
Performance Benefits of DataMPI:
A Case Study with BigDataBench

Fan Liang1,2 Chen Feng1,2 Xiaoyi Lu3 Zhiwei Xu1
1Institute of Computing Technology, Chinese Academy of Sciences

2University of Chinese Academy of Sciences, China
3Department of Computer Science and Engineering, The Ohio State University

{liangfan, fengchen, zxu}@ict.ac.cn, luxi@cse.ohio-state.edu

Abstract
Apache Hadoop and Spark are gaining prominence in Big Data pro-
cessing and analytics. Both of them are widely deployed on Inter-
net companies. On the other hand, high-performance data analy-
sis requirements are causing academical and industrial communi-
ties to adopt state-of-the-art technologies in HPC to solve Big Data
problems. Recently, we have proposed a key-value pair based com-
munication library, DataMPI, which is extending MPI to support
Hadoop/Spark-like Big Data Computing jobs. In this paper, we use
BigDataBench, a Big Data benchmark suite, to do comprehensive
studies on performance and resource utilization characterizations of
Hadoop, Spark and DataMPI. From our experiments, we observe
that the job execution time of DataMPI has up to 55% and 39%
speedups compared with those of Hadoop and Spark, respectively.
Most of the benefits come from the high-efficiency communication
mechanisms in DataMPI. We also notice that the resource (CPU,
memory, disk and network I/O) utilizations of DataMPI are also
more efficient than those of the other two frameworks.

Keywords DataMPI, Hadoop, Spark, MapReduce, BigDataBench

1. Introduction
Data explosion is becoming an irresistible trend with the develop-
ment of Internet, social network, e-commerce, etc. Over the last
decade, there have been emerging a lot of systems and frameworks
for Big Data, such as MapReduce [7], Hadoop [1], Dyrad [9], Ya-
hoo! S4 [15] and so on. Apache Hadoop has become as the de-
facto standard for Big Data processing and analytics. Many clusters
in the production environment already contain thousands of nodes
to dedicatedly run Hadoop jobs everyday. Beyond the success of
Hadoop on its scalability and fault-tolerance, Apache Spark [20]
provides another feasible way to process large amount of data by
introducing the in-memory computing techniques. Nowadays, both
of them have attracted more and more attentions from academical
and industrial areas.
However, the performance of current commonly used Big Data

systems is still in a sub-optimal level. Many studies [10, 13, 17, 18]
have been trying to adopt state-of-the-art technologies in the High
Performance Computing (HPC) area to accelerate the performance
of Big Data processing. As one example of these attempts, our pre-
vious work [12, 14, 19] shows the performance of Hadoop com-
munication primitives still have huge performance improvement
potentials, and Message Passing Interface (MPI), which is widely
used in the field of HPC, can help to optimize communication per-
formance of Hadoop. Furthermore, we have proposed a key-value
pair based communication library, DataMPI [2, 14], to efficiently
execute Hadoop/Spark-like Big Data Computing jobs by extending

MPI. Since the open-source nature of these systems, it will be very
interesting for the users to know the performance characteristics of
Hadoop, Spark, and DataMPI by doing a systematical performance
evaluation on different aspects.
But one of the most important issues is how to evaluate these

various innovative Big Data systems in a fair and comprehensive
way. Many benchmarks have been proposed to help this kind of
evaluations for fitting different application scenarios, such as MR-
Bench [11], HiBench [8], YCSB [6], BigDataBench [16] and so
on. In this paper, we choose BigDataBench, a representative bench-
mark suite, to evaluate Hadoop, Spark, and DataMPI. It serves our
three needs well: a) typical workloads among a wide range of ap-
plication domains; b) providing tools to generate large volume data
efficiently; c) preserving real-world data characteristics in the gen-
erated data.
Based on BigDataBench, our study shows through high perfor-

mance communication mechanisms, DataMPI can achieve up to
55% and 39% improvements compared with Hadoop and Spark,
respectively. By profiling resource utilization, we observe the
DataMPI library can leverage system resources more efficiently
than the other two frameworks.
The rest of this paper is organized as follows. Section 2 dis-

cusses background and related work. Section 3 states our experi-
ments methodology. The evaluation results and analysis are given
in Section 4. Section 5 concludes the paper.
2. Background and Related Work
2.1 Hadoop
Hadoop [1] is an open-source implementation of the MapReduce
programming model, which is expressive to capture a wide class
of computations, and has been widely used in various areas and
applications, such as log analysis, machine learning, search engine,
etc. The success of Hadoop owes to its high scalability, built-in
fault-tolerance and simplicity of programming. A MapReduce job
of Hadoop contains several Map/Reduce tasks. Map tasks emit
key/value pairs to the corresponding Reduce tasks according to the
partition function. Reduce tasks receive and sort the intermediate
data, process the values of the same key, then output the results.

2.2 Spark
Spark [20] is a cluster computing system which can perform an-
alytics with in-memory techniques. Different from traditional in-
memory systems, Spark aims at task-parallel jobs, especially iter-
ative algorithms in machine learning and interactive data mining.
The benefits of Spark are mainly contributed from the distributed
memory abstraction, resilient distributed datasets (RDDs), which
support coarse-grained transformations. RDDs access the process
heap directly without any system calls to access the memory, which



makes them efficient. To support fault tolerance, an RDD logs the
transformations to build a dataset as its lineage, which makes the
lost RDD have enough information to recover from other RDDs.

2.3 DataMPI
DataMPI [14] is a key-value pair based communication library
which extends MPI for Hadoop/Spark-like Big Data Computing
systems. Different from the buffer-to-buffer communication in
MPI, DataMPI adopts the key-value based communication which
captures the essential communication nature in Hadoop/Spark-like
Big Data Computing systems. DataMPI implements a bipartite
communication model which supports four communication char-
acteristics of Big Data Computing systems, dichotomic, dynamic,
data-centric, and diversified. A job of DataMPI contains several
tasks which are divided into O/A communicators and form a bi-
partite graph in the underlying communication. Data movement
from O communicator to A communicator is scheduled implicitly
by the library. Concurrent running tasks are dynamically scheduled
to the corresponding communicators. For supporting data-centric,
DataMPI partitions and stores the emitted data by O tasks in mem-
ory or disk. Then, A tasks are scheduled to the corresponding
worker processes to read the intermediate data locally. Data move-
ment is pipelining with the computation overlapped in O tasks. By
buffering the intermediate data in worker processes, DataMPI can
accelerate the execution performance without redundant disk I/O
operations. DataMPI also supports fault tolerance by key-value pair
based checkpoint/restart.

2.4 BigDataBench
BigDataBench [16] is a benchmark suite for Big Data Computing.
It is abstracted from typical Internet service workloads and cov-
ers representative data sets and broad applications. BigDataBench
summarizes six emblematical application scenarios, including three
important application domains, e.g. search engine, social net-
works, and e-commerce, and three basic operation scenarios, e.g.
micro-benchmark, relational query, and basic datastore operations
“Cloud OLTP”. These scenarios contain nineteen typical applica-
tion/algorithm workloads, which consider online service, offline
service and real-time analytics. The spectrum of data types of these
workloads can be classified into structured, semi-structured, and
unstructured data with text, table, or graph data formats. Big-
DataBench provides a data generator for benchmarks based on
real life data sets, and generates the six seed models by extracting
the synthetic characteristics of corresponding real-world data sets,
including wikipedia entries, amazon movie reviews, e-commerce
transaction data and so on. Users can generate synthetic data by
scaling the seed models while keeping the characteristics of data.

2.5 Other Related Works
Recent studies [17, 18] show high performance interconnects, like
InfiniBand [3], can be used to improve the performance of Apache
Hadoop. Several technologies have been used in these works in-
cluding in-memory merging, pipelining, pre-fetching and caching.
Hadoop-RDMA [10, 13, 18] is one of the representative systems
and achieves significant performance benefits through RDMA-
capable interconnects with enhanced designs of various compo-
nents inside Hadoop, such as HDFS, RPC, MapReduce.

3. Benchmarking Methodology
In this section, we present our workloads chosen from Big-
DataBench and our evaluation methodology.

3.1 Chosen Workload
We chooseWordCount, Grep and Sort as the basic operation micro-
benchmarks, Naive Bayes and K-means as application benchmarks.

No. Workload Type
1 Sort

Micro-benchmark2 WordCount
3 Grep
4 Naive Bayes Social Network
5 K-means E-commerce

Table 1. Representative Workloads

• Basic Operations: WordCount, Grep and Sort are fundamental
and widely used operations in broad analysis processes. Word-
Count counts the number of each word occurrences in a col-
lection of documents. Grep searches strings conforming to a
certain pattern in the input documents and counts the number
of the occurrence of the matched strings. Sort sorts the records
of input files based on the value of keys. We use two input data
sets while running Sort benchmark. One is Normal Sort with
compressed sequence input data, the other is Text Sort with un-
compressed text input data.

• Applications: K-means and Naive Bayes are typical applica-
tions in social network and e-commerce scenarios. K-means is
a classical clustering algorithm in data mining which aims to
partition the input objects to k clusters by calculating the near-
est mean cluster of each object belongs to. The algorithm firstly
chooses the initial cluster centers, then uses iterative refinement
techniques to update the centroids until the bias of each centroid
between two successive iterations is less than a given threshold
value. Each iteration procedure contains two steps: assignment
and update. Naive Bayes is a probabilistic algorithm for clas-
sification. It is based on Bayes’ theorem with strong indepen-
dence assumptions, which means the features of the model are
independent with each other. The basic computation of Naive
Bayes includes calculating term frequency and maximum like-
hood. This algorithm contains two steps: model training and
classification.
Both of the two applications have various computation char-
acteristics, which can be used to evaluate the comprehensive
performance of a Big Data system.

3.2 Evaluation Methodology
We follow a seven-pronged approach to evaluate the performance
of Hadoop, Spark, and DataMPI as shown in Figure 1. We start
the performance comparison using three micro-benchmarks. Then,
we analyze the resource utilization of the systems with two micro-
benchmarks from four aspects including CPU utilization, network
I/O throughput, disk I/O throughput and memory footprint, and
calculate the efficiency of CPU and memory. To measure the effects
of system overhead, we evaluate the performance when processing
small jobs. Finally, we use two application benchmarks to evaluate
the comprehensive performance. We summarize the results along
these seven dimensions in Section 4.7.

4. Experimental Evaluation
4.1 Experiment Setup
We use a cluster composed of 8 nodes interconnected by a 1 Gigabit
Ethernet switch as our testbed. Each node is equipped with two
Intel Xeon E5620 CPU processors (2.4 GHz) with enabling the
hyper-threads. Each core has private L1 and L2 caches, and all
cores share the L3 cache. Each node has 16 GB DDR3 RAM with
1333 MHz and one 150 GB free space SATA disk. Table 2 shows
the detailed hardware configurations.
The operation system used is CentOS release 6.5 (Final) with

kernel version 2.6.32-431.el6.x86 64. The softwares used are



Micro
Benchmark
Performance

Small Job
Performance

Application
Benchmark
Performance

CPU
Efficiency

Disk I/O
Throughput

Network
Throughput

Memory
Efficiency

Figure 1. Evaluation Methodology

CPU type Intel R� Xeon E5620
# cores 4 cores @2.4G
# threads 8 threads
# sockets 2
L1 I/D Cache 32 KB
L2 Cache 256 KB
L3 Cache 12 MB
Memory 16 GB
Disk 150GB free SATA disk

Table 2. Details of Hardware Configuration

JDK 1.7.0 25, Hadoop 1.2.1, Mahout 0.8 [4], Spark 0.8.1, Scala 2.9.3
and BigDataBench 2.1. The MPI implementation is MVAPICH2-
2.0b. For all evaluations, we report results that are average across
three executions.

4.2 Chosen Parameters
Hadoop, Spark and DataMPI have abundant parameters to set in
different systems and clusters. In this section, we tune the param-
eters for fair evaluations. Among most parameters, we mainly fo-
cus on the HDFS block size and the number of tasks / workers, be-
cause the disk and network will easily become the bottleneck in our
testbed.
We use DFSIO program, a file system level benchmark of

Hadoop, as the workload for tuning HDFS block size, and Text Sort
benchmark for tuning the number of concurrent tasks / workers. We
vary the HDFS block size from 64MB to 512MB with input data
size from 5GB to 20GB, and measure the throughput. Figure 2(a)
shows when block size is 256MB, the throughput achieves the
best. When tuning the number of concurrent tasks / workers, we
measure the Text Sort throughput by processing 1GB data per
Hadoop/DataMPI task and 128MB data per Spark worker with in-
creasing the number of concurrent tasks / workers from 2 to 6 per
node. With this configuration, we can execute the Spark tests with-
out OutOfMemory Errors. Figure 2(b) shows these systems can get
the best throughput when the number of tasks / workers on each
node is 4.
Based on the two tests, we run our following evaluation based

on 256MB HDFS block size with 3 replications and 4 concurrent
tasks / workers per node.

4.3 Micro-benchmark Performance
In this section, we evaluate the performance of micro-benchmarks
among Hadoop, Spark, and DataMPI. We use BigDataBench Text

 0

 10

 20

 30

64 128 256 512

T
h
ro

u
g
h
p
u
t 
(M

B
/s

e
c
)

Block Size (MB)

5GB File
10GB File

15GB File
20GB File

(a) HDFS Block Size Tuning based on DFSIO

 50

 100

 150

 200

2 4 6

T
h
ro

u
g
h
p
u
t 
(M

B
/s

e
c
)

Number of Tasks / Workers per Node

Hadoop
Spark
DataMPI

(b) Number of Tasks /Works Tuning based on Text Sort

Figure 2. Parameter Tuning

Generator to produce the text data set. The seed model used in Text
Generator is lda wiki1w trained from wikipedia entries corpus.
The text data set is used for Text Sort, WordCount and Grep. The

input of Normal Sort is sequence data, which is converted from text
data by ToSeqFile of BigDataBench. ToSeqFile runs a MapReduce
job and copies each line of the input data to the key and value, then
compresses the output with GzipCodec. We vary the input data size
from 4GB to 64GB.
We evaluate Spark with Text Sort, WordCount and Grep work-

loads. Spark fails for OutOfMemory Errors when testing Normal
Sort and Text Sort except the 8GB case of Text Sort, even though
we allocate the memory to each worker as large as possible. As
shown in Figure 3(a) and Figure 3(b), DataMPI has 29%-33% im-
provement in Normal Sort, and 34%-42% improvement in Text
Sort compared to Hadoop. In the case of 8GB Text Sort, DataMPI
costs 69 seconds, which is 39% faster than 114 seconds in Spark.
Figure 3(c) shows the result of WordCount. DataMPI and Spark
have similar performance. Both of them have 47%-55% improve-
ments than Hadoop. A detailed analysis of Sort and WordCount
evaluations from the view of resource utilization is given in Sec-
tion 4.4. The Grep evaluation result shown in Figure 3(d) exhibits
that DataMPI cuts down the execution time by 33%-42% compared
to Hadoop and 19%-29% compared to Spark.
According to the results of micro-benchmark evaluations,

DataMPI has averagely 40% improvement than Hadoop and 14%
improvement than Spark.

4.4 Profile of Resource Utilization
In this section, we measure the resource utilization of Hadoop,
Spark, and DataMPI. The workloads of 8GB Text Sort and 32GB
WordCount are chosen to be profiled from four aspects, CPU uti-
lization, disk throughput, network throughput, and memory foot-
print. We record the total usage percentage and the CPU wait I/O



 0

 500

 1000

 1500

 2000

 2500

 3000

4 8 16 32

J
o

b
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Data Size (GB)

Hadoop Normal Sort

DataMPI Normal Sort

(a) Normal Sort

 0

 200

 400

 600

 800

 1000

 1200

 1400

8 16 32 64

J
o

b
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Data Size (GB)

Hadoop Text Sort

Spark Text Sort

DataMPI Text Sort

(b) Text Sort

 0

 150

 300

 450

 600

 750

 900

8 16 32 64

J
o
b
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Data Size (GB)

Hadoop WordCount

Spark WordCount

DataMPI WordCount

(c) WordCount

 0

 50

 100

 150

 200

 250

8 16 32 64

J
o
b
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Data Size (GB)

Hadoop Grep

Spark Grep

DataMPI Grep

(d) Grep

Figure 3. Performance Comparison of Different Micro-benchmarks

 0

 20

 40

 60

 80

 100

 120

 0  3
0

 6
0

 9
0

 1
2
0

 1
5
0

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Progression of Time (sec)

Hadoop Total Used
Spark Total Used
DataMPI Total Used

Hadoop Wait IO
Spark Wait IO
DataMPI Wait IO

(a) CPU Utilization of Sort

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  3
0

 6
0

 9
0

 1
2
0

 1
5
0

D
is

k
 T

h
ro

u
g
h
p
u
t 
(M

B
/s

e
c
)

Progression of Time (sec)

Hadoop Rd
Spark Rd
DataMPI Rd

Hadoop Wt
Spark Wt
DataMPI Wt

(b) Disk Throughput of Sort

 0

 25

 50

 75

 100

 120

 0  3
0

 6
0

 9
0

 1
2
0

 1
5
0

N
e
tw

o
rk

 T
h
ro

u
g
h
p
u
t 
(M

B
/s

e
c
)

Progression of Time (sec)

Hadoop Spark DataMPI

(c) Network Throughput of Sort

 0

 5

 10

 15

 20

 0  3
0

 6
0

 9
0

 1
2
0

 1
5
0

M
e
m

o
ry

 F
o
o
tp

ri
n
t 
(G

B
)

Progression of Time (sec)

Hadoop Spark DataMPI

(d) Memory Footprint of Sort

 0

 20

 40

 60

 80

 100

 120

 140

 0  5
0

 1
0
0

 1
5
0

 2
0
0

 2
5
0

 3
0
0

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Progression of Time (sec)

Hadoop Total Used
Spark Total Used
DataMPI Total Used

Hadoop Wait IO
Spark Wait IO
DataMPI Wait IO

(e) CPU Utilization of WordCount

 0

 20

 40

 60

 80

 100

 120

 0  5
0

 1
0
0

 1
5
0

 2
0
0

 2
5
0

 3
0
0

D
is

k
 T

h
ro

u
g
h
p
u
t 
(M

B
/s

e
c
)

Progression of Time (sec)

Hadoop Rd
Spark Rd
DataMPI Rd

Hadoop Wt
Spark Wt
DataMPI Wt

(f) Disk Throughput of WordCount

 0

 20

 40

 60

 80

 100

 120

 0  5
0

 1
0
0

 1
5
0

 2
0
0

 2
5
0

 3
0
0

N
e
tw

o
rk

 T
h
ro

u
g
h
p
u
t 
(M

B
/s

e
c
)

Progression of Time (sec)

Hadoop Spark DataMPI

(g) Network Throughput of WordCount

 0

 5

 10

 15

 20

 0  5
0

 1
0
0

 1
5
0

 2
0
0

 2
5
0

 3
0
0

M
e
m

o
ry

 F
o
o
tp

ri
n
t 
(G

B
)

Progression of Time (sec)

Hadoop Spark DataMPI

(h) Memory Footprint of WordCount

Figure 4. Resource Utilization of Different Benchmarks

percentage. A high CPU wait I/O percentage means CPU costs
most of time to wait for I/O operations to complete.
In the 8GB Text Sort case, DataMPI costs 69 seconds while

Hadoop and Spark cost 117 seconds and 114 seconds, respectively.
The O phase of DataMPI costs 28 seconds (O tasks execute dur-
ing O phase), the Map phase of Hadoop costs 36 seconds and the
Stage 0 of Spark costs 38 seconds (During Stage 0, Spark loads
the data from HDFS and creates the RDD for next execution).
The result of CPU utilization is shown in Figure 4(a). Consider-
ing the average CPU utilization during 0-117 secondes, DataMPI,
Spark, and Hadoop get 24%, 38%, and 37%. The average CPU
wait I/O percentages of DataMPI, Spark, and Hadoop are 6%, 12%,
and 15%. Figure 4(b) shows the disk throughput. The average disk
read throughputs of DataMPI O phase, Hadoop Map phase, and
Spark Stage 0 are 50MB/sec, 49MB/sec, and 46MB/sec. The av-
erage disk write throughputs of DataMPI, Hadoop, and Spark are
69MB/sec, 67MB/sec, and 66MB/sec. This means these systems
have similar disk I/O throughput performance in this test case. Fig-
ure 4(c) shows the network throughput. DataMPI achieves aver-
agely 62MB/sec, which is 59% higher than 39MB/sec in Hadoop
and 55% higher than 40MB/sec in Spark. Besides the HDFS com-
munication, we should notice that the communication caused by
data movement from O communicator to A communicator mainly
happens in DataMPI O phase. Figure 4(d) shows the memory foot-
print. The average memory usages of DataMPI, Spark, and Hadoop
during 0-117 seconds are 5GB, 9GB, and 5GB.

In the case of WordCount, DataMPI and Spark cost almost the
same execution time, 130 seconds, and improve the total execu-
tion time by 53% compared to 275 seconds in Hadoop. Figure 4(e)
shows the CPU utilization. Considering the average CPU utiliza-
tion during 0-275 seconds, DataMPI, Spark, and Hadoop get 47%,
30%, and 80%. Spark also has 8% CPU wait I/O. Figure 4(f)
shows the average read throughputs of DataMPI and Spark are
nearly 44MB/sec which is much more efficient than 20MB/sec in
Hadoop. Figure 4(g) shows both of DataMPI and Hadoop have few
network overhead while Spark has averagely 25MB/sec through-
put. There are two reasons. One is that the O/Map tasks read the
HDFS data locally and do not have network communication which
is different from Spark. The other is that the word dictionary of
the input files is small and few intermediate data is generated. Fig-
ure 4(h) shows the average memory usages of DataMPI, Spark, and
Hadoop during 0-275 seconds are 5GB, 5GB, and 9GB.
From these cases, we observe that DataMPI can achieve higher

network throughput than Hadoop and Spark. Compared to Hadoop,
both of DataMPI and Spark can use memory more efficiently to
cache intermediate data to reduce execution time.

4.5 Small Jobs
According to [5], more than 90% of MapReduce jobs in Facebook
and Yahoo! are small jobs. The input data sizes of these jobs are
usually kilo or mega bytes. The system overhead of initialization
and finalization has a serious impact on performance of these jobs.



 0

 10

 20

 30

 40

 50

Text Sort WordCount Grep

J
o

b
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Different Micro Benchmarks

Hadoop

Spark

DataMPI

Figure 5. Performance Comparison Based on Small Jobs

 0

 100

 200

 300

 400

 500

8 16 32 64

J
o

b
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Data Size (GB)

Hadoop K-means

Spark K-means

DataMPI K-means

(a) K-means

 0

 200

 400

 600

 800

 1000

 1200

8 16 32 64

J
o

b
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Data Size (GB)

Hadoop Naive Bayes

DataMPI Naive Bayes

(b) Naive Bayes

Figure 6. Performance Comparison of Application Benchmarks

In this section, we compare the performance of Hadoop, Spark, and
DataMPI when doing the micro-benchmarks of Text Sort, Word-
Count and Grep. The input data of each benchmark is 128MB. The
number of the concurrent tasks/works is one per node. Figure 5
shows that DataMPI has similar performance with Spark, and is
averagely 54% more efficient than Hadoop.

4.6 Application Benchmark Performance
In this section, we present the results of the application evalu-
ations. The implementations of K-means and Naive Bayes for
Hadoop used by BigDataBench come from Mahout. We first ex-
plain the processing characteristics of these applications from the
implementation-level and then give the performance results.

K-means: The input data set is generated by Text Generator,
in which five seed models, amazon1-amazon5, are used. Using
genData Kmeans of BigDataBench, text files are converted to se-
quence files from directory, then to the sparse vectors which are
the input data of training clusters. Our evaluations are based on
the sparse vectors and mainly focus on the performance of training
execution. As stated in Section 3.1, K-means trains the cluster cen-

troids iteratively. Each iterative execution in Mahout is a MapRe-
duce job. In one job, Map tasks read the initial or previous clus-
ter centroids from HDFS, afterwards, assign the input vectors to
appropriate clusters according to the distance calculation and train
the new centroids independently. At the end of Map tasks, new cen-
troids will be sent to the Reduce tasks according to the cluster in-
dexes. Reduce tasks receive and update the centroids for next itera-
tion. We observe that most of K-means calculation happens in Map
phase, and few intermediate data is generated. We transplant the
Mahout K-means actuating logic to DataMPI and integrate some
Mahout basic data structures in the implementation of DataMPI K-
means.
Our tests show Spark have outstanding performance when do-

ing the iteration computations after caching the data in the RDDs.
For fair comparison with Hadoop, we record the execution time of
the first iteration from the job start, which considering the overhead
of loading data, computing and outputing results. Figure 6(a) shows
that DataMPI has at most 39% improvement than Hadoop and 33%
improvement than Spark when the input data size varies from 8 GB
to 64 GB. In the future, we will give a detail performance compar-
ison between Spark and DataMPI in the iterative applications.

Naive Bayes:We also use Text Generator to generate the input
document set. By default, these documents are classified into five
categories according to their dependent seed models, e.g. amazon1-
amazon5. The procedure of Naive Bayes mainly contains two steps,
including converting sequence files to sparse vectors and training
the Naive Bayes model. Mahout runs several MapReduce jobs to
create the sparse vectors. Firstly, one document is converted to a
token array. After that, someMapReduce jobs are launched to count
the term frequency in one document and document frequency of all
terms. The sparse vector of one document is calculated according
to the term frequency and document frequency. The main operation
in steps above is counting, including term counting and document
counting, which means that the characteristics of Naive Bayes is
similar to WordCount. In our evaluation cases, the data sizes of
sparse vector and term-counting dictionary are within several mega
bytes. The model training contains two MapReduce jobs which do
the probabilistic computing. These two jobs cost less time than the
sparse vectors creating for the simple calculating and small input
data size.
The latest BigDataBench lacks the implementation of Naive

Bayes in Spark. We only compare the performance of this bench-
mark between DataMPI and Hadoop. Figure 6(b) shows DataMPI
has 33 % improvement than Hadoop averagely, which is con-
tributed by the high efficient data communication and computa-
tion of DataMPI in term occurrence counting and term frequency
calculation, as we have explained in Section 4.4.

4.7 Discussion of Performance Results
We summarize the performance comparisons with different bench-
marks using seven-pronged diagram presented earlier, depicted in
Figure 7. Compared to Hadoop, DataMPI can averagely achieve
40%, 54%, and 36% performance improvements when running
micro-benchmarks, small jobs, and application benchmarks. Com-
pared to Spark, DataMPI can achieve 14% and 33% performance
improvements when running micro-benchmarks and application
benchmarks. DataMPI and Spark have similar performance when
running small jobs. From the two cases, the average CPU utiliza-
tions of DataMPI, Spark, and Hadoop are 35%, 34%, and 59%,
which means DataMPI and Spark can use CPU 39% and 41% more
efficiently than Hadoop. DataMPI and Spark achieve similar disk
I/O throughput which have averagely 49% improvement compared
to Hadoop. DataMPI achieves 55% and 59% network throughput
improvements than Spark and Hadoop, respectively. We observe
both DataMPI and Spark can efficiently utilize memory to accel-



Micro
Benchmark
Performance

Small Job
Performance

Application
Benchmark
Performance

CPU
Efficiency

Disk I/O
Throughput

Network
Throughput

Memory
Efficiency

DataMPI

Spark

Hadoop

Figure 7. Evaluation Results

erate the execution performance. These benefits of DataMPI come
from the high performance communication design which is able to
leverage system resources to pipeline the computation and commu-
nication operations efficiently.

5. Conclusion
In this paper, we provide a comprehensive performance evalua-
tion of Hadoop, Spark, and DataMPI based on BigDataBench.
We choose three micro benchmarks (Sort, WordCount and Grep)
and two application benchmarks (K-means and Naive Bayes) as
our workloads. Based on two typical micro-benchmark cases,
we present a detailed resource utilization analysis of the three
systems. Our evaluation shows DataMPI can achieve 29%-55%
performance improvements compared to Hadoop with the mirco-
benchmarks, and up to 39% performance improvements compared
to Spark. The small job tests show the overheads of DataMPI
and Spark are low, and this makes them gain 54% performance
improvement compared to Hadoop. Evaluations of Naive Bayes
and K-means benchmarks show DataMPI can achieve 33%-39%
application-level performance than Hadoop and Spark.

6. Acknowledgments
We are very grateful to Dr. Lei Wang and Zijian Ming for their
help to support this research, and also to the anonymous reviewers.
This work is supported in part by the Strategic Priority Program of
Chinese Academy of Sciences (Grant No. XDA06010401).

