
Planar Embeddings with Small and Uniform Faces?

Giordano Da Lozzo1, Vít Jelínek2, Jan Kratochvíl3, and Ignaz Rutter3,4

1 Department of Engineering, Roma Tre University, Italy
dalozzo@dia.uniroma3.it

2 Computer Science Institute, Charles University, Prague
jelinek@iuuk.mff.cuni.cz

3 Department of Applied Mathematics, Charles University, Prague
honza@kam.mff.cuni.cz

4 Faculty of Informatics, Karlsruhe Institute of Technology (KIT), Germany,
rutter@kit.edu

Abstract. Motivated by finding planar embeddings that lead to drawings with fa-
vorable aesthetics, we study the problems MINMAXFACE and UNIFORMFACES

of embedding a given biconnected multi-graph such that the largest face is as
small as possible and such that all faces have the same size, respectively.
We prove a complexity dichotomy for MINMAXFACE and show that deciding
whether the maximum is at most k is polynomial-time solvable for k ≤ 4 and
NP-complete for k ≥ 5. Further, we give a 6-approximation for minimizing
the maximum face in a planar embedding. For UNIFORMFACES, we show that
the problem is NP-complete for odd k ≥ 7 and even k ≥ 10. Moreover, we
characterize the biconnected planar multi-graphs admitting 3- and 4-uniform em-
beddings (in a k-uniform embedding all faces have size k) and give an efficient
algorithm for testing the existence of a 6-uniform embedding.

1 Introduction

While there are infinitely many ways to embed a connected planar graph into the plane
without edge crossings, these embeddings can be grouped into a finite number of equiv-
alence classes, so-called combinatorial embeddings, where two embeddings are equiva-
lent if the clockwise order around each vertex is the same. Many algorithms for drawing
planar graphs require that the input graph is provided together with a combinatorial em-
bedding, which the algorithm preserves. Since the aesthetic properties of the drawing
often depend critically on the chosen embedding, e.g. the number of bends in orthogo-
nal drawings, it is natural to ask for a planar embedding that will lead to the best results.

In many cases the problem of optimizing some cost function over all combinatorial
embeddings is NP-complete. For example, it is known that it is NP-complete to test

? Work by Giordano Da Lozzo was supported in part by the Italian Ministry of Educa-
tion, University, and Research (MIUR) under PRIN 2012C4E3KT national research project
“AMANDA – Algorithmics for MAssive and Networked DAta”. Work by Jan Kratochvíl and
Vít Jelínek was supported by the grant no. 14-14179S of the Czech Science Foundation GAČR.
Ignaz Rutter was supported by a fellowship within the Postdoc-Program of the German Aca-
demic Exchange Service (DAAD).

ar
X

iv
:1

40
9.

42
99

v1
 [

cs
.C

G
]

 1
5

Se
p

20
14

the existence of an embedding that admits an orthogonal drawing without bends or an
upward planar embedding [9]. On the other hand, there are efficient algorithms for min-
imizing various measures such as the radius of the dual [1,2] and attempts to minimize
the number of bends in orthogonal drawings subject to some restrictions [3,4,5].

Usually, choosing a planar embedding is considered as deciding the circular order-
ing of edges around vertices. It can, however, also be equivalently viewed as choosing
the set of facial cycles, i.e., which cycles become face boundaries. In this sense it is
natural to seek an embedding whose facial cycles have favorable properties. For ex-
ample, Gutwenger and Mutzel [11] give algorithms for computing an embedding that
maximizes the size of the outer face. The most general form of this problem is as fol-
lows. The input consists of a graph and a cost function on the cycles of the graph,
and we seek a planar embedding where the sum of the costs of the facial cycles is
minimum. This general version of the problem has been introduced and studied by
Mutzel and Weiskircher [13]. Woeginger [14] shows that it is NP-complete even when
assigning cost 0 to all cycles of size up to k and cost 1 for longer cycles. Mutzel and
Weiskircher [13] propose an ILP formulation for this problem based on SPQR-trees.

In this paper, we focus on two specific problems of this type, aimed at reducing the
visual complexity and eliminating certain artifacts related to face sizes from drawings.
Namely, large faces in the interior of a drawing may be perceived as holes and conse-
quently interpreted as an artifact of the graph. Similarly, if the graph has faces of vastly
different sizes, this may leave the impression that the drawn graph is highly irregular.
However, rather than being a structural property of the graph, it is quite possible that the
artifacts in the drawing rather stem from a poor embedding choice and can be avoided
by choosing a more suitable planar embedding.

We thus propose two problems. First, to avoid large faces in the drawing, we seek
to minimize the size of the largest face; we call this problem MINMAXFACE. Second,
we study the problem of recognizing those graphs that admit perfectly uniform face
sizes; we call this problem UNIFORMFACES. Both problems can be solved by the ILP
approach of Mutzel and Weiskircher [13] but were not known to be NP-hard.

Our Contributions. First, in Section 3, we study the computational complexity of MIN-
MAXFACE and its decision version k-MINMAXFACE, which asks whether the input
graph can be embedded such that the maximum face size is at most k. We prove a com-
plexity dichotomy for this problem and show that k-MINMAXFACE is polynomial-time
solvable for k ≤ 4 and NP-complete for k ≥ 5. Our hardness result for k ≥ 5 strength-
ens Woeginger’s result [14], which states that it is NP-complete to minimize the number
of faces of size greater than k for k ≥ 4, whereas our reduction shows that it is in fact
NP-complete to decide whether such faces can be completely avoided. Furthermore, we
give an efficient 6-approximation for MINMAXFACE.

Second, in Section 4, we study the problem of recognizing graphs that admit per-
fectly uniform face sizes (UNIFORMFACES), which is a special case of k-MINMAXFACE.
An embedding is k-uniform if all faces have size k. We characterize the biconnected
multi-graphs admitting a k-uniform embedding for k = 3, 4 and give an efficient recog-
nition algorithm for k = 6. Finally, we show that for odd k ≥ 7 and even k ≥ 10, it is
NP-complete to decide whether a planar graph admits a k-uniform embedding.

2

2 Preliminaries

A graph G = (V,E) is connected if there is a path between any two vertices. A cutver-
tex is a vertex whose removal disconnects the graph. A separating pair {u, v} is a pair
of vertices whose removal disconnects the graph. A connected graph is biconnected if
it does not have a cutvertex and a biconnected graph is 3-connected if it does not have
a separating pair. Unless specified otherwise, throughout the rest of the paper we will
consider graphs without loops, but with possible multiple edges.

We consider st-graphs with two special pole vertices s and t. The family of st-
graphs can be constructed in a fashion very similar to series-parallel graphs. Namely,
an edge st is an st-graph with poles s and t. Now let Gi be an st-graph with poles si, ti
for i = 1, . . . , k and let H be a planar graph with two designated adjacent vertices s
and t and k + 1 edges st, e1, . . . , ek. We call H the skeleton of the composition and its
edges are called virtual edges; the edge st is the parent edge and s and t are the poles
of the skeleton H . To compose the Gi’s into an st-graph with poles s and t, we remove
the edge st from H and replace each ei by Gi for i = 1, . . . , k by removing ei and
identifying the poles of Gi with the endpoints of ei. In fact, we only allow three types
of compositions: in a series composition the skeleton H is a cycle of length k + 1, in a
parallel composition H consists of two vertices connected by k + 1 parallel edges, and
in a rigid composition H is 3-connected.

For every biconnected planar graph G with an edge st, the graph G − st is an
st-graph with poles s and t [6]. Much in the same way as series-parallel graphs, the
st-graph G − st gives rise to a (de-)composition tree T describing how it can be ob-
tained from single edges. The nodes of T corresponding to edges, series, parallel, and
rigid compositions of the graph are Q-, S-, P-, and R-nodes, respectively. To obtain a
composition tree for G, we add an additional root Q-node representing the edge st. We
associate with each node µ the skeleton of the composition and denote it by skel(µ).
For a Q-node µ, the skeleton consists of the two endpoints of the edge represented by µ
and one real and one virtual edge between them representing the rest of the graph. For
a node µ of T , the pertinent graph pert(µ) is the subgraph represented by the subtree
with root µ. For a virtual edge ε of a skeleton skel(µ), the expansion graph of ε is the
pertinent graph pert(µ′) of the neighbor µ′ corresponding to ε when considering T
rooted at µ.

The SPQR-tree of G with respect to the edge st, originally introduced by Di Bat-
tista and Tamassia [6], is the (unique) smallest decomposition tree T for G. Using a
different edge s′t′ of G and a composition of G − s′t′ corresponds to rerooting T at
the node representing s′t′. It thus makes sense to say that T is the SPQR-tree of G. The
SPQR-tree of G has size linear in G and can be computed in linear time [10]. Planar
embeddings ofG correspond bijectively to planar embeddings of all skeletons of T ; the
choices are the orderings of the parallel edges in P-nodes and the embeddings of the R-
node skeletons, which are unique up to a flip. When considering rooted SPQR-trees, we
assume that the embedding of G is such that the root edge is incident to the outer face,
which is equivalent to the parent edge being incident to the outer face in each skeleton.
We remark that in a planar embedding of G, the poles of any node µ of T are incident
to the outer face of pert(µ). Hence, in the following we only consider embeddings of
the pertinent graphs with their poles lying on the same face.

3

u v
f+

f−

2

a) b) c)

1

2
1

1

2

2

1

2

1

3

1

2

1

pos. literal

neg. literal

1

3

Fig. 1: Illustration of the gadgets for the proof of Theorem 1. (a) A (1, 3)-edge. (b) A
variable gadget for a variable that occurs twice as a positive literal and once as a negative
literal. Changing the flip of the (1, 3)-edge in the middle (variable edge) forces flipping
the upper two literal edges. (c) A clause gadget for a clause of size 3.

3 Minimizing the Maximum Face

In this section we present our results on MINMAXFACE. We first strengthen the result
of Woeginger [14] and show that k-MINMAXFACE is NP-complete for k ≥ 5 and
then present efficient algorithms for k = 3, 4. In particular, the hardness result also
implies that the problem MINMAXFACE is NP-hard. Finally, we give an efficient 6-
approximation for MINMAXFACE on biconnected graphs. Recall that we allow graphs
to have multiple edges.

Theorem 1. k-MINMAXFACE is NP-complete for any k ≥ 5.

Proof. Clearly, the problem is in NP, since we can simply guess a planar embedding
and verify in polynomial time that all faces have size at most k.

We show hardness for k = 5 and in the end briefly sketch how to adapt the proof for
k > 5. We give a reduction from PLANAR 3-SAT with the additional assumption that
each variable occurs three times and each clause has size two or three. Further, we can
assume that if a variable occurs three times, then it appears twice as a positive literal
and once as a negative literal. This variant is NP-complete [7, Lemma 2.1].

We construct gadgets where some of the edges are in fact two parallel paths, one
consisting of a single edge and one of length 2 or 3. The ordering of these paths then
decides which of the faces incident to the gadget edge is incident to a path of length 1
and which is incident to a path of length 2 or 3; see Fig. 1a. Due to this use, we also call
these gadgets (1, 2)- and (1, 3)-edges, respectively.

Now consider a variable x whose positive literals occur d+ times. Note that the neg-
ative literal hence occurs 3− d+ times. We represent x by a variable gadget consisting
of two cycles C+ and C− of lengths 5− d+ and 5− (3− d+) = 2 + d+, respectively,
sharing one edge. The shared edge is actually a (1, 3)-edge, called variable edge, and
in C+ (in C−), we replace d+ of its edges (3− d+ of its edges) by (1, 2)-edges, called
positive (negative) literal edges, respectively; see Fig. 1b. We denote the faces bounded
solely by C+ and C− by f+ and f−, respectively. Without loss of generality, we as-
sume that the gadget is embedded so that f+ and f− are inner faces, and we denote

4

the outer face by f0. The gadget represents truth values as follows. A literal edge rep-
resents the truth value true if and only if its path of length 1 is incident to the outer
face. A variable edge represents value true if and only if its path of length 1 is in-
cident to f+. If the variable edge represents value true, then f− is incident to a path
of length 3 of the variable edge. Hence, all negative literal edges must transmit value
false. A symmetric argument shows that if the variable edge encodes value false,
then all positive literal edges must transmit value false. On the other hand, given a
truth value for variable x, choosing the flips of the variable edge and all literal edges
accordingly yields an embedding where each inner face has size at most 5.

A clause gadget for a clause of size 3 consists of a cycle of three (1, 2)-edges that
correspond bijectively to the literals occurring in it; see Fig. 1c. Similarly, a clause of
size 2 consists of a cycle on four edges, two of which are (1, 2)-edges corresponding to
the literals. The encoding is such that a literal edge has its path of length 2 incident to
the inner face of the clause gadget if and only if such a literal has value false. Clearly,
the inner face has size at most 5 if and only if at most two literals transmit value false,
otherwise the size is 6. Thus, the inner face of the clause gadget has size at most 5 if
and only if at least one the literals transmit value true.

We now construct a graph Gϕ as follows. We create for each variable a correspond-
ing variable gadget and for each clause a corresponding clause gadget. We then identify
literal edges of variables and clauses that correspond to the same literal. By adhering
to the planar embedding of the variable–clause graph of ϕ, the resulting graph Gϕ is
planar and can be embedded such that all inner faces of the gadgets are faces of the
graph. Denote this plane graph byHϕ. To obtainGϕ, we arbitrarily triangulate all faces
of Hϕ that are not internal faces of a gadget. Then, the only embedding choices of Gϕ
are the flips of the (1, 2)- and (1, 3)-edges. We claim that Gϕ admits an embedding
where every face has size at most 5 if and only if ϕ is satisfiable.

If G is satisfiable, pick a satisfying truth assignment. We flip each variable edge
and each literal edge to encode its truth value in the assignment. As argued above,
every inner face of a variable now has size at most 5, and, since each clause contains at
least one satisfied literal, also the inner faces of the clause gadgets have size at most 5.
Conversely, given a planar embedding of Gϕ where each face has size at most 5, we
construct a satisfying truth assignment for ϕ by assigning a variable the truth value
encoded by the variable edge in the corresponding gadget. Due to the above properties,
it follows that all edges corresponding to a negative literal must contribute a path of
length 2 to each clause gadget containing such a literal. However, each inner face of a
clause gadget has only size 5, and hence at least one of the literal edges must contribute
a path of only length 1, i.e., the clause contains a satisfied literal. Since the construction
of Gϕ can clearly be done in polynomial time, this finishes the proof for k = 5.

For k > 5, it suffices to lengthen all cycles of the construction by k − 5 edges. All
arguments naturally carry over. ut

3.1 Polynomial-Time Algorithm for Small Faces

Next, we show that k-MINMAXFACE is polynomial-time solvable for k = 3, 4. Note
that, if the input graph is simple, the problem for k = 3 is solvable if and only if the
input graph is maximal planar. A bit more work is necessary if we allow parallel edges.

5

Let G be a biconnected planar graph. We devise a dynamic program on the SPQR-
tree T ofG. Let T be rooted at an arbitrary Q-node and let µ be a node of T . We call the
clockwise and counterclockwise paths connecting the poles of µ along the outer face
the boundary paths of pert(µ). We say that an embedding of pert(µ) has type (a, b) if
and only if all its inner faces have size at most k and its boundary paths have length a
and b, respectively. Such an embedding is also called an (a, b)-embedding. We assume
that a ≤ b.

Clearly, each of the two boundary paths of pert(µ) in an embedding Eµ of type
(a, b) will be a proper subpath of the boundary of a face in any embedding of G where
the embedding of pert(µ) is Eµ. Hence, when seeking an embedding where all faces
have size at most k, we are only interested in the embedding Eµ if 1 ≤ a ≤ b ≤ k − 1.
We define a partial order on the embedding types by (a′, b′) � (a, b) if and only if
a′ ≤ a and b′ ≤ b. Replacing an (a, b)-embedding Eµ of pert(µ) by (a reflection of)
an (a′, b′)-embedding E ′µ with (a′, b′) � (a, b) does not create faces of size more than
k; all inner faces of E ′µ have size at most k by assumption, and the only other faces
affected are the two faces incident to the two boundary paths of E ′µ, whose length does
not increase. We thus seek to compute for each node µ the minimal pairs (a, b) for
which it admits an (a, b)-embedding. We remark that pert(µ) can admit an embedding
of type (1, b) for any value of b only if µ is either a P-node or a Q-node.

We now present the algorithm for k = 3, which works even if we allow parallel
edges.

Theorem 2. 3-MINMAXFACE can be solved in linear time for biconnected graphs.

Proof. Clearly, the only interesting types of embeddings are (1, 1), (1, 2) and (2, 2) and
� defines a total ordering on them. We thus seek to determine for each pertinent graph
bottom-up in the SPQR-tree the smallest type (with respect to �) of a valid planar em-
bedding. For Q-nodes this is (1, 1). Now consider an R-node or S-node µ. By the above
remark its only possible type of embedding can be (2, 2). Since every face is bounded
by at least three edges, it is not hard to see that pert(µ) admits a (2, 2)-embedding if
and only if every face of skel(µ) has size 3 and all children admit (1, 1)-embeddings.

For a P-node, we observe that none of its children can have a (1, 2)-embedding,
as no two P-node can be adjacent. Thus, all children admit either a (1, 1)-embedding,
then they are Q-nodes, or they admit a (2, 2)-embedding. We denote the virtual edges
in skel(µ) by (1, 1)-edges and (2, 2)-edges, respectively, according to the type of em-
bedding the corresponding graph admits. To obtain an embedding where all faces have
size at most 3, we have to choose the embedding of skel(µ) in such a way that ev-
ery (2, 2)-edge is adjacent to either two (1, 1)-edges or to a (1, 1)-edge and the parent
edge. Let a and b denote the number of (1, 1)-edges and (2, 2)-edges in skel(µ), respec-
tively. Clearly, an ordering satisfying these requirements exists if and only if a ≥ b− 1;
otherwise we necessarily have two adjacent (2, 2)-edges. To find a good sequence, we
proceed as follows. If a = b− 1, the sequence must alernatingly consist of (2, 2)-edges
and (1, 1)-edges, starting with a (1, 1)-edge. The type of the resulting embedding is
(2, 2) and one cannot do better. If a = b, we do the same, but the type of the resulting
embedding is (1, 2); again one cannot do better. Finally, if a ≥ b + 1, we again do the
same, and finally append the remaining (1, 1)-edges. Then the resulting embedding has
type (1, 1).

6

Clearly, we can process each node µ in time proportional to the size of its skeleton.
The graph admits an embedding if and only if the pertinent graph of the child of the
root admits some valid embedding. ut

We now deal with the case k = 4, which is similar but more complicated. The
relevant types are (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), and (3, 3). We note that precisely
the two elements (2, 2) and (1, 3) are incomparable with respect to �. Thus, it seems
that, rather than computing only the single smallest type for which each pertinent graph
admits an embedding, we are now forced to find all minimum pairs for which the perti-
nent graph admits a corresponding embedding. However, by the above observation, if a
pertinent graph pert(µ) admits a (1, 3)-embedding, then µ must be a P-node. However,
if the parent of µ is an S-node or an R-node, then using a (1, 3)-embedding results in a
face of size at least 5. Thus, such an embedding can only be used if the parent is the root
Q-node. If there is the choice of a (2, 2)-embedding in this case, it can of course also
be used at the root. Therefore, we can mostly ignore the (1, 3)-case and consider the
linearly ordered embedding types (1, 1), (1, 2), (2, 2), (2, 3) and (3, 3). The type (1, 3)
is only relevant for P-nodes whose pertinent graph admits an embedding of type (1, 3)
embedding but no embedding of type (2, 2).

Theorem 3. 4-MINMAXFACE can be solved in O(n1.5) time for biconnected graphs.

Proof. We process the SPQR-tree of the input graph in a bottom-up fashion. The perti-
nent graphs of Q-nodes admit embeddings of type (1, 1).

Now consider an S- or an R-node µ. All faces of skel(µ) must have size at most 4.
Moreover, since all faces have length at least 3, a valid embedding of pert(µ) does not
exist if some child only allows embeddings of type (1, 3), (2, 3) or (3, 3). Thus, the only
freedom is to choose the flips of the pertinent graphs admitting only (1, 2)-embeddings.
A face can receive only a single path of length 2 from one of its incident edges, and this
is possible only if the face is a triangle and none of its incident edges is a (2, 2)-edge. We
thus seek a matching between the (1, 2)-edges and their incident faces that can receive
a path of length 2. Depending on the size of the faces incident to the parent edge and
whether they need to receive a path of length 2 in order to find a valid embedding, the
type is either (2, 2) (if both faces are triangles and they do not need to receive a path of
length 2), (2, 3) (if one is a triangle that does not need to receive a path of length 2) or
(3, 3) (remaining cases).

Now consider a P-node. Each child must have an embedding of type (1, 1), (2, 2),
(2, 3) or (3, 3). Again, we denote the edges whose corresponding pertinent graph admits
an embedding of type (a, b) as (a, b)-edges.

First observe that removing in any embedding all (2, 2)-edges except for one and
placing them next to the single (2, 2)-edge we did not remove results in a valid em-
bedding whose boundary paths do not increase. Thus, we can assume without loss of
generality that there is at most one (2, 2)-edge. Moreover, if there is a (2, 3)-edge, we
can actually move the (2, 2)-edge next to it without increasing the size of any face.
Thus, if there are any (2, 3)-edges we can even assume that there is no (2, 2)-edge.

Let us first assume that there is no (2, 3)-edge. We then have to choose the embed-
ding such that (1, 1)-edges alternate with (3, 3)-edges and the single (2, 2)-edge. We
append any excess of (1, 1)-edges at the end. Let a denote the number of (1, 1)-edges

7

and let b denote the total number of (2, 2) and (3, 3)-edges. A valid embedding exists
only if a ≥ b − 1. In this case a suitable sequence always exists. If possible, we start
and end with a (1, 1)-edge, resulting in a (1, 1)-embedding. If this is not the case, we
try to start with a (1, 1) and put the (2, 2) in the end if it exists. Then we obtain a (1, 2)-
embedding if there is a (2, 2)-edge and a (1, 3)-embedding otherwise. If this is also not
possible since a = b− 1, we start with the (2, 2)-edge if it exists. This results in either
a (2, 3) or a (3, 3)-embedding.

The bottleneck concerning the running time is finding the matching for treating the
R-node, which can be solved in O(n1.5) time [8]. ut

3.2 Approximation Algorithm

In this section, we present a constant-factor approximation algorithm for the problem
of minimizing the largest face in an embedding of a biconnected graph G = (V,E).
We again solve the problem by dynamic programming on the SPQR-tree of G.

Let G be a biconnected planar graph, and let T be its SPQR-tree, rooted at an
arbitrary Q-node. Let µ be a node of T . We shall consider the embeddings of pert(µ)
where the two poles are embedded on the outer face. We also include the parent edge
in the embedding, by drawing it in the outer face. In such an embedding of skel(µ),
the two faces incident to the parent edge are called the outer faces, while the remaining
faces are inner faces.

Recall that an (a, b)-embedding of pert(µ) is an embedding whose boundary paths
have lengths a and b, where we always assume that a ≤ b. We say that an (a, b)-
embedding of pert(µ) is out-minimal if for any (a′, b′)-embedding of pert(µ), we have
a ≤ a′ and b ≤ b′. Note that an out-minimal embedding need not exist; e.g., pert(µ)
may admit a (2, 4)-embedding and a (3, 3)-embedding, but no (a, b)-embedding with
a ≤ 2 and b ≤ 3. We will later show, however, that such a situation can only occur
when µ is an S-node.

Let OPT(G) denote the smallest integer k such that G has an embedding whose
every face has size at most k. For a node µ of T , we say that an embedding of pert(µ)
is c-approximate, if each inner face of the embedding has size at most c · OPT(G).

Call an embedding of pert(µ) neat if it is out-minimal and 6-approximate. The
main result of this section is the next proposition.

Proposition 1. Let G be a biconnected planar graph with SPQR tree T , rooted at an
arbitrary Q-node. Then the pertinent graph of every Q-node, P-node or R-node of T
has a neat embedding, and this embedding may be computed in polynomial time.

Since the pertinent graph of the root of T is the whole graph G, the proposition implies
a polynomial 6-approximation algorithm for minimization of largest face.

Our proof of Proposition 1 is constructive. Fix a node µ of T which is not an S-node.
We now describe an algorithm that computes a neat embedding of pert(µ), assuming
that neat embeddings are available for the pertinent graphs of all the descendant nodes
of µ that are not S-nodes. We distinguish cases based on the type of the node µ.

Non-root Q-nodes. As a base case, suppose that µ is a non-root Q-node of T . Then
pert(µ) is a single edge, and its unique embedding is clearly neat.

8

P-nodes. Next, suppose that µ is a P-node with k child nodes µ1, . . . , µk, represented
by k skeleton edges e1, . . . , ek. Let Gi be the expansion graph of ei. We construct the
expanded skeleton skel∗(µ) as follows: if for some i the child node µi is an S-node
whose skeleton is a path of length m, replace the edge ei by a path of length m, whose
edges correspond in a natural way to the edges of skel(µi).

Every edge e′ of the expanded skeleton corresponds to a node µ′ of T which is a
child or a grand-child of µ. Moreover, µ′ is not an S-node, and we may thus assume
that we have already computed a neat embedding for pert(µ′). Note that pert(µ′) is
the expansion graph of e′.

For each i ∈ {1, . . . , k} define `i to be the smallest value such that Gi has an
embedding with boundary path of length `i. We compute `i as follows: if µi is not and
S-node, then we already know a neat (ai, bi)-embedding ofGi, and we may put `i = ai.
If, on the other hand, µi is an S-node, then let m be the number of edges in the path
skel(µi), and let G1

i , G
2
i , . . . , G

m
i be the expansion graphs of the edges of the path. For

each Gji , we have already computed a neat (aj , bj)-embedding, so we may now put
`i =

∑m
j=1 aj . Clearly, this value of `i corresponds to the definition given above.

We now fix two distinct indices α, β ∈ {1, . . . , k}, so that the values `α and `β are
as small as possible; formally, `α = min{`i; i = 1, . . . , k} and `β = min{`i; i =
1, . . . , k and i 6= α}.

Let us fix an embedding of skel(µ) in which eα and eβ are adjacent to the outer
faces. We extend this embedding of skel(µ) into an embedding of pert(µ) by replacing
each edge of skel∗(µ) by a neat embedding of its expansion graph, in such a way that the
two boundary paths have lengths `α and `β . Let E be the resulting (`α, `β)-embedding
of pert(µ).

We now show that E is neat. From the definitions of `α and `β , we easily see that E
is out-minimal. It remains to show that it is 6-approximate. Let f be any inner face of
E . If f is an inner face of the expansion graph Gi of some ei, then f is an inner face of
some previously constructed neat embedding, hence |f | ≤ 6 · OPT(G).

Suppose then that f is not the inner face of anyGi. Then the boundary of f intersects
two distinct expansion graphs Gi and Gj . Hence the boundary of f is the union of two
paths Pi and Pj , with Pi ⊆ Gi and Pj ⊆ Gj . Let di and dj be the lengths of Pi and
Pj , respectively, and assume that di ≤ dj . It follows that |f | = di + dj ≤ 2dj . We
claim that every embedding of G has a face of size at least dj/2. If µj is not an S-node,
this follows from the fact that Pj is a boundary path in an out-minimal embedding of
Gj , hence any other embedding of Gj must have a boundary path of length at least
dj . If, on the other hand, µj is an S-node, then in every embedding of Gj , the two
boundary paths have total length at least dj , so every embedding of Gj has a boundary
path of length at least dj/2 and thusG has a face of size at least dj/2. We conclude that
|f | ≤ 2dj ≤ 4 · OPT(G), showing that E is indeed neat.

R-nodes. Suppose now that µ is an R-node. As with P-nodes, we define the expanded
skeleton skel ∗(µ) by replacing each edge of skel(µ) corresponding to an S-node by a
path of appropriate length. The graph skel ∗(µ) together with the parent edge forms a
subdivision of a 3-connected graph. In particular, its embedding is determined uniquely
up to a flip and a choice of outer face. Fix an embedding of skel∗(µ) and the parent edge,

9

so that the parent edge is on the outer face. Let f1 and f2 be the two faces incident to
the parent edge of µ.

Let e be an edge of skel∗(µ), let Ge be its expansion graph, and let Ee be a neat
(a, b)-embedding of Ge, for some a ≤ b. The boundary path of Ee of length a will be
called the short side of Ee, while the boundary path of length b will be the long side. If
a = b, we choose the long side and short side arbitrarily.

Our goal is to extend the embedding of skel∗(µ) into an embedding of pert(µ) by
replacing each edge e of skel∗(µ) with a copy of Ee. In doing so, we have to choose
which of the two faces incident to e will be adjacent to the short side of Ee.

First of all, if e is an edge of skel∗(µ) incident to one of the outer faces f1 or f2, we
embed Ee in such a way that its short side is adjacent to the outer face. Since f1 and f2
do not share an edge in skel∗(µ), such an embedding is always possible, and guarantees
that the resulting embedding of pert(µ) will be out-minimal.

It remains to determine the orientation of Ee for the edges e that are not incident
to the outer faces, in such a way that the largest face of the resulting embedding will
be as small as possible. Rather than solving this task optimally, we formulate a linear
programming relaxation, and then apply a rounding step which will guarantee a constant
factor approximation.

Intuitively, the linear program works as follows: given an edge e incident to a pair
of faces f and g, and a corresponding graph Ge with a short side of length a and a long
side of length b, rather than assigning the short side to one face and the long side to the
other, we assign to each of the two faces a fractional value in the interval [a, b], so that
the two values assigned by e to f and g have sum a+ b, and the maximum total amount
assigned to a single face of skel∗(µ) from its incident edges is as small as possible.

More precisely, we consider the linear program with the set of variables

{M} ∪ {xe,f ; e is an edge adjacent to face f},

where the goal is to minimize M subject to the following constraints:

– For every edge e adjacent to a pair of faces f and g, we have the constraints xe,f +
xe,g = a + b, a ≤ xe,f ≤ b and a ≤ xe,g ≤ b, where a ≤ b are the lengths of the
two boundary paths of Ee.

– Moreover, if an edge e is adjacent to an outer face f ∈ {f1, f2} as well as an inner
face g, then we set xe,f = a and xe,g = b, with a and b as above.

– For every inner face f of skel∗(µ), we have the constraint
∑
e xe,f ≤ M , where

the sum is over all edges incident to f .

Given an optimal solution of the above linear program, we determine the embedding
of pert(µ) as follows: for an edge e of skel∗(µ) incident to two inner faces f and g, if
xe,f ≤ xe,g , embed Ee with its short side incident to f and long side incident to g. Let
Eµ be the resulting embedding.

We claim that Eµ is neat. We have already seen that Eµ is out-minimal, so it remains
to show that every inner face of Eµ has size at most 6 ·OPT(G). Let us say that an inner
face of Eµ is deep if it is also an inner face of some Ee, and it is shallow if it corresponds
to a face of skel∗(µ). Note that the deep faces have size at most 6 · OPT(G), since all
the Ee are neat embeddings, so we only need to estimate the size of the shallow faces.

10

Let OPTout denote the minimum k such that pert(µ) has an out-minimal embedding
whose every shallow face has size at most k. We claim that OPTout ≤ 3·OPT(G). To see
this, consider an embedding of pert(µ) in which each face has size at most OPT(G). In
this embedding, replace each subembedding of Ge by a copy of Ee, without increasing
the size of any shallow face. This can be done, because each Ee is out-minimal. Call
the resulting embedding E ′. Next, for every edge e of skel∗(µ) adjacent to f1 or f2, flip
Ee so that its short side is incident to f1 or f2. Let E ′′ be the resulting embedding of
pert(µ). Clearly, E ′′ is out-minimal.

In E ′′, some inner shallow face f adjacent to f1 or f2 may have larger size than the
corresponding face of E ′; however, for such an f , its size in E ′′ is at most equal to the
sum of the sizes of f , f1 and f2 in E ′. In particular, each inner shallow face has size at
most 3 · OPT(G) in E ′′, and hence OPTout ≤ 3 · OPT(G), as claimed.

We will now show that each shallow face of Eµ has size at most 2 · OPTout. Let
M be the value of optimum solution to the linear program defined above. Clearly,
M ≤ OPTout, since from an out-minimal embedding with shallow faces of size at most
OPTout, we may directly construct a feasible solution of the linear program with value
OPTout. Let f be a shallow face of Eµ. Let e be an edge of skel∗(µ) incident to f , and
let g be the other face incident to e. Let a and b be the lengths of the short side and long
side of Ee, respectively. If xe,f ≤ xe,g , then Ee contributes to the boundary of f by its
short side, which has length a. Otherwise, f has the long side of Ee on its boundary, but
that may only happen when xe,f ≥ xe,g , and hence b ≤ a+ b = xe,f + xe,g ≤ 2xe,f .
From this, we see that f has size at most

∑
e 2xe,f ≤ 2M , with the previous sum

ranging over all edges of skel∗(µ) incident to f .
Thus, for every shallow face f of Eµ, we have |f | ≤ 2M ≤ 2·OPTout ≤ 6·OPT(G),

showing that Eµ is neat.

The root Q-node. Finally, suppose that µ is the root of the SPQR-tree T . That means
that µ is a Q-node, and its skeleton is formed by two parallel edges e1 and e2, where
the expansion graph of e1 is a single edge and the expansion graph G2 of e2 is the
pertinent graph of the unique child node µ′ of µ. If µ′ is not an S-node, we already have
a neat (a, b)-embedding E2 of G2, and by inserting the edge e1 to this embedding in
such a way that the outer face has size a+ 1, we clearly obtain a neat embedding of G.
If µ′ is an S-node, then G2 is a chain of biconnected graphs G1

2, G
2
2, . . . , G

k
2 , and for

each Gi2 we have a neat (ai, bi)-embedding. Combining these embedding in an obvious
way, and adding the edge e1, we get an embedding of G whose outer face has size
1+a1+a2+· · ·+ak, and whose unique inner shallow face has size 1+b1+b2+· · ·+bk.
Since in each embedding of G, the two faces incident to e1 have total size at least
2 + a1 + · · ·+ ak + b1 + · · ·+ bk, we conclude that our embedding of G is neat.

