
ar
X

iv
:1

40
7.

76
54

v1
 [

cs
.D

S]
 2

9
Ju

l 2
01

4

Speed-scaling with no Preemptions

Evripidis Bampis1, Dimitrios Letsios2, and Giorgio Lucarelli1

1LIP6, Université Pierre et Marie Curie, France

{Evripidis.Bampis, Giorgio.Lucarelli}@lip6.fr
2Institut für Informatik, Technische Universität München, Germany

letsios@informatik.tu-muenchen.de

October 28, 2018

Abstract

We revisit the non-preemptive speed-scaling problem, in which a set of jobs have to be
executed on a single or a set of parallel speed-scalable processor(s) between their release
dates and deadlines so that the energy consumption to be minimized. We adopt the speed-
scaling mechanism first introduced in [Yao et al., FOCS 1995] according to which the power
dissipated is a convex function of the processor’s speed. Intuitively, the higher is the speed
of a processor, the higher is the energy consumption. For the single-processor case, we
improve the best known approximation algorithm by providing a (1+ǫ)αB̃α-approximation
algorithm, where B̃α is a generalization of the Bell number. For the multiprocessor case,
we present an approximation algorithm of ratio B̃α((1 + ǫ)(1 + wmax

wmin

))α improving the

best known result by a factor of (5
2
)α−1(wmax

wmin

)α. Notice that our result holds for the
fully heterogeneous environment while the previous known result holds only in the more
restricted case of parallel processors with identical power functions.

1 Introduction

Speed-scaling (or dynamic voltage scaling) is one of the main mechanisms to save energy in
modern computing systems. According to this mechanism, the speed of each processor may
dynamically change over time, while the energy consumed by the processor is proportional to
a convex function of the speed, capturing in this way the intuition that higher speeds lead to
higher energy consumption. More precisely, if the speed of a processor is equal to s(t) at a
time instant t, then the power dissipated is P (s(t)) = s(t)α, where α > 1 is a small constant.
For example, the value of α is theoretically between two and three for CMOS devices, while
some experimental studies showed that α is rather smaller: 1.11 for Intel PXA 270, 1.62 for
Pentium M770 and 1.66 for a TCP offload engine [21]. The energy consumption is the integral
of the power over time, i.e., E =

∫

P (s(t))dt.
In order to handle the energy consumption in a computing system with respect to the

speed-scaling mechanism, we consider the following scheduling problem. We are given a set

1

http://arxiv.org/abs/1407.7654v1

of jobs and a single processor or a set of parallel processors. Each job is characterized by
a release date, a deadline and an amount of workload that has to be executed between the
job’s release date and deadline. The objective is to find a feasible schedule that minimizes the
energy consumption. In order to describe such a feasible schedule, we have to determine not
only the job that has to be executed on every machine at each time instant, but also the speed
of each processor.

Speed-scaling scheduling problems have been extensively studied in the literature. Since
the seminal paper by Yao et al. [22] on 1995 until very recently, all the energy minimization
works considered the preemptive case in which the execution of a job may be interrupted and
restarted later on the same or even on a different processor (migratory case). Only the last
three years, some works study the non-preemptive case. In this paper, we improve the best
known approximation algorithms for the non-preemptive case for both the single-processor and
the multiprocessor environments.

Problem definition and notation. We consider a set J of n jobs, each one characterized
by an amount of work wj, a release date rj and a deadline dj . We will consider both the single-
processor and the multiprocessor cases. In the multiprocessor environment, we denote by P
the set of m available parallel processors. Moreover, we distinguish between the homogeneous

and the heterogeneous multiprocessor cases. In the latter one, we assume that each processor
i ∈ P has a different constant αi, capturing in this way the existence of processors with
different energy consumption rate. For simplicity, we define α = maxi∈P{αi}. Moreover, in
the fully heterogeneous case we additionally assume that each job j ∈ J has a different work
wi,j, release date ri,j and deadline di,j on each processor i ∈ P. In all cases, the objective is
to find a schedule that minimizes the energy consumption with respect to the speed-scaling
mechanism, such that each job j ∈ J is executed during its life interval [rj , dj]. The results
presented in this paper assume that the preemption of jobs is not allowed; and hence neither
their migration in the multiprocessor environments.

In what follows, we denote by wmax and wmin the maximum and the minimum work,
respectively, among all jobs. Moreover, we call an instance agreeable if earlier released jobs
have earlier deadlines, i.e., for each j and j′ with rj ≤ rj′ then dj ≤ dj′ . Finally, given a
schedule S we denote by E(S) its energy consumption.

Related work. In [22], a polynomial-time algorithm has been presented that finds an optimal
preemptive schedule when a single processor is available. In the case where the preemption and
also the migration of jobs are allowed, several polynomial-time algorithms have been proposed
when a set of homogeneous parallel processors is available [3, 6, 10, 12], while in the fully
heterogeneous environment an OPT + ǫ algorithm with complexity polynomial to 1

ǫ
has been

presented in [9]. In the case where the preemption of jobs is allowed but not their migration,
the problem becomes strongly NP-hard even if all jobs have equal release dates and equal
deadlines [4]. For this special case, the authors in [4] observed that a PTAS can be derived
from [17]. For arbitrary release dates and deadlines, a B⌈α⌉-approximation algorithm is known
[16], where B⌈α⌉ is the ⌈α⌉-th Bell number. This result has been extended in [9] for the fully

heterogeneous environment, where an approximation algorithm of ratio (1 + ǫ)αB̃α has been

2

presented, where B̃α =
∑∞

k=0
kαe−1

k!
is a generalization of the Bell number that is also valid for

fractional values of α.
When preemptions are not allowed, Antoniadis and Huang [7] proved that the single-

processor case is strongly NP-hard, while they have also presented a 25α−4-approximation
algorithm. In [9], an approximation algorithm of ratio 2α−1(1 + ǫ)αB̃α has been proposed,
improving the ratio given in [7] for any α < 114. Recently, an approximation algorithm of ratio
(12(1 + ǫ))α−1 is given in [15], improving the approximation ratio for any α > 25. Moreover,
the relation between preemptive and non-preemptive schedules in the energy-minimization
setting has been studied in [8]. The authors show that using as a lower bound the optimal
preemptive solution, it is possible to obtain an approximation algorithm of ratio (1 + wmax

wmin
)α.

In the special case where all jobs have equal work this leads to a constant factor approximation
of 2α. Recently, for this special case, Angel et al. [5] and Huang and Ott [18], independently,
proposed an optimal polynomial-time algorithm based on dynamic programming. Note also
that for agreeable instances the single-processor non-preemptive speed-scaling problem can be
solved to optimality in polynomial time, as the algorithm proposed by Yao et al. [22] for the
preemptive case returns a non-preemptive schedule for agreeable instances.

For homogeneous multiprocessors when preemptions are not allowed, an approximation
algorithm with ratio mα(m

√
n)α−1 has been presented in [8] which uses as a lower bound the

optimal preemptive solution. More recently, Cohen-Addad et al. [15] proposed an algorithm
of ratio (5

2
)α−1B̃α((1 + ǫ)(1 + wmax

wmin
))α, transforming the problem to the fully heterogeneous

preemptive non-migratory case and using the approximation algorithm proposed in [9]. This
algorithm leads to an approximation ratio of 2(1 + ǫ)α5α−1B̃α for the case where all jobs have
equal work. The authors in [15] observe also that their algorithm can be used when each job
j ∈ J has a different work wi,j on each processor i ∈ P, by loosing an additional factor of
(wmax

wmin
)α.

Several other results concerning scheduling problems in the speed-scaling setting have been
presented, involving the optimization of some Quality of Service (QoS) criterion under a budget
of energy, or the optimization of a linear combination of the energy consumption and some
QoS criterion (see for example [11, 13, 20]). Moreover, two other energy minimization variants
of the speed-scaling model have been studied in the literature, namely the bounded speed model

in which the speeds of the processors are bounded above and below (see for example [14]), and
the discrete speed model in which the speeds of the processors can be selected among a set
of discrete speeds (see for example [19]). The interested reader can find more details in the
surveys [1, 2].

Our contribution. In Section 2 we revisit the single-processor non-preemptive speed-scaling
problem, and we present an approximation algorithm of ratio (1+ ε)α−1B̃α which becomes the
best algorithm for any α ≤ 77. Recall that in practice α is a small constant and usually
α ∈ (1, 3]. In [8], where the relation between preemptive and non-preemptive schedules has
been explored, an example showing that their distance can be a factor of Ω(nα−1) have been
proposed. A similar example was used in [15] to show that the standard configuration linear
programming formulation has the same integrality gap. In both cases, wmax = n and wmin = 1
and the distance between the optimal preemptive and non-preemptive schedules can be seen

3

Machine environment Previous known result Our results

single-processor
2α−1(1 + ǫ)αB̃α [9]

(1 + ǫ)αB̃α(12(1 + ǫ))α−1 [15]

homogeneous (5
2
)α−1B̃α((1 + ǫ)(1 + wmax

wmin
))α [15]

homogeneous with wi,j’s (5
2
)α−1B̃α((1 + ǫ)(1 + wmax

wmin
)wmax

wmin
)α [15]

fully heterogeneous B̃α((1 + ǫ)(1 + wmax

wmin
))α

Table 1: Comparison of the approximation ratios obtained in this paper with the previously
best known approximation ratios.

as Ω((wmax

wmin
)α−1). In this direction, a (1 + wmax

wmin
)α−1-approximation algorithm for the single-

processor case has been presented in [8]. To overcome the above lower bound, all known
constant-factor approximation algorithms for the single-processor problem [7, 9, 15] consider
an initial partition of the time horizon into some specific intervals defined by the so-called
landmarks. These intervals are defined in such a way that there is not a job whose life interval
is completely included in one of them. Intuitively, this partition is used in order to improve
the lower bound by focusing on special preemptive schedules that can be transformed to a
feasible non-preemptive schedules without loosing a lot in terms of approximation. Here, we
are able to avoid the use of this partition improving in this way the result of [9] by a factor
of 2α−1. In order to do that, we modify the configuration linear program proposed in [9]
by including an additional structural property that is valid for any feasible non-preemptive
schedule. This property helps us to obtain a “good” preemptive schedule after a randomized
rounding procedure. We transform this “good” preemptive schedule to a new instance of the
energy-minimization single-processor problem that is agreeable by choosing in an appropriate
way new release dates and deadlines for the jobs. In this way, it is then sufficient to apply the
Earliest Deadline First policy in order to get a non-preemptive schedule of the same energy
consumption as the preemptive one.

In Section 3 we consider the fully heterogeneous non-preemptive speed-scaling problem, and
we improve the approximation ratio of (wmax

wmin
)α(5

2
)α−1B̃α((1 + ǫ)(1 + wmax

wmin
))α given in [15] to

B̃α((1 + ǫ)(1 + wmax

wmin
))α. Consecutively, our result generalizes and improves the approximation

ratio for the equal-works case from 2(1 + ǫ)α5α−1B̃α to (2(1 + ǫ))αB̃α. Note also that we
generalize the machine environment and we pass from the homogeneous with different wi,j’s
to the fully heterogeneous one. Our algorithm combines two basic ingredients: the B̃α(1+ ǫ)α-
approximation algorithm of [9] for the fully heterogeneous preemptive non-migratory speed-
scaling problem and the (1 + wmax

wmin
)α-approximation algorithm of [8] for the single-processor

non-preemptive speed-scaling problem. The first algorithm is used in order to assign the jobs
to the processors, while the second one to get a non-preemptive schedule for each processor
independently. The key observation here is that the algorithm for the single-processor non-
preemptive case presented in [8] uses as a lower bound the optimal preemptive schedule.

We summarize our results with respect to the existing bibliography in Table 1.

4

2 Single-processor

In this section we consider the single-processor non-preemptive case and we present an approx-
imation algorithm of ratio (1 + ε)B̃α, improving upon the previous known results [7, 9, 15] for
any α ≤ 77. Our algorithm is based on a linear programming formulation combining ideas
from [9, 15] and the randomized rounding proposed in [9].

Before formulating the problem as a linear program we need to discretize the time into
slots. Consider the set of all different release dates and deadlines of jobs in increasing order,
i.e., t1 < t2 < . . . < tk. For each ℓ , 1 ≤ ℓ ≤ k − 1, we split the time between tℓ and tℓ+1

into n2(1 + 1
ǫ
) equal length slots as proposed in [18]. Let T be the set of all created slots.

Henceforth, we will consider only solutions in which each slot can be occupied by at most one
job which uses the whole slot. Huang and Ott [18] proved that this can be done by loosing a
factor of (1 + ǫ)α−1.

Our formulation is based on the configuration linear program which was proposed in [9].
In [15], an additional constraint was used for the single-processor non-preemptive problem.
This constraint implies that the life interval of a job cannot be included to the execution
interval of another job. We explicitly incorporate this constraint in the definition of the set of
configurations for each job. More specifically, for a job j ∈ J , we define a configuration c to
be a set of consecutive slots in [rj , dj] such that there is not another job j′ whose life interval
[rj′ , dj′] is completely included in c. Let Cj be the set of all possible configurations for the job
j. We introduce a binary variable xj,c which is equal to one if the job j is executed according
the configuration c ∈ Cj . Let |c| be the length (in time) of the configuration c. Note that the
number of configurations is polynomial as they only contain consecutive slots and the number
of slots is also polynomial.

For notational convenience, we write t ∈ c if the slot t ∈ T is part of the configuration
c ∈ Cj of job j ∈ J . By the convexity of the power function, each job in an optimal schedule

runs in a constant speed (see for example [22]). Hence, the quantity
wα

j

|c|α−1 corresponds to the

energy consumed by j if it is executed according to c, as the constant speed that will be used
for j is equal to

wj

|c| . Consider the following integer linear program.

min
∑

j∈J

∑

c∈Cj

xj,c
wα
j

|c|α−1

∑

c∈Cj

xj,c ≥ 1 ∀j ∈ J

∑

j∈J

∑

c∈Cj :t∈c

xj,c ≤ 1 ∀t ∈ T

xj,c ∈ {0, 1} ∀j ∈ J , c ∈ Cj

The first constraint ensures that each job is executed according to a configuration. The
second constraint implies that at each slot at most one configuration and hence at most one
job can be executed.

5

We consider the randomized rounding procedure proposed in [9] for the fully heterogeneous
preemptive non-migratory speed-scaling problem, adapted to the single processor environment.
More specifically, for each job j ∈ J we choose at random with probability xj,c a configuration
c ∈ Cj. By doing this, more than one jobs may be assigned in a slot t ∈ T which has as a
result to get a non-feasible schedule. In order to deal with this infeasibility, for each slot t ∈ T
we perform an appropriate speed-up that leads to a feasible preemptive schedule. The above
procedure is described formally in Algorithm 1.

Algorithm 1

1: Solve the configuration LP relaxation;
2: For each job j ∈ J , choose a configuration at random with probability xj,c;
3: Let wj(t) be the amount of work executed for job j during the slot t ∈ T according to its

chosen configuration;
4: Set the processor’s speed during t as if

∑

j∈J wj(t) units of work are executed with constant
speed during the entire t, i.e.,

∑

j∈J wj(t)/|t|, where |t| is the length of t;

The analysis of the above procedure in [9] is done independently for each slot, while the
speed-up performed leads to a loss of a factor of B̃α to the approximation ratio. We can use
exactly the same analysis and get the same approximation guarantee for our problem.

In what follows, given the feasible preemptive schedule Spr obtained by Algorithm 1, we
will create a feasible non-preemptive schedule Snpr of the same energy consumption. In fact,
we first create a restricted agreeable instance of our initial instance based on Spr. Then, we
will apply the Earliest Deadline First (EDF) policy to get a non-preemptive schedule.

Consider a job j ∈ J . Let pj be the total processing time of j in Spr. Moreover, assume
that the first piece of j in Spr begins at bj and the last piece of j in Spr ends at ej . Note that
the interval [bj , ej] ⊆ [rj , dj] does not include the life interval of any other job, by the definition
of configurations. For the job j, we create an interval [r′j , d

′
j], where [bj , ej] ⊆ [r′j , d

′
j] ⊆ [rj , dj],

as follows. We select r′j such that [r′j , ej] does not include the whole life interval of another
job, rj ≤ r′j ≤ bj and r′j is minimum. We then define d′j in a similar way, i.e., we select d′j
such that [r′j , d

′
j] does not include the whole life interval of another job, ej ≤ d′j ≤ dj and d′j is

maximum.
An example of the above transformation is given in Fig. 1. In this picture, the life intervals

of jobs J1 and J4 are shortened. For example, in the preemptive schedule Spr the job J4 is
executed on the right of the job J5. Hence, in the restricted instance we cut down the part of
the life interval of J4 which is on the left of the release date of J5. Intuitively, we decide if J4
should be executed on the left or on the right of J5 with respect to Spr and we transform the
initial instance appropriately.

In order to see that the created instance is agreeable, assume for contradiction that there
are two jobs i, j ∈ J such that r′j < r′i and d′i < d′j . The algorithm does not further decrease
r′i because either [r

′
i, d

′
i] includes the life interval of a job k ∈ J or r′i = ri. In the first case, we

have that [rk, dk] ⊆ [r′j , d
′
j], which is a contradiction to the definition of configurations and the

selection of r′j . In the second case, the algorithm does not further increase d′i because either
[r′i, d

′
i] includes the life interval of a job ℓ ∈ J or d′i = di. In both last cases we have again a

6

contradiction, as either [rℓ, dℓ] ⊆ [r′j , d
′
j] or [ri, di] ⊆ [r′j , d

′
j].

Initial
instance

J1

J2 J4

J3 J5

Spr

time

J2 J1 J3 J1 J5 J4

Restricted
(agreeable)
instance J1

J2 J4

J3 J5

Figure 1: The transformation of an instance into a restricted (agreeable) instance based on
the feasible preemptive schedule Spr.

So, we create a restricted agreeable instance using r′j and d′j as the release date and the
deadline, respectively, of the job j ∈ J . Moreover, we set the processing time of j to pj . The
life interval of each job j ∈ J in the created instance is a superset of its execution interval
to S, i.e., [bj , ej] ⊆ [r′j , d

′
j]. Hence, the schedule S is a feasible preemptive schedule for the

restricted instance. Moreover, the life interval of each job j ∈ J in the restricted instance is
a subset of its life interval to the initial instance, i.e., [r′j , d

′
j] ⊆ [rj , dj]. Thus, we can get a

feasible non-preemptive schedule Snpr for our initial instance, by applying the EDF policy to
the new instance. Finally, as in both schedules Spr and Snpr we use the some processing times,
their energy consumption is the same.

Theorem 1. There is a (1 + ε)α−1B̃α-approximation algorithm for the single-processor non-

preemptive speed-scaling problem.

3 Parallel Processors

In this section we consider the fully heterogeneous multiprocessor case and we propose an
approximation algorithm of ratio B̃α((1 + ǫ)(1 + wmax

wmin
))α, generalizing the recent result by

Cohen-Addad et al. [15] from the homogeneous with different wi,j’s to the fully heterogeneous
environment and improving their ratio by a factor of (wmax

wmin
)α(5

2
)α−1. Our algorithm uses the

following result proposed in [8].

Theorem 2. [8] There is an approximation algorithm for the single-processor non-preemptive

speed-scaling problem that returns a schedule S with energy consumption

E(S) ≤ (1 +
wmax

wmin

)αE(S∗
pr) ≤ (1 +

wmax

wmin

)αE(S∗
npr)

where S∗
pr and S∗

npr are the optimal schedules for the preemptive and the non-preemptive case,

respectively.

7

The key observation in the above theorem concerns the intermediate result that the ap-
proximation ratio of the algorithm for the single-processor non-preemptive case proposed in [8]
uses as lower bound the optimal preemptive schedule. Based on this, we propose Algorithm 2
which uses the (1+ ǫ)αB̃α-approximation algorithm proposed in [9] for the fully heterogeneous
preemptive non-migratory speed-scaling problem to find a good assignment of the jobs to the
processors and then applies Theorem 2 to create a non-preemptive schedule independently for
each processor.

Algorithm 2

1: Find a preemptive non-migratory schedule S using the algorithm proposed in [9] for the
fully heterogeneous environment;

2: for each processor i ∈ P do

3: Let Ji be the set of jobs assigned to processor i according to S;
4: Find a single-processor non-preemptive schedule Si,npr using the algorithm proposed in

[8] (Theorem 2) with input Ji;
5: return the non-preemptive schedule Snpr which consists of the non-preemptive schedules

Si,npr, 1 ≤ i ≤ m;

Theorem 3. Algorithm 2 achieves an approximation ratio of B̃α((1 + ǫ)(1 + wmax

wmin
))α for the

fully heterogeneous non-preemptive speed-scaling problem.

Proof. Consider first the schedule S obtained in Line 1 of the algorithm, and let Si,pr be the
(sub)schedule of S that corresponds to the processor i ∈ P. In other words, each Si,pr is a
feasible preemptive schedule of the subset of jobs Ji. As S is a non-migratory schedule the
subsets of jobs J1,J2, . . . ,Jm are pairwise disjoint. Hence, we have that

∑

i∈P

E(Si,pr) = E(S) ≤ (1 + ǫ)αB̃αE(S∗) (1)

where S∗ is the optimal non-preemptive schedule for our problem and the inequality holds
by the result in [9] and the fact that the energy consumption in an optimal preemptive-non-
migratory schedule is a lower bound to the energy consumption of S∗.

Consider now, for each processor i ∈ P, the schedule Si,npr created in Line 4 of the algo-
rithm. By Theorem 2 we have that

E(Si,npr) ≤
(

1 +
wmax

wmin

)α

E(S∗
i,pr)

where S∗
i,pr is an optimal preemptive schedule for the subset of jobs Ji. As S∗

i,pr and Si,pr are
schedules concerning the same set of jobs and S∗

i,pr is the optimal preemptive schedule, we have
that

E(Si,npr) ≤
(

1 +
wmax

wmin

)α

E(Si,pr) (2)

Since Snpr is the concatenation of Si,npr for all i ∈ P, and by using Equations (1) and (2),
the theorem follows.

8

Algorithm 2 can be also used for the case where all jobs have equal work on each processor,
i.e., each job j ∈ J has to execute an amount of work wi,j = wi if it is assigned on processor
i ∈ P. In this case we get the following result.

Corollary 1. Algorithm 2 achieves a constant-approximation ratio of B̃α(2(1 + ǫ))α for the

fully heterogeneous non-preemptive speed-scaling problem when all jobs have equal work on each

processor.

4 Conclusions

In this paper, we have presented algorithms with improved approximation ratios for both the
single-processor and the multiprocessor environments. A challenging question left open in this
work is the existence of a constant approximation ratio algorithm for the multiprocessor case.
Also, there is a need for non-approximability results in the same vein as the one presented in
[15].

References

[1] S. Albers. Energy-efficient algorithms. Communications of the ACM, 53(5):86–96, 2010.