References
[1] The Apache Hadoop Project. http://hadoop.apache.org.
[2] The DataMPI Project. http://datampi.org.
[3] Infiniband Trade Association. http://www.infinibandta.org.
[4] Apache Mahout Project. https://mahout.apache.org/.
[5] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The Case for Evaluat-

ing MapReduce Performance Using Workload Suites. In Proceedings
of the 19th International Symposium on Modeling, Analysis Simula-
tion of Computer and Telecommunication Systems (MASCOTS ’11),
Singapore, 2011.

[6] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing (SoCC ’10), New York,
NY, USA, 2010. ACM.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Communications of the ACM, 51(1):107–113, 2008.

[8] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The HiBench Bench-
mark Suite: Characterization of the MapReduce-based Data Analysis.

In Proceedings of the 26th International Conference on Data Engi-
neering Workshops (ICDEW ’10), Long Beach, CA, USA, 2010.

[9] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed Data-Parallel Programs from Sequential Building Blocks.
ACM SIGOPS Operating Systems Review, 41(3):59–72, 2007.

[10] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang,
H. Subramoni, C. Murthy, and D. K. Panda. High Performance
RDMA-based Design of HDFS over InfiniBand. In Proceedings of
the 25th International Conference on High Performance Computing,
Networking, Storage and Analysis (SC ’12), Salt Lake City, UT, USA,
2012.

[11] K. Kim, K. Jeon, H. Han, S. gyu Kim, H. Jung, and H. Yeom. MR-
Bench: A Benchmark for MapReduce Framework. In Proceedings of
the 14th International Conference on Parallel and Distributed Systems
(ICPADS ’08), Melbourne, Victoria, Australia, 2008.

[12] X. Lu, B. Wang, L. Zha, and Z. Xu. Can MPI Benefit Hadoop and
MapReduce Applications? In Proceedings of the 40th International
Conference on Parallel Processing Workshops (ICPPW ’11), Taipei,
China, 2011.

[13] X. Lu, N. S. Islam, M. Wasi-Ur-Rahman, J. Jose, H. Subramoni,
H. Wang, and D. K. Panda. High-Performance Design of Hadoop RPC
with RDMA over InfiniBand. In Proceedings of the 42nd International
Conference on Parallel Processing (ICPP ’13), Lyon, France, 2013.

[14] X. Lu, F. Liang, B. Wang, L. Zha, and Z. Xu. DataMPI: Extending
MPI to Hadoop-like Big Data Computing. In Proceedings of the 28th
International Parallel and Distributed Processing Symposium (IPDPS
’14), Phoenix, AZ, USA, 2014.

[15] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed
Stream Computing Platform. In Proceedings of the 10th IEEE Interna-
tional Conference on Data Mining Workshops (ICDMW ’10), Sydney,
Australia, 2010.

[16] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,
Y. Shi, S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu.
BigDataBench: a Big Data Benchmark Suite from Internet Services.
In Proceedings of the 20th IEEE International Symposium On High
Performance Computer Architecture (HPCA ’14), Orlando, FL, USA,
2014.

[17] Y. Wang, X. Que, W. Yu, D. Goldenberg, and D. Sehgal. Hadoop
Acceleration Through Network Levitated Merge. In Proceedings of
the 24th International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’11), New York, NY, USA,
2011.

[18] M. Wasi-ur Rahman, N. Islam, X. Lu, J. Jose, H. Subramoni, H. Wang,
and D. Panda. High-Performance RDMA-based Design of Hadoop
MapReduce over InfiniBand. In Proceedings of the 27th International
Symposium on Parallel and Distributed Processing Workshops and
PhD Forum (IPDPSW ’13), Cambridge, MA, USA, 2013.

[19] Z. Xu. High-Performance Techniques for Big Data Computing in
Internet Services. Salt Lake City, UT, USA, 2012. Proceeding of the
2012 SC Companion: High Performance Computing (SC ’12).

[20] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. Franklin, S. Shenker, and I. Stoica. Resilient Distributed Datasets:
A Fault-tolerant Abstraction for In-memory Cluster Computing. In
Proceedings of the 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’12), San Jose, CA, USA, 2012.