This completes the proof of Proposition 1, and yields a 6-approximation algorithm
for the minimization of largest face in biconnected graphs.

Theorem 4. A 6-approximation for MINMAXFACE in biconnected graphs can be com-
puted in polynomial time.

11

4 Perfectly Uniform Face Sizes

In this section we study the problem of deciding whether a biconnected planar graph
admits a k-uniform embedding. Note that, due to Euler’s formula, a connected planar
graph with n vertices and m edges has f = m − n + 2 faces. In order to admit an
embedding where every face has size k, it is necessary that 2m = fk. Hence there is at
most one value of k for which the graph may admit a k-uniform embedding.

In the following, we characterize the graphs admitting 3-uniform and 4-uniform
embeddings, and we give an efficient algorithm for testing whether a graph admits a 6-
uniform embedding. Finally, we show that testing whether a graph admits a k-uniform
embedding is NP-complete for odd k ≥ 7 and even k ≥ 10. We leave open the cases
k = 5 and k = 8.

Our characterizations and our testing algorithm use the recursive structure of the
SPQR-tree. To this end, it is necessary to consider embeddings of pertinent graphs,
where we only require that the interior faces have size k, whereas the outer face may
have different size, although it must not be too large. We call such an embedding al-
most k-uniform. The following lemma states that the size of the outer face in such an
embedding depends only on the number of vertices and edges in the pertinent graph.

Lemma 1. Let G be a graph with n vertices and m edges with an almost k-uniform
embedding. Then the outer face has length ` = k(n−m− 1) + 2m.

Proof. Let f denote the number of faces ofG in a planar embedding, which us uniquely
determined by Euler’s formula n − m + f = 2. By double counting, we find that
(f − 1) · k + ` = 2m. Euler’s formula implies that f = 2 +m− n, and plugging this
into the second formula, we obtain that (1 + m − n) · k + ` = 2m or, equivalently,
` = k(n−m− 1) + 2m. ut

Thus, for small values of k, where the two boundary paths of the pertinent graph
may have only few different lengths, the type of an almost k-uniform embedding is
essentially fixed.

4.1 Characterization for k = 3, 4

For 3-uniform embeddings first observe that every facial cycle must be a triangle. If the
input graph is simple, then this implies that it must be a triangulation. Then the graph
is 3-connected and the planar embedding is uniquely determined. We characterize the
multi-graphs that have such an embedding.

Theorem 5. A biconnected planar graph G admits 3-uniform embedding if and only if
its SPQR-tree satisfies all of the following conditions.

(i) S- and R-nodes are only adjacent to Q- and P-nodes.
(ii) Every R-node skeleton is a planar triangulation.

(iii) Every S-node skeleton has size 3.
(iv) Every P-node with k neighbors has k even and precisely k/2 of the neighbors are

Q-nodes.

12

Proof. It is not hard to see that all conditions are necessary. We prove sufficiency. To
this end, we choose the embeddings of the R-node skeletons arbitrarily, and we embed
the P-node skeletons such that virtual edges corresponding to Q-node and non-Q-node
neighbors alternate. We claim that in the resulting planar embedding ofG all faces have
size 3.

To this end, root the SPQR-tree T of G at an arbitrary edge e and consider the
embedding e incident to the outer face.

Claim. 1. If µ is a Q-node or a P-node whose parent is not a Q-node, then it has an
almost 3-uniform embedding of type (1, 1).

2. If µ is an S-node, an R-node, or a P-node whose parent is a Q-node, then it has an
almost 3-uniform embedding of type (2, 2).

We prove this by induction on the height of the node in the SPQR-tree. Clearly,
the statement holds for Q-nodes. Now consider an internal node µ and assume that the
claim holds for all children.

If µ is an S-node, then the clockwise (counterclockwise) path of pert(µ) between
the poles along the outer face is the concatenation of the clockwise path (counterclock-
wise) paths of the pertinent graphs of its children. By property (iii) there are only two
children and by property (i) they are either Q- or P-nodes. By the inductive hypothesis,
their embeddings are almost 3-uniform and have type (1, 1), and hence the type of the
embedding of pert(µ) is (2, 2).

If µ is an R-node, then its clockwise (counterclockwise) path between the poles
is the concatenation of the clockwise (counterclockwise) paths of the pertinent graphs
corresponding to the edges on the clockwise (counterclockwise) path between the poles.
By property (ii) each of these paths has length 2 in skel(µ) and the children are either
Q- or P-nodes. Thus, by the inductive hypothesis, their embeddings have type (1, 1).

If µ is a P-node whose parent is not a Q-node, then, by our choice of the planar
embedding, the two outer paths in skel(µ) are edges corresponding to Q-nodes, and the
claim follows from the inductive hypothesis. If the parent of µ is a Q-node, then, again
by the embedding choice, the two edges outer paths in skel(µ) are edges corresponding
to S- or R-nodes, and again the inductive hypothesis implies the claim. This finishes the
proof of the claim.

Let now µ denote the Q-node corresponding to the root edge e and consider the two
faces incident to e, which show up as faces in skel(µ). Let µ′ be the neighbor of µ in
the SPQR-tree. Then µ′ is either an S-node, an R-node, or a P-node whose parent is a
Q-node. In all cases the embedding of pert(µ′) has type (2, 2), and hence the two faces
incident to e have size 3. Since e was chosen arbitrarily, it follows that each face has
size 3. ut

Corollary 1. It can be tested in linear time whether a biconnected planar graph admits
a 3-regular dual.

For 4-uniform embeddings observe that every facial cycle must be a simple cycle of
length 4. Since every planar graph containing a cycle of odd length also has a face of
odd length in any planar embedding, it follows that the graph must be bipartite.

13

Now, if the graph is simple, the graph must be planar, bipartite and each face must
have size 4. It is well known (and follows from Euler’s formula) that this is the case if
and only if the graph has 2n − 4 edges; the maximum number of edges for a simple
bipartite planar graph. Again, if the graph is not simple more work is necessary. For a
virtual edge e in a skeleton skel(µ), we denote by me and ne the number of edges in its
expansion graph.

Theorem 6. A biconnected planar graph admits a 4-regular dual if and only if it is
bipartite and satisfies the following conditions.

(i) For each P-node either all expansion graphs satisfyme = 2ne−4, or half of them
satisfy me = 2ne − 5 and the other half are Q-nodes.

(ii) For each S- or R-node all faces have size 3 or 4; the expansion graphs of all edges
incident to faces of size 4 satisfyme = 2ne−3 and for each triangular face, there
is precisely one edge whose expansion graph satisfies me = 2ne − 4, the others
satisfy me = 2ne − 3.

Proof. We choose the planar embedding as follows. For each P-node, if half of the
neighbors are Q-nodes, then we choose the embedding such that Q-nodes and non-Q-
nodes alternate. All remaining embedding choices can be done arbitrarily. We claim
that in the resulting embedding all faces have size 4.

As in the proof of Theorem 5, root the SPQR-tree T of G at an arbitrary edge e and
consider the embedding as having e incident to the outer face.

Claim. For each node µ of T in the embedding of pert(µ) without the parent edge
denote by `µ and rµ the length of the clockwise and counterclockwise path on the outer
face connecting the poles of µ.
1. Each internal face of pert(µ) has size 4.
2. If µ is a Q-node or a P-node with Q-node neighbors whose parent is not a Q-node,

then pert(µ) has an almost 4-uniform embedding of type (1, 1).
3. If µ is a P-node whose neighbors all satisfy me = 2ne − 4, or µ is an S- or an R-

node whose parent satisfies me = 2ne − 4, then pert(µ) has an almost 4-uniform
embedding of type (2, 2).

4. If µ is a P-node with Q-node neighbors whose parent is a Q-node, or if µ is an S- or
an R-node whose parent is a Q-node or satisfies me = 2ne − 3, then pert(µ) has
an almost 4-uniform embedding of type (3, 3).

The proof of the claim is by structural induction on the SPQR-tree. Clearly, it holds
for the leaves, which are Q-nodes. Now consider an internal node µ.

If µ is a P-node, with Q-node neighbors whose parent is not a Q-node then, by prop-
erty (i) all children have almost 4-uniform embeddings. Further, the children that are not
Q-nodes satisfy me = 2ne − 4, and hence, their outer face has size 6 by Lemma 1. It
must hence be an S- or an R-node and, by the inductive hypothesis, their embeddings
have type (3, 3). Thus, the alternation of Q-nodes and these children ensures that inner
faces have size 4. Moreover, since the parent is not a Q-node, the linear ordering of the
children (excluding the parent) starts and ends with a Q-node. Hence the embedding of
pert(µ) has type (1, 1).

14

If µ is a P-node whose neighbors all satisfy me = 2ne − 4, then all children have
almost 4-uniform embeddings whose outer faces have size 4 by Lemma 1. Since a non-
P-node cannot have an embedding of type (1, x) for any value of x, their embeddings
have type (2, 2). This implies the inductive hypothesis.

If µ is a P-node with Q-node neighbors whose parent is a Q-node, then one more
than half of its children satisfy me = 2ne − 4 and hence have almost 4-uniform em-
beddings of type (3, 3). The alternation of Q-nodes and these children implies the state-
ment.

If µ is an S- or an R-node whose parent satisfies me = 2ne − 3 (or it is a Q-node),
the internal faces have size 4 according to the inductive hypothesis and property (ii). A
similar argument shows that the embedding has type (3, 3).

If µ is an S- or an R-node whose parent satisfies me = 2ne − 4, then the two faces
incident to the parent edge are triangles, and the children all satisfy me = 2ne − 3,
and hence have almost 4-uniform embeddings of type (1, 1). Thus the embedding of
pert(µ) has type (2, 2). This finishes the proof of the claim, and as it immediately
implies that every face has size 4, also the proof of the theorem. ut

Corollary 2. It can be tested in linear time whether a biconnected planar graph admits
a 4-regular dual.

4.2 Testing Algorithm for 6-Uniform Embeddings

To test the existence of a 6-uniform embedding, we again use bottom-up traversal of the
SPQR-tree and are therefore interested in the types of almost 6-uniform embeddings of
pertinent graphs. Clearly, each of the two boundary paths of a pertinent graph, may
have length at most 5. Thus, only embedding of type (a, b) with 1 ≤ a ≤ b ≤ 5
are relevant. Although, by Lemma 1 the value of a + b is fixed, this does usually not
uniquely determine the values a and b in this case. For example, at first sight it may
seem that if the outer face of a pertinent graph has length 6, then uniform embeddings
of type (1, 5), (2, 4) and (3, 3) may all be possible. However, as we will argue in the
following, only one of these choices is relevant in any situation.

In order to admit a k-uniform embedding with k even, it is necessary that the graph
is bipartite. In particular, this implies that also the outer face of any pertinent graph
must have even length. For a 6-uniform embedding the length of the face must be in
{2, 4, 6, 8, 10}. Let us now investigate for each such length the possible types of almost
6-uniform embeddings.

For length 2 and length 10, the types must be (1, 1) and (5, 5), respectively. For
length 4, the type must be (1, 3) or (2, 2). However, the poles of skel(µ) are either in
the same color class of the bipartite graph of G, then only (2, 2) is possible, or they
belong to different color classes, then only (1, 3) is possible. For length 6, the possible
types are (1, 5), (2, 4) and (3, 3). However, type (1, 5) implies that one of the paths
consists of a single edge, i.e., µ is a P-node. However, due to the path of length 5 on
the other boundary, we need another parallel edge to achieve faces of size 6. However,
such an edge must be a Q-node child of µ, showing that (1, 5) cannot occur. Thus only
(2, 4) and (3, 3) are actually possible. Again, the color class of the poles determines the

15

pair uniquely. Finally, for length 8, the possible types are (3, 5) and (4, 4) and again the
color classes uniquely determine the type.

Thus, we know for each internal node µ precisely what must be the type of an
almost 6-uniform embedding of pert(µ) if one exists. It remains to check whether for
each node µ, assuming that all children admit an almost 6-uniform embedding of the
correct type, it is possible to put them together to an almost 6-uniform embedding of
pert(µ) of the correct type. For this, we need to decide (i) an embedding of skel(µ)
and (ii) for each child whether to use the to mirror its almost k-uniform embedding. We
refer to the latter decision as choosing the flip of the child.

For S-nodes, which must necessarily have length at most 6, we can simply try all
ways to choose the flips of the children and see whether one of them gives the correct
values.

For a P-node, observe that, in order to obtain an almost 6-uniform embedding, the
boundary paths of the children must be either all odd or all even. If they are all even,
then all pertinent graphs of children must have types (2, 2), (2, 4) or (4, 4). Clearly,
the children with types (2, 2) and (4, 4) have to alternate in the sequence, the children
of type (2, 4) can be inserted at an arbitrary place. Let a and b denote the number of
children of type (2, 2) and (4, 4), respectively. It is necessary that |a−b| = 1, otherwise
they cannot alternate. If a > b, then the type of pert(µ) must be (2, 2), if b < a, it must
be (4, 4) and if a = b, then it must be (2, 4).

The case that all paths are odd is similar but slightly more complicated as there are
more possible embedding types for the children. The possible types are (1, 1), (3, 3),
(3, 5), and (5, 5) (recall that (1, 3) and (1, 5) cannot occur in a P-node). Again, we call
the corresponding virtual edges (1, 1)-, (3, 3)-, (3, 5)- and (5, 5)-edges, respectively.

We now perform some simple groupings of such virtual edges that can be assumed
to be placed consecutively in any valid embedding. We view these consecutive edges as
a single child whose outer boundary paths determine its type of embedding. First, ob-
serve that if there is no (3, 5)-edge but a (3, 3)-edge, then all children must necessarily
be of type (3, 3). In this case any embedding of skel(µ) works and yields an embed-
ding of type (3, 3) for pert(µ). Otherwise, we group the (3, 5)-edges together with all
(3, 3)-edges into one big chunk, which then represents a child of type (3, 5). Thus, we
can assume that no (3, 3)-edge exists. Next, observe that the (3, 5)-edges must occur
in pairs whose interior face is bounded by two paths of length 3. Viewed as one graph,
the type of their embedding is (5, 5). Note that, due to the pairing, one (3, 5) might
be left over. In this case, we start the ordering for the embedding of skel(µ) with the
(3, 5)-edge. We then alternatingly insert (1, 1)-edges and (5, 5)-edges. If we manage to
use up all virtual edges, we have found a valid embedding. Otherwise, since we only
followed necessary conditions, a valid embedding does not exist.

For an R-node µ, observe that each face of the skeleton has size at least 3. Thus
children whose almost 6-uniform embedding has type (x, 5) for some value of x im-
mediately exclude the existence of a 6-uniform embedding for pert(µ). It now remains
to choose the flips of the almost 6-uniform embeddings of the children. Note that for
children whose type (a, b) is such that a = b, this choice does not matter. Thus, only
the flips of children of types (1, 3) and (2, 4) matter. We initially consider each face
as having a demand of 6. However, for each edge of type (a, b) incident to a face f ,

16

we remove from the demand of face f the amount min{a, b}, and rather conceptually
replace the edge by a (0, |a − b|)-edge. Due to the above observation, the only types
of edges remaining are (0, 0) and (0, 2). Clearly, we can ignore the (0, 0)-edges. The
remaining (0, 2)-edges can pass two units of boundary length into one of their incident
faces. We now consider the demand of each face. Clearly, it is necessary that these de-
mands are even. We then model this as a matching problem, where each (0, 2)-edge has
capacity 1, and each face has capacity half its demand. We then seek a generalized per-
fect matching in the incidence graph of faces and vertices with positive capacity such
that each vertex is matched to exactly as many edges as its capacity. This can be solved
in O(n1.5) time by an algorithm due to Gabow [8]. Clearly an embedding exists if and
only the corresponding matching exists. We thus have proved the following theorem.

Theorem 7. It can be tested in O(n1.5) time whether a biconnected planar graph ad-
mits a 6-uniform embedding.

4.3 Uniform Embeddings with Large Faces

We prove NP-hardness for testing the existence of a k-uniform embedding for k = 7
and k ≥ 9 by giving a reduction from the NP-complete problem PLANAR POSITIVE
1-IN-3-SAT where each variable occurs at least twice and at most three times and
each clause has size two or three. The NP-completeness of this version of satisfiability
follows from the results of Moore and Robson [12], as shown by the following Theorem.

Theorem 8. PLANAR POSITIVE 1-IN-3-SAT is NP-complete even if each variable
occurs two or three times and each clause has size two or three.

Proof. Clearly the problem is in NP. For the hardness proof, we reduce from the NP-
complete problem CUBIC PLANAR MONOTONE 1-IN-3-SAT, a variant of planar 3-
SAT where each variable occurs three times and each clause consists of three literals
that are either all positive or all negative [12]. We denote 1-in-3 clauses as (x, y, z) (or
(x, y) for clauses of size two) where x, y, z are literals.

Consider a planar embedding of the variable–clause graph and a clauseC = (¬x, y, z)
where a variable x occurs negated. We now replace C by two clauses C ′ = (x′, y, z)
andC ′′ = (x′, x), where x′ is a new variable. Observe that, in the variable–clause graph
this corresponds to subdividing the edge xC twice. Thus, the resulting variable–clause
graph remains planar. Further, the clause C ′′ ensures that, in any satisfying 1-in-3 truth
assignment, the variables x and x′ have complementary truth values, i.e., x′ is the nega-
tion of x. Thus the resulting instance of PLANAR POSITIVE 1-IN-3-SAT is equivalent
to the original one. Moreover, the new instance has one fewer negated literal. After
O(n) such operations, we obtain an equivalent instance where all literals are positive.
Obviously the resulting formula satisfies the claimed properties and the reduction can
be performed in polynomial time. ut

Theorem 9. k-UNIFORMFACES is NP-complete for all odd k ≥ 7.

Proof. We reduce from PLANAR POSITIVE 1-IN-3-SAT where each variable occurs
two or three times and each clause has size two or three, which is NP-complete by

17

Theorem 8. Let ϕ be such a formula with n variables, C clauses and L literals (total
number of literals in all clauses), and let Gϕ be its variable–clause graph embedded in
the plane. We add an additional vertex s, which we call sink into the outer face and
connect each variable to the sink in such a way that no two edges incident to s cross.
Call this augmented graphG′ϕ. Note that, due to the crossings, edges may be subdivided
into several pieces, which we call arcs.

In the following we will construct gadgets modeling a flow-like problem on G′ϕ.
Each variable has 2k− 1 units of flow, where d is the degree in G′ϕ. It sends one unit of
flow into each incident edge. For the remaining units of flow, it takes a decision. Either
it sends the remaining flow to the sink (value false), or it evenly distributes it to all
incident edges leading to a clause (value true). We then construct gadgets for the arcs,
which simply pass on the information from one end to the other and crossing gadgets,
which pass the information over crossings. Here it is crucial that the crossover hap-
pens between information flows of different sizes. The only crossings happen between
variable–clause connections, which carry either one or two units of flow and variable–
sink connections, which carry either one or three/four units of flow (depending on the
degree of the variable). Since our construction is such that flows cannot be split, this
allows to cross over these information flows. The clauses gadgets are constructed such
that there is a face that has size d if and only if it receives as incoming flow the number
of incident variables plus one, which models the fact that precisely one of them must be
assigned the truth value true.

Next, we observe that for a satisfying truth assignment, there are precisely C satis-
fied literals and L − C unsatisfied literals in the formula. Each satisfied literal ensures
that only one unit is sent towards the sink, whereas each unsatisfied literal ensures that
two units are sent towards the sink. Thus, there are precisely C + 2(L−C) = 2L−C
units of flow sent to s via n edges. We design a gadget that admits an embedding where
every face has size d no matter how the incoming flow is distributed to the edges inci-
dent to s, we call this the sink gadget. Let now Hϕ denote the graph obtained from Gϕ
by replacing each variable, arc, crossing, clause, and the sink by a corresponding gad-
get. To ensure that the embedding of Hϕ follows the embedding of Gϕ, we triangulate
each face of Hϕ that corresponds to a face of Gϕ and then insert into each triangle a
construction that ensures that each of the internal faces has size d. This fixes the planar
embedding of Hϕ except for the decisions that are modeled by the gadgets. It is then
clear that Hϕ admits a planar embedding if an only if ϕ is satisfiable.

We now give a more detailed overview of the construction. The basic tool for pass-
ing information are wheels whose outer cycle has d vertices for d = 3, 4, 5, and whose
inner edges are subdivided (k − 1)/2 times such that all inner faces have size k; see
Fig. 2a. Note that this is possible since k is odd. We then designate two adjacent vertices
of the outer cycle as poles u and v, where it attaches to the rest of the graph. The flip of
this gadget then decides with of the two face incident to its outside is incident to a path
of length 1 and which is incident to a path of length d− 1. We call these two paths the
boundary paths. In this respect, and since there internal faces always have size k, and
hence are not relevant, these constructions behave like a single edge where one side has
length 1 and the other one has length d − 1. We therefore call them (1, 2)-, (1, 3)- and
(1, 4)-edges, respectively. We use them to model the flows from the above description.

18

(a)

1
2

1

2

1

2

1

3

1
2

1

2

1

4

(b)

Fig. 2: Illustration of the gadgets for the proof of Theorem 9 in the case d = 7. (a) (1, 2)-
edge and (1, 4)-edge; the poles are shaded, the subdivision vertices are small squares.
(b) Variable gadgets for variables occurring two (above) and three times (below), re-
spectively. The (1, k)-edges are represented thick and the numbers give the lengths of
the respective boundary paths. Note that simultaneously exchanging the numbers at
each edge also gives an embedding where the inner face has size d, and these are the
only two such choices. The edge at the bottom is the sink edge, the (1, 2)-edges are the
output edges.

We are now ready to describe our gadgets. A variable of degree d in G′ϕ (recall that
d = 2 or d = 3), the gadget is a cycle of length k− d such that d edges are (1, 2)-edges
(the output edges) and one is an (1, d− 1)-edge (the sink edge); see Fig. 2b for variable
gadgets for k = 7. Clearly, for the inner face f to have size k, either all (1, 2)-edges
must be embedded such that their boundary paths of length 2 are incident to it and the
(1, d− 1)-edge must be embedded such that its boundary path of length 1 is incident to
f , or all (1, 2)-edges and the (1, k− 1)-edge must be flipped. This precisely models the
flows emanated by a variable as described above.

We use pipe gadgets to transport flow along an arc. By construction, each arc trans-
ports flows from exactly one of the three sets {1, 2}, {1, 3} and {1, 4}. We give sep-
arate pipes for them. Let the set of flow values be {1, d}. The gadget is a cycle of
length k− d+ 1 where two nonadjacent edges are (1, d)-edges, one input and one out-
put edge. Clearly, there are k − d − 1 edges contributing length 1 to the inner face of
the gadgets. Thus, the two (1, d)-edges must together contribute paths of length d+ 1,
which occurs if and only if the information encoded by the input edge is transferred to
the output edge.

For a clause of degree d in Gϕ (recall that d = 2 or d = 3), the gadget is a cycle of
length k − 1 where d edges are (1, 2)-edges. Obviously, the inner face f has size k if
and only if precisely one of the (1, 2)-edges has its boundary path of length 2 incident
to f . Thus, the gadget correctly models a 1-in-3-SAT clause.

For a crossing, one of the two edges transports values in {1, 2} and the other values
in {1, 3} or in {1, 4}. If it is {1, 3}, we simply use a cycle of length 4, where two
opposite edges are (1, 2)-edges and the other two opposite edges are (1, 3)-edges; see

19

1 3

1

2

1

2

1 3

(a)

1 3

1

2

1

2

1 3

1 2

1

2
2

1 4 1 4

1

(b)

Fig. 3: Illustration of the crossing gadgets for the proof of Theorem 9 in the case d = 7.
(a) A crossing gadget for two edges, one carrying values in {1, 2} and one in {1, 3}.
Observe that simultaneously exchanging the numbers at opposite edges results again in
an inner face of size d, and this can be done independently for both pairs. (b) A crossing
gadget for two edges, one carrying values in {1, 2} and the other in {1, 4}. The dashed
lines show where further gadgets attach, the length of the dotted paths depends on d,
for d = 7 their length would be 0.

Fig. 3a. From each pair of opposite edges, we designate one as the input edge and one as
the output edge. It is not hard to see that the inner face has size k if and only if the state
from each input edge is correctly transferred to the output edge. Of course, the same
approach could be used for the case {1, 4}, however, this would require k ≥ 8. Instead,
we use a different approach; see Fig. 3b for an illustration. First, we split the information
into two separate pieces, one that transmits a value in {1, 2} and one that transmits a
value in {1, 3} (note that the sum of the differences between the upper and the lower
values remains constant). Then we cross over the part of the sink edge carrying the flow
in {1, 3} as before. To cross the part of the sink edge carrying flow in {1, 2} with the
variable–clause arc, we use a gadget we call flow switch. It consists of a cycle of length
k − 2 where four edges are (1, 2)-edges, and for each pair of opposite (1, 2)-edges one
is declared the input and one is the output. Note that, unlike the above crossing gadget,
this does not necessarily transfer the input information to the correct output edge. It
only requires that half of the (1, 2)-edges have a boundary path of length 2 in the inner
face. However, the fact that, afterwards, we use a symmetric construction as for splitting
the flow in {1, 4} to merge the two flows on the sink edges after the crossing back into
a flow in {1, 4} enforces this behavior.

