 

  43. Riviere, C.N., Rader, R.S., Thakor, N.V.: Adaptive canceling of physiological tremor for improved precision in microsurgery. IEEE Transactions on Biomedical Engineering 45(7), 839–846 (1998)

    Article  Google Scholar 

  44. Riviere, C., Khosla, P.: Augmenting the human-machine interface: improving manual accuracy. In: IEEE International Conference on Robotics and Automation, vol. 4, pp. 3546–3550 (1997)

    Google Scholar 

  45. Riviere, C.: Adaptive suppression of tremor for improved human-machine control. PhD thesis, Johns Hopkins University (1995)

    Google Scholar 

  46. Riviere, C.N., Thakor, N.V.: Modeling and canceling tremor in human-machine interfaces. IEEE Engineering in Medicine and Biology 15(3), 29–36 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anselmo Frizera Neto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Neto, A.F., Elias, A., Cifuentes, C., Rodriguez, C., Bastos, T., Carelli, R. (2015). Smart Walkers: Advanced Robotic Human Walking-Aid Systems. In: Mohammed, S., Moreno, J., Kong, K., Amirat, Y. (eds) Intelligent Assistive Robots. Springer Tracts in Advanced Robotics, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-319-12922-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12922-8_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12921-1

  • Online ISBN: 978-3-319-12922-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics