Skip to main content

Optimization Based Design of Synthetic Oscillators from Standard Biological Parts

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8859))

Abstract

We consider the problem of optimal design of synthetic biological oscillators. Our aim is, given a set of standard biological parts and some pre-specified performance requirements, to automatically find the circuit configuration and its tuning so that self-sustained oscillations meeting the requirements are produced. To solve this design problem, we present a methodology based on mixed-integer nonlinear optimization. This method also takes into account the possibility of including more than one design objective and of handling both deterministic and stochastic descriptions of the dynamics. Further, it is capable of handling significant levels of circuit complexity. We illustrate the performance of this method with several challenging case studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)

    Article  Google Scholar 

  2. Stricker, J., Cookson, S., Bennett, M.R., Mather, W.H., Tsimring, L.S., Hasty, J.: A fast, robust and tunable synthetic gene oscillator. Nature 456, 516–519 (2008)

    Article  Google Scholar 

  3. Tigges, M., Dénervaud, N., Greber, D., Stelling, J., Fussenegger, M.: A synthetic low-frequency mammalian oscillator. Nucleic Acids Res. 38, 2702–2711 (2010)

    Article  Google Scholar 

  4. Goodwin, B.C.: Oscillatory behaviour in enzymatic control processes. Adv. in Enzyme Regulation 3, 425–438 (1965)

    Article  Google Scholar 

  5. Higgings, J.: The theory of oscillating reactions. Ind. Eng. Chem. 59, 18–62 (1967)

    Article  Google Scholar 

  6. Tyson, J.J., Albert, R., Goldbeter, A., Ruoff, P., Sible, J.: Biological switches and clocks. J. R. Soc. Interface 6, S1–S8 (2008)

    Google Scholar 

  7. Purnick, P.E.M., Weiss, R.: The second wave of synthetic biology: from modules to systems. Nat. Rev. Mol. Cel. Biol. 10, 410–422 (2009)

    Article  Google Scholar 

  8. Lu, T.K., Khalil, A.S., Collins, J.J.: Next-generation synthetic gene networks. Nat. Biotechnol. 27, 1139–1150 (2009)

    Article  Google Scholar 

  9. Registry of Standard Biological Parts, http://partsregistry.org

  10. Ham, T.S., Dmytriv, Z., Plahar, H., Chen, J., Hillson, N.J., Keasling, J.D.: Design, implementation and practice of JBEI-ICE: an open source biological part registry platform and tools. Nucleic Acids Res. 40, e141 (2012)

    Google Scholar 

  11. Cai, Y., Hartnett, B., Gustafsson, C., Peccoud, J.: A syntactic model to design and verify synthetic genetic constructs derived from standard biological parts. Bioinformatics 23, 2760–2767 (2007)

    Article  Google Scholar 

  12. Pedersen, M., Phillips, A.: Towards programming languages for genetic engineering of living cells. J. R. Soc. Interface 6(suppl. 4), S437–S450 (2009)

    Google Scholar 

  13. Bilitchenko, L., Liu, A., Densmore, D.: The Eugene Language for Synthetic Biology. In: Voigt, C. (ed.) Methods in Enzymology, vol. 498, pp. 153–172 (2011)

    Google Scholar 

  14. Rodrigo, G., Carrera, J., Landrain, T.E., Jaramillo, A.: Perspectives on the automatic design of regulatory systems for synthetic biology. FEBS Lett. 586, 2037–2042 (2012)

    Article  Google Scholar 

  15. Zomorrodi, A.R., Maranas, C.D.: Coarse-grained optimization-driven design and piecewise linear modeling of synthetic genetic circuits. Eur. J. Oper. Res. 237, 665–676 (2014)

    Article  MathSciNet  Google Scholar 

  16. Karlebach, G., Shamir, R.: Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 9, 770–780 (2008)

    Article  Google Scholar 

  17. Marchisio, M.A., Stelling, J.: Computational design of synthetic gene circuits with composable parts. Bioinformatics 24, 1903–1910 (2008)

    Article  Google Scholar 

  18. Stewart, D.: Modular modelling in Synthetic Biology: Light-Based Communication in E. coli. Electron. Notes Theor. Comput. Sci. 277, 77–87 (2011)

    Article  Google Scholar 

  19. Endy, D.: Foundations for engineering biology. Nature 438, 449–453 (2005)

    Article  Google Scholar 

  20. Galdzicki, M., et al.: The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology. Nature Biotech. 32, 545–550 (2014)

    Article  Google Scholar 

  21. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  22. Gaspard, P.: The correlation time of mesoscopic chemical clocks. J. Chem. Phys. 117, 8905–8916 (2002)

    Article  Google Scholar 

  23. Gray, C.M., Konig, P., Engel, A.K., Singer, W.: Oscillatory responses in cat visual cortex exhibit inter columnar synchronization which reflects global stimulus properties. Nature 338, 334–337 (1989)

    Article  Google Scholar 

  24. d’Eysmond, T., De Simone, A., Naef, F.: Analysis of precision in chemical oscillators: implications for circadian clocks. Phys. Biol. 10, 056005 (2013)

    Google Scholar 

  25. Gaspard, P.: Trace formula for noisy flows. J. Stat. Phys. 106, 57–96 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Min, B., Goh, K.I., Kim, I.M.: Noise characteristics of molecular oscillations in simple genetic oscillatory systems. J. Korean Phys. Soc. 56(3), 911–917 (2010)

    Article  Google Scholar 

  27. Loinger, A., Biham, O.: Stochastic simulations of the repressilator circuit. Phys. Rev. E 76, 051917 (2007)

    Google Scholar 

  28. Otero-Muras, I., Banga, J.R.: Multicriteria global optimization for biocircuit design. arXiv:1402.7323 (2014)

    Google Scholar 

  29. Tsai, T.Y., Choi, Y.S., Ma, W., Pomerening, J.R., Tang, C., Ferrell, J.E.: Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321, 126–129 (2008)

    Article  Google Scholar 

  30. Egea, J.A., Marti, R., Banga, J.R.: An evolutionary method for complex-process optimization. Comput. Oper. Res. 37, 315–324 (2010)

    Article  MATH  Google Scholar 

  31. Exler, O., Antelo, L.T., Egea, J.A., Alonso, A.A., Banga, J.R.: A tabu search-based algorithm for mixed-integer nonlinear problems and its application to integrated process and control system design. Comput. Chem. Eng. 32, 1877–1891 (2008)

    Article  Google Scholar 

  32. Schlueter, M., Egea, J.A., Banga, J.R.: Extended ant colony optimization for non-convex mixed integer nonlinear programming. Comput. Oper. Res. 36, 2217–2229 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chickarmane, V., Paladugu, S.R., Bergmann, F., Sauro, H.M.: Bifurcation discovery tool. Bioinformatics 21, 3688–3690 (2005)

    Article  Google Scholar 

  34. Levering, J., Kummer, U., Becker, K., Sahle, S.: Glycolytic oscillations in a model of a lactic acid bacterium metabolism. Biophys. Chem. 172, 53–60 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Otero-Muras, I., Banga, J.R. (2014). Optimization Based Design of Synthetic Oscillators from Standard Biological Parts. In: Mendes, P., Dada, J.O., Smallbone, K. (eds) Computational Methods in Systems Biology. CMSB 2014. Lecture Notes in Computer Science(), vol 8859. Springer, Cham. https://doi.org/10.1007/978-3-319-12982-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12982-2_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12981-5

  • Online ISBN: 978-3-319-12982-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics