
BOTTLENECK PARTIAL-MATCHING VORONOI

DIAGRAMS AND APPLICATIONS

MATTHIAS HENZE AND RAFEL JAUME

Abstract. Given two point sets in the plane, we study the minimiza-
tion of the bottleneck distance between a point set B and an equally-
sized subset of a point set A under translations. We relate this problem
to a Voronoi-type diagram and derive polynomial bounds for its com-
plexity that are optimal in the size of A. We devise efficient algorithms
for the construction of such a diagram and its lexicographic variant,
which generalize to higher dimensions. We use the diagram to find an
optimal bottleneck matching under translations, to compute a connect-
ing path of minimum bottleneck cost between two positions of B, and
to determine the maximum bottleneck cost in a convex polygon.

1. Introduction

Applications often demand algorithms to find an occurrence of a point
pattern in a given cloud of points. Using a suitable cost function, it is
common to define a similarity measure between the pattern and the point
cloud as the minimum cost among the images of the pattern under a set
of allowed transformations. One of the most studied similarity measures
between finite point sets A and B in Rd is the directed Hausdorff distance,
which is the maximum of the (Euclidean) distances from each point in B
to its nearest neighbor in A. For some applications in robotics and pattern
recognition, it is required that each point of the smaller set is matched
to a distinct point in the bigger one. The resulting distance is called the
bottleneck distance and was introduced for equally-sized sets in [2] as

∆(B,A) = min
σ:B↪→A

max
b∈B
‖b− σ(b)‖,

where ‖ · ‖ denotes the Euclidean norm and the minimum is taken over all
injections from B into A. In contrast to the directed Hausdorff distance, the
bottleneck distance has the advantage of being symmetric for equally-sized
sets. On the other hand, it is harder to compute, since the points cannot
be regarded independently. Note that there might be several matchings
that minimize the bottleneck distance, even when all the distances between
points are distinct. When this is to be avoided, considering the matching
that lexicographically minimizes the distances between matched points helps
to break some ties; cf. [7, 11, 21].

Research by the first author is supported by the ESF EUROCORES program
EuroGIGA-VORONOI, (DFG): RO 2338/5-1, and by the second author by “Obra So-
cial la Caixa” and DAAD.

1

ar
X

iv
:1

40
5.

09
00

v2
 [

cs
.C

G
]

 3
 D

ec
 2

01
4

2 MATTHIAS HENZE AND RAFEL JAUME

In this paper, we are interested in a dynamic version of the bottleneck
distance. More precisely, we want to efficiently compute, among all trans-
lated copies of B with respect to A, one attaining the minimum bottleneck
distance; that is, mint∈Rd ∆(B + t, A). This problem will be called bottle-
neck partial-matching under translations. It was introduced for equally-sized
point sets in the plane by Alt, Mehlhorn, Wagener & Welzl [2], who gave an
algorithm running in O(n6 log n) time for point sets of size n. Their bound
was later improved to O(n5 log2 n) by Efrat, Itai & Katz [14].

To the best of our knowledge, bottleneck matching under translations has
not been studied with the focus on algorithms whose complexity is sensitive
to the size of the smaller set. In order to do so, we associate Voronoi-type di-
agrams to the problem, which we call bottleneck diagrams and lex-bottleneck
diagrams, respectively. This follows an idea of Rote [20] who partitioned the
space of translations according to the (partial) matching that minimizes the
least-squares distance between translated copies of B and A (cf. [17, 4, 3] for
follow-up studies). Our bottleneck diagrams partition Rd into polyhedral
cells that correspond to locally-optimal (lexicographic-)bottleneck match-
ings.

Our motivation to investigate these diagrams does not restrict to solving
the bottleneck partial-matching problem under translations only. We more-
over aim to provide a structure that may be either used for preprocessing
or may be adjusted towards other problems that are based on the compu-
tation of the bottleneck distance in various translated positions of the point
sets. The applications at the end of the paper exemplify this utility of the
bottleneck diagrams.

A non-archival abstract containing parts of our studies appeared in [16].

Our Results. In Section 3, we formally introduce the Voronoi-type diagrams
before investigating their basic properties and combinatorial complexity. It
turns out that there exists a lex-bottleneck diagram (and, hence, a bot-
tleneck diagram) of complexity O(n2k6) for any given planar point sets
A,B ⊂ R2 with k = |B| ≤ |A| = n (see Theorem 3.12), and that this
bound cannot be improved with respect to the size of A. For point sets
A,B ⊂ Rd of higher dimensions we obtain in Corollary 3.6 that there is a
lex-bottleneck diagram of complexity O(n2dk2d). Based on this complexity
result, we devise algorithms in Section 4 that construct these polyhedral sub-
divisions of Rd and at the same time compute a (lexicographic-)bottleneck
matching for each of the cells of the subdivision, which is necessary to solve
the bottleneck matching problem under translations. This is achieved with
an overhead of O(k2) for the bottleneck diagrams, and O(k4) for the lexico-
graphic variant (see Theorems 4.9 and 4.10). The matching problem under
translations can then be solved for the bottleneck case in time O(n2k8), and
for the lexicographic variant in time O(n2k10), if the point sets are planar
(see Theorem 5.1). In higher dimensions the time bounds are O(n2dk2d+2)
and O(n2dk2d+4), respectively. Finally, Theorems 5.5 and 5.7 show how we
can use the bottleneck diagrams to efficiently compute a path of minimum
bottleneck cost between two positions of a pattern in the plane, or how to
determine what we call the cover radius of a polygon.

BOTTLENECK PARTIAL-MATCHING VORONOI DIAGRAMS 3

Comparison to previous work. Although neither Alt et al. [2] nor Efrat et
al. [14] consider the bottleneck matching problem for different-sized point
sets, their methods can be adapted to this situation without major difficul-
ties. In A, we elaborate on such an analysis of their algorithms and derive
the time bounds O(n3k3 log n) and O(n2k3 log2 n), respectively, where k is
the size of the smaller set and n the size of the bigger one. This shows
that the adapted algorithm by Efrat et al. outperforms our procedure, that
runs in O(n2k8), already for fairly small values of k, in particular for any

k = Ω(log2/5 n). Still, the use of bottleneck diagrams is conceptually dif-
ferent from previous methods, and has the advantage of being applicable
to solve the translative matching problem in any dimension and, moreover,
with respect to the lexicographic bottleneck cost. No exact algorithms were
known for higher dimensions previously, however, there exist approximation
algorithms for the bottleneck matching problem (see [14]).

Organization of the paper. In the next section, we introduce (lexicographic)
bottleneck matchings between two finite point sets and investigate corre-
sponding minimization diagrams and their properties. After these basics,
we define our main objects of study, bottleneck partial-matching Voronoi
diagrams, and analyze their combinatorial complexity in Section 3, before
addressing construction algorithms for these structures in Section 4. Fi-
nally, in Section 5, we apply the bottleneck diagrams to solve the bottleneck
partial-matching problem and related questions.

2. Bottleneck and Lexicographic Bottleneck Matchings

In this section, we introduce bottleneck matchings and discuss the mini-
mization diagram corresponding to the bottleneck partial-matching problem
under translation. The issues we encounter explain our approach to the def-
inition of the bottleneck diagrams in Section 3.

Throughout the paper, we assume that we are given two point sets A,B ⊂
Rd with k = |B| ≤ |A| = n and that B is allowed to be translated. We use
the term edge for a pair of points (a, b) ∈ A×B and denote it by ab for short.
The length of the edge ab is defined as the Euclidean distance ‖b − a‖. In
this context, we identify every injection of B into A with the matching, i.e.,
the set of edges, it induces. The cost of such a matching varies according to
a parameter representing the position of the point set B.

Definition 2.1. Let A,B ⊂ Rd be finite point sets with |B| ≤ |A|. A
bottleneck matching for A and B is a matching that minimizes

f(σ) = max
b∈B
‖b− σ(b)‖ among all the matchings σ : B ↪→ A.

The bottleneck cost of a matching σ : B ↪→ A is the function fσ : Rd → R≥0
defined as

fσ(t) = max
b∈B
‖b+ t− σ(b)‖2, for all t ∈ Rd.

The bottleneck value function E : Rd → R≥0 is defined by

E(t) = min
σ:B↪→A

fσ(t), for all t ∈ Rd.

4 MATTHIAS HENZE AND RAFEL JAUME

A

B

(a) Two point
sets.

(b) The minimization diagram of
E .

(c) A coarsening of a bottleneck
diagram of A and B.

Figure 1. The minimization diagram of E and a coarsening of a bottle-
neck diagram for a pair of point sets.

Figure 2. Three positions of a pair of point sets and a bottleneck match-
ing for each of them showing that the minimization diagram of the corre-
sponding E function has a non-convex region.

Note that a bottleneck matching is defined in terms of the Euclidean
distance while the functions fσ and E depend on the square of this value.
This squaring is harmless and will be convenient later on.

By definition, the function E is piecewise quadratic and induces a parti-
tion of Rd into polyhedral regions which is usually called the minimization
diagram of E . Figs. 1(a) and 1(b) show a pair of planar point sets and the
corresponding minimization diagram whose regions are colored according to
the edges attaining the bottleneck value. Note that some regions are not
convex and some are even disconnected. More precisely, the red and the blue
regions consist of two connected components. The possible non-convexity
of these regions is more concisely illustrated in Fig. 2. The pictured disks
certify that the drawn edges are the ones attaining the bottleneck value for
the three aligned positions of the small point set.

Moreover, the leftmost and the rightmost matchings in Fig. 2 are the
only optimal matchings for the respective positions of the small point set.
On the other hand, they have the same longest edge, i.e., the quadratic
functions in the corresponding regions of the minimization diagram coincide.
Note in addition that, disregarding the longest edge, these two matchings
have disjoint sets of edges. Conversely, it can happen that a matching is
the unique bottleneck matching for two open sets of positions contained
in different regions of the minimization diagram of E . An instance of this

BOTTLENECK PARTIAL-MATCHING VORONOI DIAGRAMS 5

situation is illustrated in Fig. 3; remember that different longest edges in
the matching correspond to different regions.

Figure 3. A bottleneck matching with different longest edges in different
positions of B.

Another observation is that, even for a fixed position of the point sets,
there are in general many bottleneck matchings. Fig. 4 shows an example
that can be easily generalized to show that a set of k points and a set of
n ≥ k points can have (n − 1)!/(n − k)! different bottleneck matchings.
Indeed, in the depicted situation only the edge between the points b0 and
a0 is fixed for a matching to be bottleneck, the remaining points can be
matched arbitrarily.

b0

a0

Figure 4. A pair of point sets with many bottleneck matchings.

Moreover, the bottleneck matchings for the point sets in Fig. 4 all have
the same longest edge, and they remain bottleneck matchings if one of the
point sets is translated in an open neighborhood of its current position.
However, there may be different edges that are the longest edge of bottleneck
matchings everywhere in a neighborhood of a fixed position, as illustrated in
Fig. 5. Just like in the previous figures, the bold edges attain the bottleneck
value.

A common way to break ties between bottleneck matchings for a given
position in order to be more sensitive to the geometry of the point sets is
to consider a lexicographic version of bottleneck matchings. That is, among
the matchings whose longest edge is as short as possible, consider those
whose second longest edge is as short as possible, and so on. For the precise
definition, we recall that the lexicographic order on Rk is the total order
induced by the relation (x1, . . . , xk) ≺ (y1, . . . , yk) if and only if there exists
an m ∈ [k] such that xi = yi for all i < m, and xm < ym. We write x � y if
x ≺ y or x = y.

Definition 2.2. Let A,B ⊂ Rd be two finite point sets with k = |B| ≤ |A|.
The lex-bottleneck cost of a matching σ : B ↪→ A is the function gσ : Rd → Rk
where the i-th coordinate of gσ(t) corresponds to the length of the i-th
longest edge of σ for B+ t and A. A lex-bottleneck matching for A and B is
a matching π such that gπ(0) � gσ(0) for every other matching σ.

6 MATTHIAS HENZE AND RAFEL JAUME

Figure 5. Bottleneck matchings with different longest edges.

Note that a lex-bottleneck matching is a bottleneck matching as well.
Although this definition certainly breaks some ties, we see in the next section
that it does not guarantee uniqueness (not even in the complement of a
nowhere-dense set).

3. Bottleneck Partial-Matching Voronoi Diagrams

In this part, we define Voronoi-type diagrams associated with the (lexico-
graphic) bottleneck partial-matching problem under translation. We discuss
basic properties of these structures and derive reasonable bounds on their
combinatorial complexity.

3.1. Definitions and Basic Properties. As we have seen in the previous
section, we face some difficulties when we define a Voronoi-type structure
for the bottleneck partial-matching problem. One of them is the existence of
open sets of translations for which neither the bottleneck matching nor the
longest edge are uniquely determined. The problem of the non-uniqueness of
the longest edge can be solved by requiring the point set to be in an ad hoc
general position. The non-uniqueness of the matching may be attacked by
considering the lexicographic variant, but even in general position it might
fail even in open balls. Nevertheless, it is of interest to study the original
version as well in order to solve problems like the ones in Section 5 or to
explore the minimization diagram of E .

As expected, the Voronoi-type diagrams we are going to study can be re-
quired to be given in form of a polyhedral complex. This facilitates travers-
ing the partition or optimizing in a region, operations that are often required
in related problems. In what follows, full-dimensional faces of a polyhedral
complex are called cells.

Definition 3.1. Let A,B ⊂ Rd be finite point sets with |B| ≤ |A|. A bottle-
neck partial-matching Voronoi diagram (or bottleneck diagram, for short) for
A and B is a polyhedral complex T covering Rd and such that for every cell
C of T there is at least one matching πC : B ↪→ A such that fπC (t) ≤ fσ(t)
for all t ∈ C and all matchings σ : B ↪→ A. A bottleneck labeling of a
bottleneck diagram is a function mapping each cell to one such matching.

A coarsening of a bottleneck diagram of the point set in Fig. 1(a) is
displayed in Fig. 1(c), where cells with the same label have the same color.
Note that for B = {b} the Voronoi diagram of A−b is a bottleneck diagram.
A diagram for the lexicographic version of the bottleneck cost is defined
analogously.

BOTTLENECK PARTIAL-MATCHING VORONOI DIAGRAMS 7

Definition 3.2. Let A,B ⊂ Rd be two finite point sets with |B| ≤ |A|. A
lex-bottleneck partial-matching Voronoi diagram (or lex-bottleneck diagram,
for short) for A and B is a polyhedral complex T covering Rd and such that
for every face c of T there is at least one matching πc : B ↪→ A such that
gπc(t) � gσ(t) for all t interior to c and all matchings σ : B ↪→ A. A lex-
bottleneck labeling of a lex-bottleneck diagram is a function mapping each
face to one such matching.

Figure 6. A pair of point sets and a lex-bottleneck labeling of the neigh-
borhood of the represented position.

Note that a bottleneck matching in a lower-dimensional face of a bottle-
neck diagram is given by the labeling of a cell containing it, i.e., the label for
a cell is valid everywhere in the cell. This is not the case for a lex-bottleneck
diagram, which is the reason why a label for each face is required. Fig. 6
shows an example. On the left of the figure, the point sets A and B are
displayed, for which the blue and the red matchings are both lex-bottleneck
matchings. On the right, a small neighborhood in a lex-bottleneck diagram
around the point t ∈ R2 corresponding to the depicted position of the point
sets is represented. If the point set B (the white dots) is moved infinites-
imally to the right, only the blue matching is a lex-bottleneck matching,
whereas if it is moved infinitesimally to the left, only the red matching re-
mains lex-bottleneck. This forces the cyan and orange regions to be labeled
with the blue and red matchings, respectively. However, if B is vertically
translated by an infinitesimal amount, the longest blue edge and the longest
red edge have the same length. In addition, the second longest red edge
is longer than the second longest blue edge if the perturbation is upwards,
while it is shorter if the perturbation is downwards, forcing the blue and red
regions to be labeled accordingly. For the depicted position (corresponding
to the purple point), both matchings are equally good, since the respective
shortest edges are equally long.

Since any lex-bottleneck diagram is a bottleneck diagram, we prove some
properties for the first, more restrictive type. However, later on we devise
algorithms that compute a bottleneck labeling more efficiently than a lex-
bottleneck one. For our applications in Section 5 the first type of labeling
is enough.

8 MATTHIAS HENZE AND RAFEL JAUME

Figure 7. Two lex-bottleneck matchings, represented for three positions
of B.

Definition 3.3. Given x, y, v, z ∈ Rd, let

h(x, y, v, z) =
{
t ∈ Rd : ‖y + t− x‖ = ‖z + t− v‖

}
=
{
t ∈ Rd : 2 〈t, y − x− (z − v)〉 = ‖z − v‖2 − ‖y − x‖2

}
.

Given two finite point set A,B ⊂ Rd, let H(A,B) be the arrangement of the
hyperplanes h(a, b, a′, b′), called bisectors, for all pairs a, a′ ∈ A and b, b′ ∈ B
such that b− a 6= b′ − a′.

Proposition 3.4. The arrangement H(A,B) is a lex-bottleneck diagram.

Proof. The squared length of an edge matching b to a = σ(b) is given by

‖b+ t− a‖2 = ‖t‖2 + ‖b− a‖2 + 2 〈t, b− a〉 .
For a pair of edges ab, a′b′ ∈ A × B, the locus of points t ∈ Rd for which
‖b + t − a‖2 = ‖b′ + t − a′‖2 is exactly h(a, b, a′, b′). If b − a 6= b′ − a′,
then this set is a hyperplane, otherwise the whole Rd. Let c be a face
in H(A,B), and let π be a lex-bottleneck matching for a point t0 in the
relative interior of c. A lex-bottleneck matching for the translation t ∈ Rd
only depends on the relative length of the possible edges in A × (B + t).
Hence, the matching π remains lex-bottleneck for t as well as long as no
edge becomes strictly shorter than another edge that was strictly longer for
t0. By definition of H(A,B), this cannot happen in the relative interior of c.
Since an arrangement of hyperplanes is a polyhedral complex, H(A,B) is a
lex-bottleneck diagram for A and B. �

Observe that there may be open sets for which two different matchings
are lex-bottleneck matchings, as shown in Fig. 7. This is because every edge
from the red matching can be paired with an edge of the blue matching
having the same length for any position of the matching. As long as the
blue match and the red match of every point in B are its two closest points
(as in the three positions represented in the figure), both are lex-bottleneck
matchings. Nonetheless, we see now that the matched sets σ(B) of such
matchings σ : B ↪→ A coincide.

Proposition 3.5. Let A,B ⊂ Rd be finite point sets with |B| ≤ |A|. If two
matchings are lex-bottleneck matchings in an open set U ⊂ Rd, then they
have the same matched set and they have the same lex-bottleneck cost for
any t ∈ Rd. In particular, in the interior of a cell of H(A,B) there is a

BOTTLENECK PARTIAL-MATCHING VORONOI DIAGRAMS 9

unique subset A′ ⊆ A that is the matched set of all lex-bottleneck matchings
for that cell.

Proof. As argued in the proof of Proposition 3.4, the set of lex-bottleneck
matchings is the same for all the translations interior to a cell of H(A,B).
Let C be a cell of H(A,B), t0 be a point interior to C, and π and σ be two
different lex-bottleneck matchings for B + t0 and A. We regard here the
matchings π and σ as sets of edges on the vertex set A ∪B. Consider then
the symmetric difference of π and σ, i.e., the set of edges that belong to π
or to σ but not to both. The graph with this set of edges is a collection
of (even length) vertex-disjoint paths and cycles, whose edges from π alter-
nate with edges from σ, since the edges of a matching are pairwise-disjoint
(see Section 4.1 for details).

In addition, since we assume that both matchings are lex-bottleneck
matchings, we have that there is a one-to-one correspondence between edges
of every path or cycle belonging to π and the edges from the same path or cy-
cle belonging to σ, such that the corresponding edges have the same length.
Indeed, assume for a contradiction that there is no such correspondence for
some path or cycle γ. Then, the restriction of one of the matchings, say π,
to γ would be better than the restriction of the other (in the lexicographic
sense). The result of replacing in σ the edges of σ∩γ with the edges of π∩γ
is a matching and it is lexicographically better than σ, which contradicts its
assumed optimality.

It follows from the proof of Proposition 3.4, that the edges ab and a′b′

have the same length over an open set if and only if b − a = b′ − a′. Thus,
there is no path in the symmetric difference, because following the edges in
a path we would arrive to the starting vertex, since every edge is “cancelled”
by the corresponding edge of the other matching. Therefore, the symmetric
difference is made exclusively of cycles, and hence the matched sets of π and
σ coincide. �

3.2. Complexity of the Bottleneck Diagrams. The construction in the
proof of Proposition 3.4 leads immediately to a first bound on the complexity
of a lex-bottleneck diagram.

