Skip to main content

Sparse Gabor Multiplier Estimation for Identification of Sound Objects in Texture Sound

  • Conference paper
  • First Online:
  • 1940 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8905))

Abstract

In this contribution we present a novel method for identifying novelty and, more specifically, sound objects within texture sounds. We introduce the notion of texture sound and sound object and explain how the properties of a sound that is known to be textural may be exploited in order to detect deviations which suggest the presence of novelty or distinct sound event, which may then be called sound object. The suggested approach is based on Gabor multipliers, which map the Gabor coefficients corresponding to certain time-segments of the signal to each other. We present the results of simulations based on both synthetic and real audio signals.

This research was supported by the Vienna Science and Technology Fund (WWTF) through project VRG12-009 and the Austrian Science Fund (FWF):[V 312-N25].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    \(\langle g,h\rangle _{L^2}\) denotes the \(L^2\)-inner product, defined as \(\langle g,h\rangle _{L^2} = \int _t g(t)\overline{h(t)}\).

  2. 2.

    Note that the resulting visual representation is also known as spectrogram. However, for the reconstruction as discussed in the previous section, the phase factors of the coefficients are crucial and cannot be omitted.

  3. 3.

    We define the signal to noise ratio (SNR) by \(SNR_{dB} = 10\log _{10} (\Vert s\Vert _2^2 /\Vert f\Vert ^2_2)\), given in dB, by where \(f\) is the background signal, which can be seen as “noise” in which \(s\), the sound object is to be traced.

References

  1. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18(11), 2419–2434 (2009)

    Article  MathSciNet  Google Scholar 

  3. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27(5), 1271–1283 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dörfler, M.: Time-frequency analysis for music signals. a mathematical approach. J. New Music Res. 30(1), 3–12 (2001)

    Article  Google Scholar 

  6. Dörfler, M., Torrésani, B.: Representation of operators in the time-frequency domain and generalized Gabor multipliers. J. Fourier Anal. Appl. 16(2), 261–293 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dörfler, M., Torrésani, B.: Representation of operators by sampling in the time-frequency domain. Sampl. Theory Signal Image Process. 10(1–2), 171–190 (2011)

    MATH  MathSciNet  Google Scholar 

  8. Feichtinger, H.G., Nowak, K.: A first survey of Gabor multipliers. In: Feichtinger, H.G., Strohmer, T. (eds.) Advances in Gabor Analysis. Applied and Numerical Harmonic Analysis, pp. 99–128. Birkhäuser, Boston (2003)

    Chapter  Google Scholar 

  9. Feichtinger, H.G., Strohmer, T. Introduction. In: Feichtinger, H.G., Strohmer, T. (eds.) Gabor Analysis and Algorithms Theory and Applications, Boston, MA, Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, pp. 1–31, 453–488 (1998)

    Google Scholar 

  10. Gröchenig, K.: Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  11. Klien, V., Grill, T., Flexer, A.: On automated annotation of acousmatic music. J. New Music Res. 41(2), 153–173 (2012)

    Article  Google Scholar 

  12. Kowalski, M., Siedenburg, K., Dörfler, M.: Social sparsity! neighborhood systems enrich structured shrinkage operators. IEEE Trans. Signal Process. 61(10), 2498–2511 (2013)

    Article  MathSciNet  Google Scholar 

  13. Kowalski, M., Torrésani, B.: Sparsity and persistence: mixed norms provide simple signals models with dependent coefficients. Sig. Image Video Process. 3(3), 251–264 (2009)

    Article  MATH  Google Scholar 

  14. Kowalski, M., Torrésani, B. Structured sparsity: from mixed norms to structured shrinkage. In: SPARS’09 - Signal Processing with Adaptive Sparse Structured Representations (2009)

    Google Scholar 

  15. Olivero, A. Les multiplicateurs temps-fréquence. Applications à l’analyse et à la synthèse de signaux sonores et musicaux. Ph.D. thesis (2012)

    Google Scholar 

  16. Olivero, A., Torresani, B., Kronland-Martinet, R.: A class of algorithms for time-frequency multiplier estimation. IEEE Trans. Audio, Speech Lang. Process. 21(8), 1550–1559 (2013)

    Article  Google Scholar 

  17. Schaeffer, P.: On Automated Annotation of Acousmatic Music. Editions du Seuil, Paris (2002)

    Google Scholar 

  18. Siedenburg, K., Dörfler, M.: Persistent time-frequency shrinkage for audio denoising. J. Audio Eng. Soc. 61(1/2), 29–38 (2013)

    Google Scholar 

  19. Sondergaard, P., Torrésani, B., Balazs, P.: The linear time frequency analysis toolbox. Int. J. Wavelets Multiresolut. Inf. Process. 10(4), 1250032 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Anaïk Olivero for sharing code for computing Gabor masks and Richard Kronland-Martinet and his team in LMA, CNRS Marseille, for giving us permission to use their software SPAD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Dörfler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dörfler, M., Matusiak, E. (2014). Sparse Gabor Multiplier Estimation for Identification of Sound Objects in Texture Sound. In: Aramaki, M., Derrien, O., Kronland-Martinet, R., Ystad, S. (eds) Sound, Music, and Motion. CMMR 2013. Lecture Notes in Computer Science(), vol 8905. Springer, Cham. https://doi.org/10.1007/978-3-319-12976-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12976-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12975-4

  • Online ISBN: 978-3-319-12976-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics