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Abstract. Modeling data as a graph of objects is increasingly popular,
as we move away from the relational DB model and try to introduce
explicit semantics in IR. Conceptually, one of the main challenges in this
context is how to “intelligently” traverse the graph and exploit the asso-
ciations between the data objects. Two highly used methods in retrieving
information on structured data are: Markov chain random walks, as is
the basic method for page rank, and spreading activation, which orig-
inates from the artificial intelligence area. In this paper, we compare
these two methods from a mathematical point of view. Random walks
have been preferred in information retrieval, while spreading activation
has been proposed before, but not really adopted. In this study we find
that they are very similar fundamentally under certain conditions. How-
ever, spreading activation has much more flexibility and customization
options, while random walks holds concise mathematics foundation.

Keywords: Information retrieval, Graph, Spreading activation, Ran-
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1 Introduction

The data available today is becoming more and more connected. For example via
platforms like Semantic Web, providing linkage between data objects semanti-
cally - leading to a connected network, or through social networks (text, images,
videos on LinkedIn, Facebook or the like). Connected data poses structured IR
as an option for retrieving more relevant data objects.

How to investigate relations between data objects and exploit the links avail-
able, is one of the main challenges in finding related information in the graph
of linked data. There are different methods to traverse the graph, like different
models of random walks or spreading activation.

Crestani [7] explains spreading activation as a method of associative retrieval
to identify relevant information based on the associations between the informa-
tion elements. Random walks is a sequence of independent, distributed discrete
random path selection in a graph of objects. There are numerous works on uti-
lizing random walks in order to find related data objects as well [5,1,15].

In this article we investigate these two approaches from a theoretical point
of view. We categorize the routing in a graph of related data objects in IR,
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as query dependent and query independent routing. In this article, we compare
spreading activation and random walks according to these categories and show
the similarities and differences in their behaviour.

The article is structured as follows: background of the work is described next,
Section 3 describes the basic mathematic concepts behind the query independent
graph traversal for the two methods. Section 4 follows with the more interesting
case when we take into account the query, with the purpose of ranking the set
of nodes based on some understanding of relevance. Finally, a discussion and
conclusions are presented in Section 5.

2 Background

2.1 Spreading Activation

The idea of application of Spreading Activation in IR, originates from the works
on Associative Retrieval in which it is possible to retrieve relevant information
by retrieving information related to the query. This information is either already
retrieved and is static, like the relation between the objects of information and
indexings, or is dynamically achieved like based on user behaviour in the search
session [7].

Spreading activation has various utilizations, for instance, Salton and Buckley
[14] leverage spreading activation for identifying related terms and documents to
improve the retrieval process. Rocha et al. [11] propose a model utilizing spread-
ing activation for search in Semantic Web. Hussein and Ziegler use spreading
activation in determining important elements in an ontology according to user’s
current context and past interactions [9].

2.2 Random Walks

PageRank is one of the most prominent examples leveraging random walks. It
ranks websites based on the authority weights given to each page of a web graph.
This authority weight is independent of textual content and is based on the web
hyperlink structure. PageRank is based on a random surfer model that can be
viewed as a stationary distribution of a Markov chain [1]. Another application of
random walks is in Craswell and Szummer work, who model queries and clicked
images in a graph [6]. They use random walks to retrieve more relevant images for
each textual query. Furthermore, Clements et al. [4] use random walks through
a social annotation graph, comprising of people, tags and content. They identify
the influence of the design choices in social annotation systems on ranking tasks.
Random walks has also been used in query expansion modeling. Collins et al.
[5] identify weather a potential expansion term reflects aspects of the original
query in the stationary distribution of their model.

2.3 Baseline Graph

We will be referring to a directed graph of objects, which we denote by G =
(V,E;W ) where V ∈ R

n and E ⊂ V × V are the sets of vertices and edges
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respectively, and the matrix W ∈ R
n×n defines any weights in the graph (could

be transition probabilities, in the case of random walks). In the usual way,Wu,v =
0 iff (u, v) /∈ E.

3 Query Independent Graph Traversal

Random walks most famous instance is PageRank, which is query independent,
while for spreading activation it has been shown that “pure spreading activation
is pointless” [2]. What is the difference?

3.1 Spreading Activation

Spreading Activation is inspired by simulated neural networks without any train-
ing phase. Edge weights are based on the semantics of the modeled domain.
The spreading activation procedure always starts with an initial set of activated
nodes. Different values can be given to the initial nodes according to the task
being solved. They are usually the result of a first stage processing of the query,
e.g. a distance measure between the objects and the query. During propagation,
other nodes get activated and ultimately, a set of nodes with respective activa-
tion is obtained. Here we explain how to compute the activation values of the
nodes after some steps in the graph, independently of the query.

We denote the initial activation of the nodes as a(0) and the activation in
t-th iteration as a(t). Three phases are commonly defined: preprocess, spreading
and postprocess [2]. The preprocess consists of calculating an input value inv

for each node v by aggregating output values of its neighbours:

in(t)
v =

∑

u∈V

o(t−1)
u ·Wu,v (1)

where ou is the output value of node u. Based on the input value, different
functions are used to determine the activation value: linear, sigmoid, threshold,
step function, etc. [7]. We denote any of these functions as act. Based on it, we
calculate the activation value of each node:

a(t)v = act(in(t)
v ) (2)

Finally, an output function out determines how much output of a node is
passed to its neighbours. We define it as

o(t)v = out(a(t)v ) (3)

This function avoids retention of activation from previous iterations and helps
control the overall activation in the graph [7]. Putting all these equations to-
gether, we obtain the following general formula to calculate the activation at the
next step:

a(t+1)
v = act

(
∑

u∈V

out(a(t)u ) ·Wuv

)
(4)
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Weighting in Spreading Activation There is no specific constraint in spreading
activation on weight definition or weight values on the edges, and it is application
dependent. For example, Rocha et al. [11] define the edge weight based on the
number of relations via neighbours between the two connected nodes u and v, to
the number of relations of node u to its neighbours. Hussein and Ziegler [9] define
the weighting based on the context defined by an expert in the preliminary step
of system definition.

3.2 Random Walks

Different variants of random walks exist, but the Markov Chain random walks
is by far the most commonly used in the IR literature, and we focus on it
here. Markov Chain is a mathematical system for transitions between a finite
set of states. The transition probabilities between the nodes form a matrix. In
our case they are represented by the W matrix of transition weights. By Wu,v

we understand P (v|u), the probability of moving from node u to node v. The
matrix W is row-stochastic, e.i. the probabilities on one row sums up to one.
The objective of random walks is to reach a probability distribution over the set
of nodes V . If we view this as a vector p ∈ R

n, we can denote by p(0) and p(t)

the initial probability distribution, and respectively the probability distribution
over the set of nodes at time t, which is computed by:

p(t) = p(t−1)W = p(0)W t (5)

Weighting in random walks Weighting the edges for random walks presents as
much flexibility as in spreading activation, with the one constraint that the
matrix must be row-stochastic. For example, Craswell and Zsummer [6] define
the weight based on the normalized value of the number of clicks between two
nodes: Pt+1|t(k|j) = Cjk/

∑
i Cji. Also they utilize the factor of self-transitivity

(s). This parameter helps significantly to control the walk pace. It can be inter-
preted as the importance of staying in nodes. Using random walks to calculate
the probability of transition between two nodes shows the volume of the path
[15], which increases with the number of paths with the same length between
the two nodes.

3.3 Discussion

Based on Equation 3, the output of a node in spreading activation is the result
of applying the activation and output functions on the input of the node. If the
input function is defined as linear combination and the output and activation
functions are identity functions, then the Equation 4 in spreading activation can

be written as a
(t+1)
v =

∑
u∈V a

(t)
u ·Wuv , which in compact form is:

a(t+1) = a(0) ·W t+1 (6)

Comparing Equations 5 and 6 we observe that in a query independent case,
both random walks and spreading activation perform the same scenario. In this
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case convergence of the weighting matrix is important since there is no limit to
stop the propagation or walk in the graph. It is from here that the difference in
utility of the two methods, mentioned at the beginning of this section, stems.

According to Perron-Frobenius Lemma [8], the power iteration of a matrix W
converges to its stationary distribution if the matrix is ergodic (irreducible and
aperiodic). In graph terminology, ergodic refers to a connected and not bipartite
graph. Based on this lemma for nonnegative matrices, eigenvalue 1 is the largest
eigenvalue.

In practice, the number of iterations to reach to stationary distribution as
a fixed state is important. This is defined as mixing time (Mt). The smaller
the second largest eigenvalue is, the faster the convergence rate is. In more
detail, mixing time is proportional to the inverse of difference between the largest
eigenvalue and the second eigenvalue Mt ∝ (1− λ2)

−1.
Stationary distribution in random walks, providing the probability distribu-

tion over all nodes after convergence, has its own applications (e.g. in PageRank).
However, spreading activation is mainly utilized to provide highly customized
solutions using heuristic restrictions and different activation and output func-
tions in various applications. As Berthold et al. [2] proved that pure spreading
activation is meaningless.

Self-transitivity. One of the factors affecting convergence speed is the self-
transitivity value (s): a high value slows down the walk while a low value speeds
up. For the probabilities of node u it will be modified as:

Pt+1|t(v|u) =
{
(1 − s)Wuv v �= u

s v = u
(7)

In compact form the transition matrix becomes sI + (1 − s)W which has
s+(1−s)λ as eigenvalue of a matrix. Therefore, applying s value, does not change
the stationary distribution, as the eigenvalue of the new matrix is the same as
matrix W . We know the largest eigenvalue of W is 1. Then the largest eigenvalue
for this combination also remains 1 and does not change the convergence property
of the matrix.

In spreading activation, self-transitivity is referred to as ”inertia”. It can be
used to retain the previous state partially during iteration: a(t) = a(t−1) +
Wa(t−1). In a closed form is a(t) = (I + W )ta(0) [2] with the same eigenvec-
tor of W . Using inertia, the weight matrix is changed to add a self loop of unit
weight to each node.