Corollary 3.6. For any pair of point sets A,B ⊂ Rd with k = |B| ≤ |A| =
n, there is a lex-bottleneck diagram of combinatorial complexity O(n2dk2d).

Proof. By Proposition 3.4 the arrangement H(A,B) is a lex-bottleneck di-
agram for A and B. It is well-known (cf. [12]) that the complexity of an
arrangement of m hyperplanes in Rd is O(md). The arrangement H(A,B)

consists of
(
n
2

)(
k
2

)
= O(n2k2) hyperplanes in Rd, and hence the claimed

bound follows. �

Our aim is now to show that there are many hyperplanes of H(A,B) that
we can safely ignore. This allows for an improvement of the above bound
for planar point sets. We need to introduce some necessary notation and
collect some auxiliary results before we can present our argument.

First of all, we state some simple results on hyperplane arrangements, the
first of which can be found, e.g., in [12], and will be used implicitly later on.

10 MATTHIAS HENZE AND RAFEL JAUME

Proposition 3.7. For a finite point set P ⊂ Rd, consider the linear func-
tions

hp(x) = ‖p‖2 − 2 〈x, p〉 , for p ∈ P.
For a fixed k ∈ [|P |], the k-level of the arrangement of hyperplanes associated
to these functions projects onto the order-k Voronoi diagram of P .

Proposition 3.8. Let S ⊂ R2 be a finite point set and let Z be the set of
planes

zp =
{(
x, y, ‖p‖2 − 2 〈(x, y), p〉

)
: (x, y) ∈ R2

}
⊂ R3, for p ∈ S.

Every three planes in Z intersect in at most one point. Equivalently, the
locus of points equidistant from three different points of S is either a point
or empty.

Proof. For every point q ∈ R2, the vertical order of the planes zp over q is
the same as the distances from q to the corresponding p ∈ S. The locus of
points equidistant from three points in the plane is the center of the circle
through them, or the empty set if they are collinear. Hence, three planes
can coincide in at most one point. �

The main ingredient to improve the complexity bound in Corollary 3.6 is
the following lemma.

Lemma 3.9 (Ben-Avraham et al. [4]). Let A ⊂ R2 be a set of n points.
There are O(nk) bisectors that support all edges of order-j Voronoi diagrams
of A for all j ≤ k.

Finally, we fix some technicalities for lex-bottleneck matchings.

Definition 3.10. Let A,B ⊂ Rd be two finite point sets with k = |B| ≤ |A|.
Given b ∈ B, a set of edges Mb ⊆ A×B is called a b-minimal set if |Mb| = k
and no edge ab ∈ (A×B) \Mb is strictly shorter than any edge in Mb. The
candidate set of b ∈ B at a position t ∈ Rd is the set Eb(t) ⊆ A × (B + t)
with |Eb(t)| ≥ k and such that every edge (a, b+ t) /∈ Eb(t) is strictly longer
than every edge in Eb(t). Furthermore, we write Z(t) = ∪b∈BEb(t).

Lemma 3.11. Let A,B ⊂ Rd be two finite point sets with k = |B| ≤ |A|.
(i) If a subset M ⊆ A×B contains a b-minimal set for each b ∈ B, then M

contains a lex-bottleneck matching for A and B.
(ii) Every lex-bottleneck matching for A and B is contained in the union Z =

Z(0) of candidate sets.

Proof. (i): Let µ ⊂ A×B be a lex-bottleneck matching. If µ ⊆M , nothing
is left to prove. Otherwise, let ab ∈ A × B be an edge in µ \ M , and
let Mb ⊆ M be a b-minimal set. Since µ matches exactly k points of A
and ab 6∈ M ⊇ Mb, there must be an edge a′b ∈ Mb \ µ. The matching
(µ \ {ab}) ∪ {a′b} is lexicographically at least as good as µ and it uses one
more edge of M . Repeating the process, we end up with a lex-bottleneck
matching contained in M .

(ii): Assume that µ is a lex-bottleneck matching for A and B and that it
contains an edge ab /∈ Z. Let a′b be an edge in Eb(0) \µ 6= ∅. By definition
of candidate sets, the matching (µ \ {ab})∪ {a′b} is lexicographically better
than µ, contradicting its optimality. �

BOTTLENECK PARTIAL-MATCHING VORONOI DIAGRAMS 11

Now we are well-prepared to prove our main result of this section.

Theorem 3.12. For any pair of point sets A,B ⊂ R2 with k = |B| ≤ |A| =
n, there is a lex-bottleneck diagram of complexity O(n2k6).

Proof. Observe that Eb(t1) = Eb(t2) for every pair of points t1, t2 interior to
a cell C of H(A,B), for all b ∈ B. Therefore, we write Eb(C) = Eb(t) and
Z(C) = Z(t) for any point t interior to a cell C of H(A,B). By Lemma 3.11-
(ii), any lex-bottleneck matching for a point interior to C is contained in
Z(C). Let now t0 be a point in a lower-dimensional face L of H(A,B),
and let C ⊃ L be a cell. For continuity reasons, the set Eb(C) ⊆ Eb(t0)
is a b-minimal set at t0 as well. Therefore, by Lemma 3.11-(i), there is a
lex-bottleneck matching for t0 contained in Z(C).

Now, consider a labeling Λ of H(A,B) that labels every face of a cell C
with a matching contained in Z(C). We say that an edge F of H(A,B)
between two cells Cl and Cr uses a bisector h = h(a, b, a′, b′) if F ⊂ h
and ab, a′b′ ∈ Z(Cl) ∪ Z(Cr). If no edge uses a bisector h, then h can be
omitted from the arrangement H(A,B) while maintaining its property of
being a lex-bottleneck diagram. Each new face in the resulting hyperplane
arrangement is a union of a set of old faces, i.e., before removing h, and can
be labeled according to the label of any of them, since h does not intersect
any face whose label in Λ uses the edges ab or a′b′. We show now that many
bisectors are not used by any edge, distinguishing the two following cases.

Let h(a, b, a′, b) be a bisector used by an edge F = Cl ∩ Cr, and consider
the point set S(b) = A − b. The edge F must be contained in an order-j
Voronoi edge of S(b) for some j ≤ k. Indeed, in view of Proposition 3.8,
infinitesimally to the right or to the left of (a point in the relative interior
of) F both a− b and a′ − b are among the k+ 1 closest points. In addition,
for a point t0 in the relative interior of F , the points a − b and a′ − b are
the only two points of S(b) that lie at distance ‖b+ t0 − a‖ = ‖b+ t0 − a′‖.
Hence, there is a circle centered at t0 and through a − b and a′ − b that
contains j − 1 ≤ k − 1 points in its interior, which is a characterization for
points in the relative interior of edges of the order-j Voronoi diagram.

