Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
John C. Mitchell, USA
Bernhard Steffen, Germany
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Takeo Kanade, USA
Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland
Moni Naor, Israel
C. Pandu Rangan, India

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome 'La Sapienza', Italy
Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board
Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, City University of Hong Kong
Jeannette M.Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

Hee-Kap Ahn • Chan-Su Shin (Eds.)

Algorithms and Computation

25th International Symposium, ISAAC 2014 Jeonju, Korea, December 15-17, 2014 Proceedings

Springer

Editors

Hee-Kap Ahn
Pohang University of Science and Technology
Pohang
Korea, Republic of (South Korea)

Chan-Su Shin
Hankuk University of Foreign Studies
Yongin-si
Korea, Republic of (South Korea)

ISSN 0302-9743
ISSN 1611-3349 (electronic)
ISBN 978-3-319-13074-3
ISBN 978-3-319-13075-0 (eBook)
DOI 10.1007/978-3-319-13075-0

Library of Congress Control Number: 2014955201
LNCS Sublibrary: SL1 - Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The papers in this volume were presented at the 25th International Symposium on Algorithms and Computation (ISAAC 2014), held in Jeonju, South Korea, during December 15-17, 2014. In the past, ISAAC was held in Tokyo (1990), Taipei (1991), Nagoya (1992), Hong Kong (1993), Beijing (1994), Cairns (1995), Osaka (1996), Singapore (1997), Taejon (1998), Chennai (1999), Taipei (2000), Christchurch (2001), Vancouver (2002), Kyoto (2003), Hong Kong (2004), Hainan (2005), Kolkata (2006), Sendai (2007), Gold Coast (2008), Hawaii (2009), Jeju (2010), Yokohama (2011), Taipei (2012), and Hong Kong (2013) over 25 years from 1990 to 2014.

ISAAC is an acclaimed annual international symposium that covers a wide range of topics in algorithms and theory of computation, and that provides a forum for researchers where they can exchange ideas in this active research community. In response to the call for papers, ISAAC 2014 received 171 submissions from 38 countries. Each submission was reviewed by at least three Program Committee members with the assistance of 189 external reviewers. Through extensive discussion, the Program Committee selected 60 papers for presentation in ISAAC 2014. Two special issues, one of Algorithmica and one of International Journal of Computational Geometry and Applications, are prepared for some selected papers among the presented ones in ISAAC 2014.

The best paper award was given to "Concentrated Hitting Times of Randomized Search Heuristics with Variable Drift" by Per Kristian Lehre and Carsten Witt. Two eminent invited speakers, Ulrik Brandes from University of Konstanz, Germany and Giuseppe F. Italiano from Università di Roma "Tor Vergata", Italy, gave interesting invited talks at the conference.

We would like to thank all Program Committee members and external reviewers for their excellent work in the difficult review and selection process. We would like to thank all authors who submitted papers for our consideration; they all contributed to the high quality of the conference. We would like to thank Conference Chair Kunsoo Park and Organizing Committee members for their dedicated contribution. Finally, we would like to thank our conference volunteers, sponsor SRC-GAIA (Center for Geometry and Its Applications), and supporting organizations KIISE (The Korean Institute of Information Scientists and Engineers) and SIGTCS (Special Interest Group on Theoretical Computer Science) of KIISE for their assistance and support.

Organization

Program Committee

Hee-Kap Ahn
Peter Brass
Gerth Stølting Brodal
Xavier Goaoc
Simon Gog
Mordecai Golin

Roberto Grossi
Sungjin Im
Rahul Jain
Akinori Kawachi
Christian Knauer
Pinyan Lu
Kazuhisa Makino
Peter Bro Miltersen
Wolfgang Mulzer
Joong Chae Na
Srinivasa Rao Satti
Saket Saurabh
Tetsuo Shibuya
Chan-Su Shin
Michiel Smid
Hisao Tamaki
Gerhard Woeginger
Alexander Wolff
Bang Ye Wu
Chee Yap
Hsu-Chun Yen
Louxin Zhang
Peng Zhang
Xiao Zhou
Binhai Zhu

Pohang University of Science and Technology, South Korea
City College of New York, USA
Aarhus University, Denmark
University Paris-Est Marne-la-Vallé, France
University of Melbourne, Australia
Hong Kong University of Science and Technology, Hong Kong
University of Pisa, Italy
University of California, Merced, USA
National University of Singapore, Singapore
Tokyo Institute of Technology, Japan
Universität Bayreuth, Germany
Microsoft Research Asia, China
RIMS, Kyoto University, Japan
Aarhus University, Denmark
Freie Universität Berlin, Germany
Sejong University, South Korea
Seoul National University, South Korea
Institute of Mathematical Sciences, India
University of Tokyo, Japan
Hankuk University of Foreign Studies, South Korea
Carleton University, Canada
Meiji University, Japan
Eindhoven University of Technology, The Netherlands
Universität Würzburg, Germany
National Chung Cheng University, Taiwan
New York University, USA
National Taiwan University, Taiwan
National University of Singapore, Singapore
Shandong University, China
Tohoku University, Japan
Montana State University, USA

Additional Reviewers

Alt, Helmut
Anagnostopoulos, Aris
Anshu, Anurag
Antoniadis, Antonios
Asinowski, Andrei
Bae, Sang Won
Barba, Luis
Barbay, Jérémy
Bille, Philip
Bonichon, Nicolas
Bonsma, Paul
Brandstadt, Andreas
Braverman, Vladimir
Cabello, Sergio
Cela, Eranda
Chang, Ching-Lueh
Chang, Jou-Ming
Chen, Ho-Lin
Chen, Jiecao
Chen, Xin
Chlamtac, Eden
Colin de Verdière, Éric
Da Lozzo, Giordano
Devillers, Olivier
Dobbins, Michael Gene
Dürr, Christoph
Elbassioni, Khaled
Elmasry, Amr
Epstein, Leah
Fernau, Henning
Fiorini, Samuel
Fleszar, Krzysztof
Fuchs, Fabian
Fukunaga, Takuro
Giannopoulos, Panos
Giaquinta, Emanuele
Golovach, Petr
Grunert, Romain
Gunawan, Andreas D.M.
Gupta, Ankur
Gupta, Sushmita
Gurski, Frank
Hajiaghayi, Mohammadtaghi
Hatano, Kohei

He, Meng
Henze, Matthias
Higashikawa, Yuya
Hsieh, Sun-Yuan
Huang, Guan-Shieng
Hubard, Alfredo
Imai, Tatsuya
Ishii, Toshimasa
Ito, Takehiro
Ivanyos, Gabor
Jaume, Rafel
Jiang, Minghui
Jo, Seungbum
Johnson, Matthew
Kakoulis, Konstantinos
Kamiyama, Naoyuki
Kavitha, Telikepalli
Kim, Heuna
Kim, Jin Wook
Kim, Sung-Ryul
Kindermann, Philipp
Kiraly, Tamas
Klauck, Hartmut
Kobayashi, Yusuke
Kolay, Sudeshna
Kortsarz, Guy
Kratsch, Dieter
Kriegel, Klaus
Kuang, Jian
Kulkarni, Raghav
Laekhanukit, Bundit
Lampis, Michael
Langetepe, Elmar
Le Gall, Francois
Lee, Inbok
Lee, Mun-Kyu
Lee, Troy
Leike, Jan
Levin, Asaf
Li, Liang
Liao, Chung-Shou
Lin, Chengyu
Lin, Chun-Cheng
Liotta, Giuseppe

Liu, Jingcheng	Sadakane, Kunihiko
Liu, Zhengyang	Sarrabezolles, Pauline
M.S., Ramanujan	Schneider, Stefan
Mcauley, Julian	Schulz, André
Megow, Nicole	Seiferth, Paul
Mestre, Julian	Seto, Kazuhisa
Misra, Neeldhara	Shah, Rahul
Miura, Kazuyuki	Shao, Mingfu
Mizuki, Takaaki	Shioura, Akiyoshi
Mondal, Debajyoti	Sim, Jeong Seop
Montanaro, Ashley	Sitters, Rene
Montenegro, Ravi	Spoerhase, Joachim
Mori, Ryuhei	Stehn, Fabian
Mukherjee, Joydeep	Stein, Yannik
Mustafa, Nabil	Suzuki, Akira
Navarro, Gonzalo	Sæther, Sigve Hortemo
Nies, Andre	Takazawa, Kenjiro
Nishimura, Harumichi	Tamaki, Suguru
O Dunlaing, Colm	Tani, Seiichiro
Ochem, Pascal	Tanigawa, Shin-Ichi
Ohlebusch, Enno	Ting, Chuan-Kang
Okamoto, Yoshio	Tong, Weitian
Onodera, Taku	Tsur, Dekel
Osipov, Vitaly	Uchizawa, Kei
Otachi, Yota	Uno, Takeaki
Oudot, Steve	Upadhyay, Sarvagya
Panolan, Fahad	van Iersel, Leo
Park, Heejin	van Stee, Rob
Paulusma, Daniel	Vialette, Stephane
Peleg, David	Vind, Søren
Peng, Dongliang	Wahlström, Magnus
Peng, Pan	Wakabayashi, Yoshiko
Petri, Matthias	Wang, Bow-Yaw
Pilaud, Vincent	Wang, Hung-Lung
Pilipczuk, Michal	Wang, Menghui
Poon, Sheung-Hung	Wang, Yue-Li
Praveen, M.	Wu, Chenchen
Pruhs, Kirk	Wu, Zhilin
Pérez-Lantero, Pablo	Wulff-Nilsen, Christian
Rahman, Md. Saidur	Xia, Mingji
Rai, Ashutosh	Xiao, Mingyu
Rautenbach, Dieter	Xiao, Tao
Rotbart, Noy	Xu, Ning
Rote, Günter	Yamamoto, Masaki
Rutter, Ignaz	Yang, Chang-Biau
Sabharwal, Yogish	Yang, De-Nian

Yang, Kuan	Zhang, Jialin
Yasunaga, Kenji	Zhang, Shengyu
Ye, Deshi	Zhang, Yong
Zaffanella, Enea	Zielinski, Pawel
Zhang, Chihao	

Invited Talks

Biconnectivity in Directed Graphs ${ }^{\star}$

Giuseppe F. Italiano
Univ. of Rome "Tor Vergata", Via del Politecnico 1, 00133 Roma, Italy
giuseppe.italiano@uniroma2.it

Edge and vertex connectivity are fundamental concepts in graph theory with numerous practical applications. Given an undirected graph $G=(V, E)$, an edge is a bridge if its removal increases the number of connected components of G. Graph G is 2-edge-connected if it has no bridges. The 2-edge-connected components of G are its maximal 2-edge-connected subgraphs. Two vertices v and w are 2-edge-connected if there are two edge-disjoint paths between v and w : we denote this relation by $v \leftrightarrow_{2 \mathrm{e}} w$. Equivalently, by Menger's Theorem, v and w are 2-edge-connected if the removal of any edge leaves them in the same connected component. Analogous definitions can be given for 2-vertex connectivity. In particular, a vertex is an articulation point if its removal increases the number of connected components of G. A graph G is 2-vertex-connected if it has at least three vertices and no articulation points. The 2-vertex-connected components of G are its maximal 2-vertex-connected subgraphs. Two vertices v and w are 2 -vertex-connected if there are two internally vertex-disjoint paths between v and w : we denote this relation by $v \leftrightarrow_{2 \mathrm{v}} w$. If v and w are 2-vertex-connected then Menger's Theorem implies that the removal of any vertex different from v and w leaves them in the same connected component. The converse does not necessarily hold, since v and w may be adjacent but not 2 -vertex-connected. It is easy to show that $v \leftrightarrow_{2 \mathrm{e}} w$ (resp., $v \leftrightarrow_{2 \mathrm{v}} w$) if and only if v and w are in a same 2 -edge-connected (resp., 2-vertex-connected) component. All bridges, articulation points, 2-edge- and 2-vertex-connected components of undirected graphs can be computed in linear time essentially by the same algorithm based on depth-first search.

While edge and vertex connectivity have been thoroughly studied in the case of undirected graphs, surprisingly not much has been investigated for directed graphs. Given a directed graph G, an edge (resp., a vertex) is a strong bridge (resp., a strong articulation point) if its removal increases the number of strongly connected components of G. A directed graph G is 2-edge-connected (resp., 2-vertex-connected) if it has no strong bridges (resp., strong articulation points and has at least three vertices). The 2-edge-connected (resp., 2-vertex-connected) components of G are its maximal 2-edge-connected (resp., 2-vertex-connected) subgraphs. Similarly to the undirected case, we say that two vertices v and w are 2-edge-connected (resp., 2-vertex-connected), and we denote this relation by

[^0]$v \leftrightarrow_{2 \mathrm{e}} w$ (resp., $v \leftrightarrow_{2 \mathrm{v}} w$), if there are two edge-disjoint (resp., internally vertexdisjoint) directed paths from v to w and two edge-disjoint (resp., internally vertex-disjoint) directed paths from w to v. (Note that a path from v to w and a path from w to v need not be edge-disjoint or vertex-disjoint). It is easy to see that $v \leftrightarrow_{2 \mathrm{e}} w$ if and only if the removal of any edge leaves v and w in the same strongly connected component. Similarly, $v \leftrightarrow_{2 \mathrm{v}} w$ implies that the removal of any vertex different from v and w leaves v and w in the same strongly connected component. We define a 2 -edge-connected block (resp., 2-vertex-connected block) of a directed graph $G=(V, E)$ as a maximal subset $B \subseteq V$ such that $u \leftrightarrow_{2 \mathrm{e}} v$ (resp., $u \leftrightarrow_{2 \mathrm{v}} v$) for all $u, v \in B$. It can be seen that, differently from undirected graphs, in directed graphs 2-edge- and 2-vertexconnected blocks do not correspond to 2-edge-connected and 2-vertex-connected components.

Furthermore, these notions seem to have a much richer (and more complicated) structure in directed graphs. Just to give an example, we observe that while in the case of undirected connected graphs the 2-edge-connected components (which correspond to the 2-edge-connected blocks) are exactly the connected components left after the removal of all bridges, for directed strongly connected graphs the 2-edge-connected components, the 2-edge-connected blocks, and the strongly connected components left after the removal of all strong bridges are not necessarily the same.

In this talk, we survey some very recent work on 2-edge and 2-vertex connectivity in directed graphs, both from the theoretical and the practical viewpoint.

Social Network Algorithmics ${ }^{\star}$

Ulrik Brandes
Computer \& Information Science, University of Konstanz

Network science is a burgeoning domain of data analysis in which the focus is on structures and dependencies rather than populations and independence [1]. Social network analysis is network science applied to the empirical study of social structures, typically utilizing observations on social relationships to analyze the actors involved in them [2].

Methods for the analysis of social networks abound. They include, for instance, numerous centrality indices, vertex equivalences, and clustering techniques, many of which are applied on networks in other disciplines as well. For substantively oriented analysts, however, it is often difficult to choose, let alone justify, a particular variant method. Similarly, it is difficult for researchers interested in computational aspects to understand which methods are worthwhile to consider and whether variants and restrictions are meaningful and relevant.

In an attempt to bridge the gap between theory and methods, and drawing on a substantial record of interdisciplinary cooperation, we have developed a comprehensive research program, the positional approach to network analysis. It provides a unifying framework for network analysis in the pursuit of two closely related goals:

1. to establish a science of networks, and
2. to facilitate mathematical and algorithmic research.

The first caters to methodologists and social scientists: by embracing measurement theory, network-analytic methods are opened up for theoretical justification and detailed empirical testing. The second caters to mathematicians and computer scientists: by structuring the space of methods, gaps and opportunities are exposed.

After a brief introduction and delineation of network science and social network analysis, the main elements of the positional approach are introduced in this talk. I will then concentrate on exemplary instantiations for analytic concepts such as centrality, roles, and cohesion. Particular emphasis is placed on resulting combinatorial and algorithmic challenges involving, for instance, partial orders, graphs, and path algebras.

[^1]
References

1. Brandes, U., Robins, G., McCranie, A., Wasserman, S.: What is network science? Network Science 1(1), 1-15 (2013)
2. Hennig, M., Brandes, U., Pfeffer, J., Mergel, I.: Studying Social Networks - A Guide to Empirical Research. Campus, Frankfurt/New York (2012)

Contents

Computational Geometry I
Line-Constrained k-Median, k-Means, and k-Center Problems in the Plane 3
Haitao Wang and Jingru Zhang
Reconstructing Point Set Order Types from Radial Orderings 15
Oswin Aichholzer, Jean Cardinal, Vincent Kusters, Stefan Langerman, and Pavel Valtr
A Randomized Divide and Conquer Algorithm for Higher-Order Abstract Voronoi Diagrams 27
Cecilia Bohler, Chih-Hung Liu, Evanthia Papadopoulou, and Maksym Zavershynskyi
Combinatorial Optimization I
Average-Case Complexity of the Min-Sum Matrix Product Problem 41
Ken Fong, Minming Li, Hongyu Liang, Linji Yang, and Hao Yuan
Efficiently Correcting Matrix Products 53
Leszek Gqasieniec, Christos Levcopoulos, and Andrzej Lingas
3D Rectangulations and Geometric Matrix Multiplication 65
Peter Floderus, Jesper Jansson, Christos Levcopoulos, Andrzej Lingas, and Dzmitry Sledneu
Graph Algorithms: Enumeration
Enumeration of Maximum Common Subtree Isomorphisms with Polynomial-Delay 81
Andre Droschinsky, Bernhard Heinemann, Nils Kriege, and Petra Mutzel
Efficient Enumeration of Induced Subtrees in a K-Degenerate Graph 94
Kunihiro Wasa, Hiroki Arimura, and Takeaki Uno
An Efficient Method for Indexing All Topological Orders of a Directed Graph 103
Yuma Inoue and Shin-ichi Minato
Matching and Assignment I
Planar Matchings for Weighted Straight Skeletons 117
Therese Biedl, Stefan Huber, and Peter Palfrader
Orienting Dynamic Graphs, with Applications to Maximal Matchings and Adjacency Queries 128
Meng He, Ganggui Tang, and Norbert Zeh
Dynamic and Multi-Functional Labeling Schemes 141
Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Noy Rotbart
Data Structures and Algorithms I
Hashing and Indexing: Succinct Data Structures and Smoothed Analysis. 157
Alberto Policriti and Nicola Prezza
Top-k Term-Proximity in Succinct Space 169
J. Ian Munro, Gonzalo Navarro, Jesper Sindahl Nielsen, Rahul Shah, and Sharma V. Thankachan
The Power and Limitations of Static Binary Search Trees with Lazy Finger 181
Presenjit Bose, Karim Douïeb, John Iacono, and Stefan Langerman
Fixed-Parameter Tractable Algorithms
Minimum-Cost b-Edge Dominating Sets on Trees 195
Takehiro Ito, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, and Yoshio Okamoto
Fixed-Parameter Tractability of Token Jumping on Planar Graphs 208
Takehiro Ito, Marcin Kamiński, and Hirotaka Ono
Covering Problems for Partial Words and for Indeterminate Strings 220
Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń
Scheduling Algorithms
Dynamic Interval Scheduling for Multiple Machines. 235
Alexander Gavruskin, Bakhadyr Khoussainov, Mikhail Kokho, and Jiamou Liu
Throughput Maximization in Multiprocessor Speed-Scaling 247
Eric Angel, Evripidis Bampis, Vincent Chau, and Nguyen Kim Thang
Speed-Scaling with No Preemptions 259
Evripidis Bampis, Dimitrios Letsios, and Giorgio Lucarelli

Computational Complexity

A Short Implicant of a CNF Formula with Many Satisfying Assignments 273
Daniel M. Kane and Osamu Watanabe
On the Computational Complexity of Vertex Integrity and Component Order Connectivity 285
Pål Grønås Drange, Markus Sortland Dregi, and Pim van't Hof
Co-Clustering Under the Maximum Norm 298
Laurent Bulteau, Vincent Froese, Sepp Hartung, and Rolf Niedermeier
Computational Geometry II
The Price of Order 313
Prosenjit Bose, Pat Morin, and André van Renssen
Range Queries on Uncertain Data 326
Jian Li and Haitao Wang
On the Most Likely Voronoi Diagram and Nearest Neighbor Searching 338
Subhash Suri and Kevin Verbeek
Approximation Algorithms
An Improved Approximation Algorithm for the Minimum Common Integer Partition Problem 353
Weitian Tong and Guohui Lin
Positive Semidefinite Relaxation and Approximation Algorithm for Triple Patterning Lithography 365
Tomomi Matsui, Yukihide Kohira, Chikaaki Kodama, and Atsushi Takahashi
An FPTAS for the Volume Computation of 0-1 Knapsack Polytopes Based on Approximate Convolution Integral 376
Ei Ando and Shuji Kijima
Graph Theory and Algorithms
Polynomial-Time Algorithm for Sliding Tokens on Trees 389
Erik D. Demaine, Martin L. Demaine, Eli Fox-Epstein, Duc A. Hoang, Takehiro Ito, Hirotaka Ono, Yota Otachi, Ryuhei Uehara, and Takeshi Yamada
Minimal Obstructions for Partial Representations of Interval Graphs. 401
Pavel Klavík and Maria Saumell
Faster Algorithms for Computing the R^{*} Consensus Tree 414
Jesper Jansson, Wing-Kin Sung, Hoa Vu, and Siu-Ming Yiu
Fixed-Parameter Tractable Algorithms II
Complexity and Kernels for Bipartition into Degree-Bounded Induced Graphs 429
Mingyu Xiao and Hiroshi Nagamochi
Faster Existential FO Model Checking on Posets 441
Jakub Gajarský, Petr Hliněný, Jan Obdržálek, and Sebastian Ordyniak
Vertex Cover Reconfiguration and Beyond 452
Amer E. Mouawad, Naomi Nishimura, and Venkatesh Raman
Graph Algorithms: Approximation I
Approximating the Maximum Internal Spanning Tree Problem via a Maximum Path-Cycle Cover 467
Xingfu Li and Daming Zhu
Approximation Algorithms Inspired by Kernelization Methods 479
Faisal N. Abu-Khzam, Cristina Bazgan, Morgan Chopin, and Henning Fernau
An 5/4-Approximation Algorithm for Sorting Permutations by Short Block Moves 491
Haitao Jiang, Haodi Feng, and Daming Zhu
Online and Approximation Algorithms
Lower Bounds for On-line Graph Colorings 507
Grzegorz Gutowski, Jakub Kozik, Piotr Micek, and Xuding Zhu
An On-line Competitive Algorithm for Coloring P_{8}-free Bipartite Graphs 516
Piotr Micek and Veit Wiechert
Bounds on Double-Sided Myopic Algorithms for Unconstrained Non-monotone Submodular Maximization 528
Norman Huang and Allan Borodin
Data Structures and Algorithms II
Tradeoff Between Label Space and Auxiliary Space for Representation of Equivalence Classes 543
Hicham El-Zein, J. Ian Munro, and Venkatesh Raman
Depth-First Search Using $O(n)$ Bits. 553
Tetsuo Asano, Taisuke Izumi, Masashi Kiyomi, Matsuo Konagaya, Hirotaka Ono, Yota Otachi, Pascal Schweitzer, Jun Tarui, and Ryuhei Uehara
Dynamic Path Counting and Reporting in Linear Space 565
Meng He, J. Ian Munro, and Gelin Zhou