We see that self-transitivity factor is applicable in both methods without
affecting the eigenvector of the weighting matrix.

4 Query Dependent Routing

It is potentially desirable in IR that the graph traversal be dependent on the
query. We look now at how this has been done in the literature, for the two
methods studied.
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4.1 Spreading Activation

In order to avoid pure spreading activation, leading to query independent results,
common heuristic constraints are defined:

– Distance constraint [7]: imposes a hard limit on the number of iterations the
activation can traverse

– Fan-out constraint [7]: to cease activation in very high fan-out nodes (indi-
cating common nodes)

– Path constraint [7]: some edges are preferred to others in transferring the
activation energy

– Concept type constraint [11]: some nodes are not traversed in the activation
process

– Accumulation [2]: as a form of iteration with memory, this approach modifies
the iterations to take into account not only the last state (of the activation
propagation), but the sequence from the beginning. As a closed formula, we
have:

a∗ =
∞∑

t=0

λ(t) · a(t) =
∞∑

t=0

λ(t)W ta(0) (8)

where λ is decaying factor used to make the sum convergent.

4.2 Random Walks

One of the methods making random walks query dependent is query-dependent
probability computation. Richardson and Domingos [10] modify the random surfer
model used in PageRank by considering the query in the probability computa-
tion. Assuming Rq(u) as a measure of relevancy between query q and page u,
they suggest: Pq(v|u) = Rq(u)/

∑
k|u Rq(k) where Pq(v|u) is the probability of

going from node u to v, and k goes through neighbours.
Another way of query dependent random walks is to employ the Metropolis-

Hastings method. Provided with a reasonable estimation for the probability of
relevance, this method could provide a better approximation to the true rele-
vancy probability distribution.

We know that Metropolis-Hastings algorithm can be used to generate a se-
quence of samples from a probability distribution π which is difficult to sample
from directly [3]. The algorithm steps are as follows:

– Consider a stochastic matrix W

– Consider an initial state v0 ∈ V

– for i = 0, 1, 2, ...,

• sample v from Wvi

• sample x from uniform (0, 1)

• if x < π̃(v)/π̃(vi) then vi+1 = v else vi+1 = vi
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After the mixing time, the probability of the walker to be in any specific node v
will be π(v).

Mapped to our problem, the proposed matrix W is our stochastic transition
matrix. As a stationary distribution over the set of nodes, we would like to have
the true relevance probability distribution by the indexing ranked results. This
is the π(v) distribution from which we cannot directly sample. Instead, we have
the π̃(v) which could be a relevance scoring function (e.g. a BM25 score between
the data object vi and the query). Metropolis-Hastings would formally provide
us with a method to sample from the probability distribution, if the approximate
probability π̃ is properly chosen.

4.3 Discussion

Comparing the two methods, we find that simple constraints like distance thresh-
old are applicable in both methods to make the traversal query dependent, for
instance stopping random walks after a number of steps [6], or applying distance
threshold in spreading activation [6,11]. The path and concept type constraints
in spreading activation (as applied in [11]), make the graph traversal domain or
context dependent, rather than strictly query dependent. Translated to a random
walks understanding, type and path constraint, would assign zero probability to
certain edges to nodes of that type.

By defining different types of constraints, spreading activation provides more
options to customize the traversal. This appears much more arbitrary than the
approach in random walks, which assigns probabilities based on assumed rele-
vance in the context of IR.

It is worth to notice that we have a model for multimodal information retrieval
under evaluation, named Astera [13], which models the data as a graph of in-
formation objects. We have chosen the spreading activation method to manage
the graph traversal.

The reason goes back to the relation types and weight definitions in Astera.
We define four relation types between information objects: semantic, part-of,
similarity and facet relations [12]. The definition of part-of relation (e.g. an
image part of a document) is containment, which transfers the whole activation
value from the parent node to the part-of node. Weight of value 1 is defined on
this type of relation which does not comply with normalized weighting definition,
in which the sum of all edge weights should be 1.

Further, we leverage different types of constraints defined in spreading activa-
tion, e.g. distance constraint to stop the process after limited number of steps,
or fan-out constraint to avoid energy transfer to high fan-out nodes.

5 Conclusion

We investigated two methods of graph traversal, namely spreading activation and
random walks in the context of IR. These two methods are highly comparable
in query independent routing, holding the same underlying mathematics. Their
different behavior are only due to convergence properties.



Which One to Choose: Random Walks or Spreading Activation? 119

In query dependent case, we noticed that giving the variety of options to
spreading activation method to customize the routing, makes the graph traversal
highly customizable and domain dependent. Of course, some constraints like
distance threshold is applicable on both methods. On contrary, random walks is
more clear and less flexible in making the walk dependent to the query. However,
it provides the option of defining the probability based on relevancy in IR context
- providing query dependent routing.

We conclude that with some limitations on spreading activation, these two
methods are in essence the same, however, spreading activation provides more
flexibility, leading to more complexity and less tractable scenario in comparison
to random walks.
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