[2] S. Albers. Algorithms for dynamic speed scaling. In STACS, volume 9 of LIPIcs, pages
1–11. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

[3] S. Albers, A. Antoniadis, and G. Greiner. On multi-processor speed scaling with migration:
extended abstract. In SPAA, pages 279–288. ACM, 2011.

[4] S. Albers, F. Müller, and S. Schmelzer. Speed scaling on parallel processors. In SPAA,
pages 289–298. ACM, 2007.

[5] E. Angel, E. Bampis, and V. Chau. Throughput maximization in the speed-scaling setting.
CoRR, abs/1309.1732, 2013.

[6] E. Angel, E. Bampis, F. Kacem, and D. Letsios. Speed scaling on parallel processors with
migration. In Euro-Par, volume 7484 of LNCS, pages 128–140, 2012.

[7] A. Antoniadis and C.-C. Huang. Non-preemptive speed scaling. In SWAT, volume 7357
of LNCS, pages 249–260. Springer, 2012.

[8] E. Bampis, A. Kononov, D. Letsios, G. Lucarelli, and I. Nemparis. From preemptive
to non-preemptive speed-scaling scheduling. In COCOON, volume 7936 of LNCS, pages
134–146. Springer, 2013.

[9] E. Bampis, A. Kononov, D. Letsios, G. Lucarelli, and M. Sviridenko. Energy efficient
scheduling and routing via randomized rounding. In FSTTCS, volume 24 of LIPIcs,
pages 449–460. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

9

[10] E. Bampis, D. Letsios, and G. Lucarelli. Green scheduling, flows and matchings. In
ISAAC, volume 7676 of LNCS, pages 106–115. Springer, 2012.

[11] E. Bampis, D. Letsios, I. Milis, and G. Zois. Speed scaling for maximum lateness. In
COCOON, volume 7434 of LNCS, pages 25–36. Springer, 2012.

[12] B. D. Bingham and M. R. Greenstreet. Energy optimal scheduling on multiprocessors
with migration. In ISPA, pages 153–161. IEEE, 2008.

[13] D. P. Bunde. Power-aware scheduling for makespan and flow. In SPAA, pages 190–196.
ACM, 2006.

[14] H.-L. Chan, W.-T. Chan, T. W. Lam, L.-K. Lee, K.-S. Mak, and P. W. H. Wong. Energy
efficient online deadline scheduling. In SODA, pages 795–804, 2007.

[15] V. Cohen-Addad, Z. Li, C. Mathieu, and I. Milis. Energy-efficient algorithms for non-
preemptive speed-scaling. CoRR, abs/1402.4111, 2014.

[16] G. Greiner, T. Nonner, and A. Souza. The bell is ringing in speed-scaled multiprocessor
scheduling. In SPAA, pages 11–18. ACM, 2009.

[17] D.S. Hochbaum and D.B. Shmoys. Using dual approximation algorithms for scheduling
problems: Theoretical and practical results. Journal of the ACM, 34:144–162, 1987.

[18] C.-C. Huang and S. Ott. New results for non-preemptive speed scaling. In MFCS, LNCS.
Springer, 2014.

[19] M. Li and F. F. Yao. An efficient algorithm for computing optimal discrete voltage
schedules. SIAM Journal on Computing, 35:658–671, 2006.

[20] K. Pruhs, R. van Stee, and P. Uthaisombut. Speed scaling of tasks with precedence
constraints. Theory of Computing Systems, 43:67–80, 2008.

[21] A. Wierman, L. L. H. Andrew, and A. Tang. Power-aware speed scaling in processor
sharing systems. In INFOCOM, pages 2007–2015. IEEE, 2009.

[22] F. F. Yao, A. J. Demers, and S. Shenker. A scheduling model for reduced CPU energy.
In FOCS, pages 374–382. IEEE Computer Society, 1995.

10

	1 Introduction
	2 Single-processor
	3 Parallel Processors
	4 Conclusions