Let h(a, b, a′, b′) with b 6= b′ be a bisector used by an edge F = Cl∩Cr, and
consider the point set S(b, b′) = (A− b) ∪ (A− b′). Note that the number
of points in S(b, b′) is not necessarily 2n: a point a1− b = a2− b′ can belong
to both A− b and A− b′. However, this is the case if and only if the edges
a1b and a2b

′ are equally long everywhere. In particular, the points a − b
and a′− b′ are distinct since, otherwise, they would not induce any bisector.
Furthermore, simple algebraic manipulations show that t ∈ R2 is closer to
a1− b than to a2− b′ if and only if b+ t is closer to a1 than b′+ t is to a2, for
any choice of a1, a2 ∈ A. Since the bisector is used by F , the point a− b is
among the k closest points of A−b infinitesimally to at least one of the sides
of F . Proposition 3.8 ensures that along the interior of F only the points
a−b and a′−b′ are at distance ‖b+ t0−a‖ = ‖b′+ t0−a′‖ among the points
in S(b, b′), which implies that in fact a− b is among the k closest points of
A−b infinitesimally to both sides of F . Similarly, the point a′−b′ belongs to
the k closest points of A− b′ for points infinitesimally away from F . Hence,
for any point t0 in the relative interior of F , there is a disk centered at t0
and passing through a − b and a′ − b′ that contains j − 1 ≤ 2k − 2 points

12 MATTHIAS HENZE AND RAFEL JAUME

of S(b, b′) in its interior. Equivalently, the bisector h(a, b, a′, b′) supports an
order-j Voronoi edge of S(b, b′) for some j ≤ 2k − 1.

Applying Lemma 3.9 to S(b), for all b ∈ B, and to S(b, b′), for every pair
b, b′ ∈ B, it follows that the number of bisectors that are used by some edge
is O(k2 · nk). The complexity of the diagram resulting from removing all
unused bisectors from H(A,B) is thus O(n2k6). �

Based on a one-dimensional example of Rote [20], one may derive a lower
bound on the complexity of any lex-bottleneck diagram. The proof is a
particular case of the result for stable matchings that can be found in [3].

Proposition 3.13. For any k, n ∈ N with n ≥ k ≥ d, there exist point sets
A,B ⊂ Rd with |B| = k and |A| = n such that any lex-bottleneck diagram
for A and B has complexity Ω(kd(n− k)d).

In particular, this shows that Theorem 3.12 is optimal with respect to the
size of the bigger set A.

4. Construction of the Bottleneck Diagrams

In this section we are concerned with construction algorithms for the
bottleneck diagrams introduced before. The basic idea is to first construct
the reduced hyperplane arrangement discussed in the proof of Theorem 3.12,
and then traverse it while computing a bottleneck labeling for each cell (or
face) of the structure. The latter is based on the well-developed theory
of bottleneck assignments in weighted bipartite graphs whose concepts and
methods that are relevant for our purposes we introduce first.

4.1. Notation and Techniques for Matchings in Weighted Bipartite
Graphs. As usual, let A,B ⊂ Rd be finite point sets with |B| ≤ |A|. The
problem of finding a bottleneck matching for a fixed position of B can be
translated into a matching problem in a weighted bipartite graph on A and
B, where the weight of an edge from ab ∈ A × B is the Euclidean distance
between the corresponding points. Most of the geometric definitions from
Sections 2 and 3 have graph-theoretic analogs. Note that we use the same
symbols and names for corresponding concepts in the graph setting.

Let G = (A,B;E) be a bipartite graph with edge set E ⊆ A × B and
vertex set partitioned into the components A and B. A matching in G is
a set σ ⊆ E such that every vertex in A ∪ B is incident to at most one
edge of σ. As in the geometric setting, we identify a matching with the
injection from B into A it induces, and we simplify notation by denoting an
edge (a, b) ∈ E by ab. A maximum matching is a matching of maximum
cardinality. Vertices that belong to an edge of a matching are called matched
vertices and otherwise exposed vertices.

An alternating path/cycle for a matching σ is a path/cycle in G with no
repeated vertices such that the even edges are in σ and the odd ones are
in E \ σ. An augmenting path for σ is an alternating path starting and
ending at exposed vertices. Note that, if γ is an augmenting path for σ, the
matching σ ⊕ γ = (σ \ γ) ∪ (γ \ σ) has one more matched vertex than σ. In
general, for two sets of edges σ, τ ⊆ E the connected components of the
graph induced by σ⊕ τ are called its components. If σ and τ are maximum

BOTTLENECK PARTIAL-MATCHING VORONOI DIAGRAMS 13

matchings, the components of σ ⊕ τ are paths or cycles, since every vertex
has degree at most two in σ ⊕ τ .

Bottleneck Assignments in Bipartite Graphs. Given a bipartite graph G =
(A,B;E), we let w : E → R≥0 be a function giving weights to its edges.
The bottleneck cost of a matching π in G with respect to w is the maximum
w-value attained by the edges in π. The problem of finding a maximum
matching of minimum bottleneck cost, henceforth referred to as a bottleneck
matching, for the complete and balanced case, i.e., E = A × B and k = n,
has been widely studied in the last decades under the name of the bottle-
neck assignment problem. The most prominent approaches for this problem
are the threshold methods and the augmenting path methods. Details and
related studies can be found in the book dedicated to assignment problems
from Burkard, Dell’Amico & Martello [6]. The threshold algorithms conduct
a binary search on the possible values for the edge with maximum weight of
a bottleneck matching. At each stage, the edges with bigger weight than the
threshold are ignored, and a maximum matching computation in the modi-
fied graph is performed. One of the best-known algorithms to find a maxi-
mum matching in a bipartite graph is due to Hopcroft & Karp [18]. It runs

in O
(
|E|
√
ν(G)

)
time, where ν(G) is the size of the maximum matchings

in G. The algorithm by Alt, Blum, Mehlhorn & Paul [1] finds a maximum
matching more efficiently if the graph is “dense”. This fact was exploited by
Punnen & Nair [19] to develop an alternative algorithm for the bottleneck
assignment problem. The pure threshold method is preferable for dense
graphs, the method from Gabow & Tarjan [15] is better for sparse graphs
and the approach of Punnen & Nair covers the range in between.

Similar to the geometric situation, a variant of the bottleneck assignment
problem is the lexicographic bottleneck assignment problem, introduced in [7]
and revisited in [21]. For this problem, the cost of a matching σ : B ↪→ A
is the result of sorting decreasingly the values w(σ(b)b), for all b ∈ B. A
lexicographic bottleneck matching is a matching minimizing the cost, when
the corresponding cost vectors are compared lexicographically. Note that a
lexicographic bottleneck matching is necessarily a bottleneck matching.

In the unbalanced case, as long as the graph is complete, the maximum
matchings have size |B|. Let us recall the concepts of b-minimal and can-
didate sets from Definition 3.10 by reviewing their definition in the graph
setting.

Definition 4.1. Let G = (A,B;E) be a bipartite graph with k = |B| ≤ |A|,
and w : E → R≥0 be a function giving weights to the edges. Given b ∈ B, a
set Mb ⊆ E is called a b-minimal set if |Mb| = k and no edge ab ∈ E \Mb

has strictly smaller weight than any edge in Mb. The candidate set of b is
the set Eb ⊆ E with |Eb| ≥ k and such that every edge ab ∈ E \ Eb has
strictly larger weight than any edge in Eb.

Lemma 3.11 holds analogously for bipartite graphs and can be considered
as a property similar to Hall’s marriage theorem. As a consequence thereof,
we can select a set of k2 edges which is guaranteed to contain a lexicographic
bottleneck matching. This pruning of the graph can be done in O(nk) time
using selection algorithms. Although we do not know whether the graph will

14 MATTHIAS HENZE AND RAFEL JAUME

be dense or sparse after pruning the non-relevant edges and isolated vertices,
we have that both |B| + |A| and |E| are O(k2). Thus, the best worst-case
running time for our scenario is provided by the algorithm of Gabow &
Tarjan, which runs in O(k2

√
k log k) time, according to the analysis in [6].

The approach in [21], based on solving a sequence of linear sum assignment
problems and bottleneck assignment problems, boils down to an algorithm
for the computation of a lexicographic bottleneck matching running in O(k4)
time after the pruning.

We close this part by stating some well-known results in the matching
literature, which are used by the aforementioned algorithms and required
below.

Lemma 4.2 (Berge’s Lemma [5]). A matching σ is a maximum matching
in a bipartite graph G if and only if there is no augmenting path for σ in G.

Definition 4.3. Let G = (A,B;E) be a bipartite graph and w : E → R≥0
be a function giving weights to its edges. Given r ∈ [|E|], let

E(r) = {e ∈ E : w(e) is among the r smallest values of w(E)} .
We denote by G(r) the graph G = (A,B;E(r)).

We say that a matching in a bipartite graph is a complete matching if it
matches all the points in the smaller set of vertices.

Proposition 4.4. Let G = (A,B;E) be a bipartite graph that has a complete
matching and let w : E → R≥0 be a function giving weights to the edges of G.

(i) If G(r) has a complete matching, then G(j) has a complete matching
for all j > r.

(ii) A complete matching in G(r) is a bottleneck matching if and only if
G(r − 1) has no complete matching.

4.2. Main Construction Theorem. In this section, we discuss some al-
gorithmic techniques in order to construct a labeled bottleneck and a lex-
bottleneck diagram for a pair of point sets in the plane. To this end, we
introduce the following notation.

Definition 4.5. For finite point sets A,B ⊂ R2, we denote by L(A,B) the
arrangement constructed in the course of the proof of Theorem 3.12. Given
a cell C of L(A,B), we denote by Z(C) the set Z(t) for any point t interior
to C.

We first describe how to use established techniques in order to construct
an unlabeled lex-bottleneck diagram.

Lemma 4.6. The lex-bottleneck diagram L(A,B) for point sets A,B ⊂ R2

with k = |B| ≤ |A| = n can be constructed in O(n2k6) time.

Proof. An arrangement of m lines in the plane can be computed in O(m2)
time using an optimal algorithm, such as the incremental algorithm [9] or
a topological sweep [13]. However, the proof of Theorem 3.12 is not con-
structive and, hence, it is not obvious how to select the bisectors that are
used by some edge (in the sense of Theorem 3.12) among the O(n2k2) candi-
dates. Fortunately, the algorithm by Chan [8] constructs the facial structure

BOTTLENECK PARTIAL-MATCHING VORONOI DIAGRAMS 15

of the (≤s)-level of an arrangement of m planes in O
(
m logm+ms2

)
ex-

pected time. In addition, this algorithm can be derandomized, leading to
a deterministic version running in O

(
ms2(logm/ log s)O(1)

)
time. We can

then construct the O(k2) necessary structures in O
(
k4n(log n/ log k)O(1)

)
and traverse each of them discovering the O(nk3) used bisectors to finally
construct their arrangement. �

We now show how to find a bottleneck labeling of L(A,B). Before de-
tailing the algorithm, we need a technical lemma that examines how small
changes in a graph affect its bottleneck matchings. Recall that a matching
in a bipartite graph on A and B is a complete matching if it matches all the
points of B.

Lemma 4.7. Let G = (A,B;E,w) be a bipartite graph with w : E →
[|E|] giving weights to its edges. Let µ be a bottleneck matching for G, and
let l ∈ E be the longest edge of µ in G. For a fixed j ∈ [|E| − 1], let
G′ = (A,B;E,w′) be the weighted bipartite graph, where w′ coincides with
w except that w′(e) = j if w(e) = j + 1, and w′(e) = j + 1 if w(e) = j, for
all edges e ∈ E.

(i) If w(l) 6∈ {j, j + 1}, then µ is a bottleneck matching for G′.
(ii) If w(l) ∈ {j, j+ 1} and G′(j) does not have a complete matching, then

µ is a bottleneck matching for G′.
(iii) If w(l) ∈ {j, j + 1} and G′(j) has a complete matching ν, then ν is a

bottleneck matching for G′.

Proof. Note first that G(i) = G′(i) for all i 6= j and recall the characteriza-
tion of bottleneck assignments in Proposition 4.4-(ii).

(i): Let w(l) = s 6∈ {j, j + 1}. Since µ is a bottleneck matching for G,
the graph G(s) has a complete matching and G(r) does not, for any r < s.
Hence, the graph G′(s) = G(s) has a complete matching and G′(s − 1) =
G(s− 1) does not. In addition, µ ⊆ G′(s), which ensures that µ is indeed a
bottleneck matching for G′.

(ii): Since we assumed that G′(j) has no complete matching, any complete
matching in G′(j + 1) is a bottleneck matching for G′. The matching µ is
contained in G′(j + 1) = G(j + 1) because we assumed w(l) ∈ {j, j + 1}.

(iii): It is clear that G′(i) = G(i) for all i < j and, hence, it does not
have a complete matching. Since ν ⊆ G′(j), it is a bottleneck matching for
G′. �

As we have seen in Section 2, several edges in A × B can have the same
length wherever the point set B is translated. However, this happens if and
only if all such edges are between points b ∈ B and a ∈ A with the same
vector b − a. In order to also handle point sets in this special position, we
introduce the following equivalence relation.

Definition 4.8. Let A,B ⊂ R2 be finite point sets. Two edges ab, a′b′ ∈
A×B are said to be equivalent if b− a = b′ − a′.

Note that any two equivalent edges match distinct elements of B and,
hence, the size of every equivalence class is at most k.