Matching and Assignment II

Linear-Time Algorithms for Proportional Apportionment581Zhanpeng Cheng and David EppsteinRank-Maximal Matchings - Structureand Algorithms 593
Pratik Ghosal, Meghana Nasre, and Prajakta Nimbhorkar
The Generalized Popular Condensation Problem 606
Yen-Wei Wu, Wei-Yin Lin, Hung-Lung Wang, and Kun-Mao Chao
Graph Algorithms: Approximation II
Dirichlet Eigenvalues, Local Random Walks, and Analyzing Clusters in Graphs 621
Pavel Kolev and He Sun
Planar Embeddings with Small and Uniform Faces 633
Giordano Da Lozzo, Vít Jelínek, Jan Kratochvíl, and Ignaz Rutter
Scheduling Unit Jobs with a Common Deadline to Minimize the Sum of Weighted Completion Times and Rejection Penalties 646
Nevzat Onur Domaniç and C. Gregory Plaxton
Combinatorial Optimization II
Solving Multi-choice Secretary Problem in Parallel: An Optimal Observation-Selection Protocol 661
Xiaoming Sun, Jia Zhang, and Jialin Zhang
A Geometric Approach to Graph Isomorphism 674
Pawan Aurora and Shashank K. Mehta
Concentrated Hitting Times of Randomized Search Heuristics with Variable Drift. 686
Per Kristian Lehre and Carsten Witt
Computational Geometry III
Euclidean TSP with Few Inner Points in Linear Space 701
Pawet Gawrychowski and Damian Rusak
Bottleneck Partial-Matching Voronoi Diagrams and Applications 714
Matthias Henze and Rafel Jaume
Ham-Sandwich Cuts for Abstract Order Types 726
Stefan Felsner and Alexander Pilz

Network and Scheduling Algorithms

Graph Orientation and Flows over Time 741
Ashwin Arulselvan, Martin Groß, and Martin Skutella
A Simple Efficient Interior Point Method for Min-Cost Flow 753
Ruben Becker and Andreas Karrenbauer
Decremental All-Pairs ALL Shortest Paths and Betweenness Centrality 766
Meghana Nasre, Matteo Pontecorvi, and Vijaya Ramachandran
Author Index 779

[^0]: * Work partially supported by the Italian Ministry of Education, University and Research, under Project AMANDA (Algorithmics for MAssive and Networked DAta).

[^1]: * I gratefully acknowledge financial support from DFG under grant Br 2158/6-1.