We can now construct a graph H ′ϕ by replacing each variable by a variable gadget,
each clause by a clause gadget, each crossing by a crossing gadget and each arc by
a corresponding pipe gadget. The gadgets are joined to each other by identifying cor-
responding input and output edges of the gadgets (i.e., we identify the corresponding
construction), taking into account the embedding of G′ϕ. For the sink, we first attach
to each of the output edges of the pipe gadgets leading there, a corresponding variable
gadget via its sink edge to split the flow arriving there into (1, 2)-edges. We identify the
endpoints of these (1, 2)-edges such that they form a simple cycle whose interior faces
represents the sink.

20

1

2

1

1

2

1 2

2

1
21 12 1 21

21

1

2

2

1

1

2
21

21

1

2

1

2

1

2
21

21

2

1

2

1

1
21

2

2

.

Fig. 4: Illustration of a shift ring consisting of several flow switches. The gray edges on
the left and right boundary are identified. The red arrows illustrate the flow of informa-
tion, where the states of two (1, 2)-edges carrying different information is transposed in
the circular ordering compared to the inner face of the shift ring (above the construction)
and the outer face of the shift ring(below the construction).

We now arbitrarily triangulate, possibly by inserting vertices, all faces correspond-
ing to a face of G′ϕ that are not internal faces of a gadget and insert into each of the re-
sulting triangles a vertex connected to each triangle vertex by a path of length (k−1)/2.
This ensures that all resulting subfaces of the triangles have size k and at the same time
the embedding of H ′ϕ is fixed except for the flips of the (1, d)-edges. Using the above
arguments, it is not hard to see that ϕ admits a satisfying 1-in-3 truth assignment if and
only if Hϕ admits a planar embedding where each face has size k except for the face
representing the sink vertex, which is bounded by L (1, 2)-edges and has size 2L− C.
To complete the proof, we present a construction for the interior of the sink that always
allows an embedding where all inner faces have size k as long as the outer face has
size 2L − C, i.e., C edges have a boundary path of length 1 at the inner face, and the
remaining L− C have a boundary path of length 2 at the inner face.

This works in two steps. First, we build a shift ring, which allows to shift the infor-
mation encoded in a subset of the edges by one unit to the left or the right. The shift
ring consists of a ring of pairs of flow switches as shown in Fig. 4. Its inner and outer
face is bounded by L (1, 2)-edges. There is a natural bijection between the (1, 2)-edges
on the inner and on the outer ring, but the shift ring allows to exchange the state of two
adjacent edges. We then nest sufficiently many shift rings (L2 certainly suffice), which
allows us to assume that, in the innermost face, the edges whose boundary paths have
length 2 are consecutive, and the first one (in clockwise direction) is at a specific posi-
tion. Second, assuming that the innermost face has the configuration of its (1, 2)-edges
as described above, we simply triangulate it arbitrarily and insert into each triangle the
construction that makes every face have size k. This concludes the construction of the
sink gadget, and thus the proof. ut

Theorem 10. k-UNIFORMFACES is NP-complete for all even k ≥ 10.

Proof. The proof runs along the lines of the proof of Theorem 9. For this proof, how-
ever, we need the additional assumption that number L of literals is even. If it is not the
case, we take a variable x that occurs only twice (subdivide an edge to introduce such
a variable as in the proof of Theorem 8 if none exists). We then create new variables

21

Fig. 5: Construction for subdividing a face of even length (bold) into faces of arbitrary
size d (here d = 8).

u, v, w and add the clause (x, u, v) and twice the clause (u, v, w). If x has the value
true, then setting u = v = false and w = true satisfies the new clauses, and if
x = false, then u = true, v = w = false satisfies them. Thus the resulting
formula is equivalent to the original one, has an even number of literals, and satisfies
all the conditions of Theorem 8.

Now the proof essentially reuses the construction from Theorem 9 for such a for-
mula. However, since all faces have to have even size, it is not possible to construct
a (1, 2)-edge (or (1, k)-edges with k even for that matter); its outer face would have
to have odd length while all interior faces have even length, which is not possible. We
thus use (1, 3)-edges to transmit information for all the gadgets. The sink edges can
then use (1, 5)- and (1, 7)-edges. A crossing gadget for a (1, 3)-edge and a (1, 5)-edge
requires a face of size 10. A (1, 7)-edge can be split into a (1, 3) and a (1, 5)-edge for
the corresponding crossing gadget. By choosing suitably long pipes, we can ensure that
all faces that are not internal to a gadget have even length. Such a face can then be
subdivided into faces of size d by adding a new vertex incident to all vertices of the
face and subdividing every second of these edges d − 3 times; see Fig 5. For the sink,
we first distribute the information to (1, 3)-edges using variable gadgets and then use
corresponding shift rings made of flow switches for (1, 3)-edges. Now, in the innermost
face of the shift ring, there are L (1, 3)-edges of which C have length 1 in the inner face
and L − C have length 3, and they can be assumed to be en bloc, starting at a specific
edge. The total length of the innermost face then is 3(L− C) + C = 3L− 2C, which
is even due to our assumption on L. Thus, the construction making every face have size
d can be done as described above. ut

Open Problems. What is the complexity of k-UNIFORMFACES for k = 5 and k = 8?
Are UNIFORMFACES and MINMAXFACE polynomial-time solvable for biconnected
series-parallel graphs? Are they FPT with respect to treewidth?

Acknowledgments. We thank Bartosz Walczak for discussions.

22

References

1. P. Angelini, G. Di Battista, and M. Patrignani. Finding a minimum-depth embedding of a
planar graph in O(n4) time. Algorithmica, 60:890–937, 2011.

2. D. Bienstock and C. L. Monma. On the complexity of covering vertices by faces in a planar
graph. SIAM J. Comput., 17(1):53–76, 1988.

3. T. Bläsius, M. Krug, I. Rutter, and D. Wagner. Orthogonal graph drawing with flexibility
constraints. Algorithmica, 68:859–885, 2014.

4. T. Bläsius, I. Rutter, and D. Wagner. Optimal orthogonal graph drawing with convex bend
costs. In F. V. Fomin, R. Freivalds, M. Kwiatkowsak, and D. Peleg, editors, Automata,
Languages, and Programming (ICALP’13), volume 7965 of LNCS, pages 184–195. Springer,
2013.

5. G. Di Battista, G. Liotta, and F. Vargiu. Spirality and optimal orthogonal drawings. SIAM
Journal on Computing, 27(6):1764–1811, 1998.

6. G. Di Battista and R. Tamassia. On-line graph algorithms with SPQR-trees. In M. S. Pa-
terson, editor, Automata, Languages and Programming (ICALP’90), volume 443 of LNCS,
pages 598–611. Springer, 1990.

7. M. R. Fellows, J. Kratochvíl, M. Middendorf, and F. Pfeiffer. The complexity of induced
minors and related problems. Algorithmica, 13:266–282, 1995.

8. H. N. Gabow. An efficient reduction technique for degree-constrained subgraph and bidi-
rected network flow problems. In Theory of Computing (STOC’83), pages 448–456. ACM,
1983.

9. A. Garg and R. Tamassia. On the computational complexity of upward and rectilinear pla-
narity testing. SIAM J. on Comput., 31(2):601–625, 2001.

10. C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees. In J. Marks,
editor, Graph Drawing (GD’00), volume 1984 of LNCS, pages 77–90. Springer, 2001.

11. C. Gutwenger and P. Mutzel. Graph embedding with minimum depth and maximum external
face (extended abstract). In G. Liotta, editor, Graph Drawing (GD’03), volume 2912 of
LNCS, pages 259–272. Springer, 2004.

12. C. Moore and J. M. Robson. Hard tiling problems with simple tiles. Discrete Comput.
Geom., 26(4):573–590, 2001.

13. P. Mutzel and R. Weiskircher. Optimizing over all combinatorial embeddings of a planar
graph (extended abstract). In G. Cornuéjols, R. E. Burkard, and G. J. Woeginger, editors,
Integer Programming and Combinatorial Optimization (IPCO’99), volume 1610 of LNCS,
pages 361–376. Springer, 1999.

14. G. J. Woeginger. Embeddings of planar graphs that minimize the number of long-face cycles.
Oper. Res. Lett., pages 167–168, 2002.

23

	Planar Embeddings with Small and Uniform Faces