16 MATTHIAS HENZE AND RAFEL JAUME

Input: planar points sets A,B ⊂ R2 with k = |B| ≤ |A| = n
Output: labeled bottleneck diagram for A and B

1 sort {b− a : b ∈ B, a ∈ A} lexicographically; group in equivalence

classes

2 foreach b ∈ B do
3 compute (≤ k)-level of arrangement for S(b) = A− b
4 foreach used bisector h = h(a, b, a′, b) do
5 EdgePairs(h)← EdgePairs(h) ∪ {(ab, a′b)}
6 foreach b′ ∈ B \ {b} do
7 compute (≤ 2k − 1)-level for S(b, b′) = (A− b) ∪ (A− b′)
8 foreach used bisector h = h(a, b, a′, b′) do
9 EdgePairs(h)← EdgePairs(h) ∪ {(ab, a′b′)}

10 L(A,B)← arrangement of the used bisectors

11 C ← a cell of L(A,B); t← an interior point of C

12 S ← sorted list of {‖b+ t− a‖ : b ∈ B, a ∈ A}
13 G← graph with edges Z(C) weighted by their order w in S

14 label C with µ← bottleneck matching in G with respect to w

15 while there is an unprocessed neighboring cell D of C do
16 h← D ∩ C
17 foreach (ab, a′b) ∈ EdgePairs(h) do
18 if (ab ∈ G, a′b /∈ G) or (ab /∈ G, a′b ∈ G) then
19 G← G \ {contained edge} ∪ {non-contained edge}
20 l← longest edge of µ

21 µ← augmented matching µ \ {contained edge} in G(w(l))

22 if ab ∈ G and a′b ∈ G then
23 swap w(ab) and w(a′b) in G

24 foreach (ab, a′b′) ∈ EdgePairs(h) with b 6= b′ do
25 swap w(ab) and w(a′b′) in G

26 l← longest edge of µ; j ← min{w(ab), w(a′b′)}
27 if w(l) ∈ {j, j + 1} and G(j) has a complete matching ν then
28 µ← ν

29 label D with µ

30 C ← D

Algorithm 1: LabeledBottleneckDiagram(A,B)

Theorem 4.9. Let A,B ⊂ R2 be with k = |B| ≤ |A| = n. A labeled
bottleneck diagram of A and B can be computed in O(n2k8) time, and a
labeled lex-bottleneck diagram in O(n2k10) time.

Proof. We construct the diagrams by labeling the cells (and faces) of L(A,B)
with a (lex-)bottleneck matching. A naive algorithm to do this would com-
pute such a matching from scratch in every cell. However, we can maintain
a bottleneck matching during a traversal of L(A,B), improving the time
complexity of the algorithm. Unfortunately, this is not the case for the
lex-bottleneck diagram, for which the best algorithm we know recomputes

BOTTLENECK PARTIAL-MATCHING VORONOI DIAGRAMS 17

(most of) the matching in a number of faces of L(A,B) that we are not able
to bound away from its total complexity.

We detail first the algorithm to construct a bottleneck labeling. A pseu-
docode description is provided in Algorithm 1. We start by grouping the
edges b − a, for b ∈ B and a ∈ A, into equivalence classes, i.e., groups
of edges that have the same length for any fixed translation, as defined in
Definition 4.8. The involved sorting can be done in O(nk log n) time.

Then, we construct the line arrangement L(A,B) as described in Lemma 4.6,
and we remember the involved edges for every used bisector. Note however
that a bisecting line might be selected several times during this process.
That is why we record a list of all the pairs of edges (ab, a′b′) that in-
duce such a bisector (see Lines 5 and 9). As a consequence of Proposi-
tion 3.8, every such pair of edges inducing a fixed bisector of S(b) is counted
by Lemma 3.9. That is, if h(a1, b, a2, b) = h(a3, b, a4, b), the first pair is
counted as an order-j1 edge and the second pair as an order-j2 edge of
S(b) with j1 6= j2. More precisely, since we could infinitesimally perturb
the points in S(b) such that h(a1, b, a2, b) 6= h(a3, b, a4, b) for any choice of
different points a1, a2, a3, a4 ∈ A without altering the level of the edges in-
ducing them, the bound in Lemma 3.9 counts already all the pairs inducing
the same bisector. Every point in S(b, b′), for b, b′ ∈ B with b 6= b′, can
correspond to two equivalent edges. Hence, for each “double” point induc-
ing a bisector h, we add the corresponding additional pair of edges to the
list EdgePairs(h) (see Line 9). Therefore, the total number of edge pairs
associated to bisectors is only a constant factor bigger than the bound on
the total number of bisectors defining L(A,B). This shows that there is no
overhead in the running time to record the edge pairs and so the Lines 2
to 10 take O(n2k6) time.

The final step of the algorithm is to traverse the just constructed ar-
rangement L(A,B) and to find a bottleneck matching for each of its cells.
We first initialize the traversal in an arbitrarily chosen cell C of L(A,B).
To this end, we pick a point t interior to C, e.g., the centroid of its ver-
tices, and we sort the values ‖b + t − a‖ choosing one representative edge
ab ∈ A×B from every equivalence class. We initialize also a graph G with
the k2 edges of Z(C) =

⋃
b∈B Eb(t), since we know by the graph theoretic

version of Lemma 3.11-(ii) that it contains a, and in fact every, bottleneck
label for C. Moreover, we construct the weight function w : Z(C) → [k2]
for G representing the order of the lengths of the edges of Z(C) in the rel-
ative interior of C. We then find in Line 14 a bottleneck matching µ in
G in O(k2

√
k log k) time using the Gabow-Tarjan algorithm introduced in

Section 4.1.
After this initialization, we now traverse L(A,B) while maintaining the

graph G such that for the current cell D it has edges Z(D) and weight func-
tion w : Z(D) → [k2] encoding the relative lengths of these edges. This is
done in Lines 14 to 30. Let h be the current bisector to be crossed. We first
consider the edge pairs of the type (ab, a′b) for h. If none of the edges belong
to G, there is nothing to do. If both edges belong to G, Proposition 3.8 en-
sures that they have consecutive weights which need to be swapped during

18 MATTHIAS HENZE AND RAFEL JAUME

the crossing of the bisector. The current bottleneck matching µ is not af-
fected. If exactly one of the edges, say a′b, does not belong to the graph G,
we include it and remove ab, because it is not part of the candidate set any-
more. By Proposition 3.8, the weight of the new edge is the same as the old
one. In addition, if the removed edge ab belongs to the current bottleneck
matching µ with longest edge l, then a new matching having longest edge
of weight w(l) can be found in the updated graph. In other words, a pair
involving edges incident to the same b ∈ B may change the candidate set re-
placing an edge by another edge with the same weight, but the weight of the
longest edge of the bottleneck matchings remains invariant. In order to find
the new bottleneck matching, it is enough to augment µ \ {ab} in the graph
G(w(l)). Such an augmenting path is guaranteed to exist by Lemma 4.2
because G(w(l)) has a complete matching.

Consider now all the edge pairs of the type (ab, a′b′), with b 6= b′, in
the list of h. If at least one of the edges is not contained in G, there is
nothing to do. Otherwise, the weights of the edges need to be swapped as
in the previous case. The bottleneck matching is updated according to the
rules described in Lemma 4.7, where we might need to test if G′(j), in the
notation of Lemma 4.7, has a complete matching. If m edges had weight j
in G, the matching τ = µ ∩ G′(j) can have up to m exposed vertices. We
search in O(k2) time for an augmenting path for τ in G′(j). If there is one,
we augment the matching and search again. If there is no augmenting path,
the matching is complete by Lemma 4.2. Therefore, we can decide whether
G′(j) has a complete matching and, if not, find one performing at most as
many augmentations as there are pairs in the list of h. After handling all
the edge pairs of h, the resulting graph contains the candidate set of edges
Z(D) for the new cell D and w expresses the relative order of their lengths.
Thus, the bottleneck matching we obtained for the last weighted graph is
guaranteed to be a bottleneck matching for any point interior to D.

The number of graph and matching updates performed during the traver-
sal is bounded by the number of edges that L(A,B) would have if we replace
each bisector associated to s edge pairs by s infinitesimally-separated lines
parallel to it. As argued before, the number of lines supporting edges of this
arrangement would still be O(nk3) and, thus, the complexity of this virtual
arrangement is O(n2k6). Together with the required time O(k2) for updat-
ing the bottleneck matching in each cell, this implies the claimed running
time O(n2k8) for the whole algorithm.

In order to construct a lex-bottleneck labeling, we maintain the weighted
graph as in the bottleneck case. We apply the algorithm described in [21]
in every face of L(A,B), after updating the weight function w to indicate
the ties that are active in the current face. This computes a lexicographic
bottleneck matching in O(k4) time. �

In higher dimensions, we do not have a good bound on the complexity of
the reduced arrangement L(A,B). Nevertheless, the previous proof can be
adapted using H(A,B) instead, leading via Corollary 3.6 to the following
result.

BOTTLENECK PARTIAL-MATCHING VORONOI DIAGRAMS 19

Theorem 4.10. Let A,B ⊂ Rd be point sets with k = |B| ≤ |A| = n. A
labeled bottleneck diagram of A and B can be computed in O(n2dk2d+2) time,
and a labeled lex-bottleneck diagram can be computed in O(n2dk2d+4) time.

5. Applications

In this section, we explore some of the applications of the bottleneck
diagrams studied before. An obvious application is to solve the bottle-
neck partial-matching problem under translation. Furthermore, bottleneck
partial-matching Voronoi diagrams serve as a data structure for dynamically
querying for locally optimal bottleneck matchings. Two such situations are
described below.

5.1. Solving the Bottleneck Partial-Matching Problem. Let A,B ⊂
R2 be two point sets with k = |B| ≤ |A| = n. We are interested here in
finding a matching σ : B ↪→ A such that

fσ(t∗) = min
t∈R2

E(t), for some t∗ ∈ R2,

using the notation from Definition 2.1. Such a matching is called an opti-
mal bottleneck matching under translations. The basic idea to find such a
matching is to traverse a labeled bottleneck diagram and compute the opti-
mal value of the cost function in every convex cell of the diagram separately.
Clearly, this procedure also admits to report a corresponding translation t∗

for which the minimum is attained.

Theorem 5.1. Let A,B ⊂ R2 be sets of k and n points. An optimal bot-
tleneck matching for A and B under translations can be found in O(n2k8)
time.

Proof. We construct L(A,B) and a bottleneck labeling for it in time O(n2k8)
as described in the proof of Theorem 4.9. We traverse this arrangement
and optimize in every (convex) cell C the value f(t) = ‖b + t − a‖2 over
all translations t ∈ C, maintaining the minimum throughout the diagram.
Here, ab is the longest edge of the bottleneck matching given by the label of
the current cell C. More precisely, let t0 = a− b be the translation attaining
the global minimum of the function f(t). If t0 ∈ C, obviously f(t0) = 0 is
the minimum of f in C and in fact, a global minimum as well. Otherwise,
the minimum is attained in the point of C closest to t0. Such a point must
be either a vertex of C or the orthogonal projection of t0 onto an edge of
C. In addition, if t0 is the minimum of f(t) and t1 is the minimum of the
corresponding function for a neighboring cell D sharing the edge e with C,
then the projection of t0 onto e coincides with the projection of t1 onto e. We
can thus calculate the minimum examining once every vertex of the diagram
and at most one candidate point for every edge. Thus, the total time needed
to perform the mentioned optimization in every cell is proportional to the
complexity of the diagram. �

5.2. Computing a Bottleneck Path. We consider now the problem of
finding a motion for B from an initial position to a final position such that
the maximum bottleneck value (as defined in Definition 2.1) attained during
the motion is minimized.

20 MATTHIAS HENZE AND RAFEL JAUME

Definition 5.2. The bottleneck value of a curve γ : [0, 1]→ R2 with respect
to point sets A,B ⊂ R2 with k = |B| ≤ |A| = n is

F (γ) = max
s∈[0,1]

E(γ(s)) = max
s∈[0,1]

min
σ:B↪→A

max
b∈B
‖b+ γ(s)− σ(b)‖2.

The curve γ is a called a bottleneck path if F (γ) ≤ F (ϕ) for every other
curve ϕ : [0, 1]→ R2 with ϕ(0) = γ(0) and ϕ(1) = γ(1).

A bottleneck path between two positions can be useful in motion planning
where the points of A represent fixed anchor points and the points of B
represent the position of articulations of a moving robot. The dual graph of
the arrangement L(A,B) contains the necessary information to compute a
bottleneck path from any initial position to any final position.

Definition 5.3. The bottleneck graph of two finite point sets A,B ⊂ R2 is
the weighted graph L(A,B)∗ dual to L(A,B), where an edge e∗ of the graph
dual to an edge e of L(A,B) has weight mint∈e E(t).

Via the bottleneck graph we can now characterize the existence of a path
of given bottleneck value.

Lemma 5.4. Let t0, t1 ∈ R2 and δ ∈ R. Let C0 and C1 be cells of L(A,B)
such that t0 ∈ C0 and t1 ∈ C1. There is a path with bottleneck value at most
δ from t0 to t1 if and only if E(t0), E(t1) ≤ δ and there is a path from C∗0 to
C∗1 in L(A,B)∗ whose longest edge has weight at most δ.

Proof. Observe that in every cell of L(A,B) there is a bottleneck matching
whose cost coincides with E in the cell. By definition, E is a convex function
in every such (convex) cell. Hence, assuming that C0 = C1, the line segment
joining t0 and t1 has bottleneck value max{E(t0), E(t1)} and no path can
attain a smaller value. We assume now that C0 6= C1 and let γ be any path
from t0 to t1. We can replace each of the connected arcs of γ entering a
cell C of L(A,B) in a point tin and leaving it in a point tout by the line
segment joining these two points without increasing the bottleneck value of
the path. Again, we do not increase the bottleneck value of the path when
we substitute this line segment by the one joining the points t∗in and t∗out,
where t∗in is the point with minimum bottleneck value on the edge of C that
contains tin, and t∗out is the one attaining the minimum value on the edge
containing tout. Similarly, the parts of the path in C0 and C1, starting at t0
and ending at t1, respectively, can be replaced with the line segment from t0
(or t1) to the point attaining the minimum of E on whichever edge of C0

(or C1) the path crosses first (or last).
The previous observations imply that a bottleneck path is among the

polygonal paths whose vertices (except for t0 and t1) lie on the minima of E
along edges of L(A,B). The bottleneck value of such a path is the maximum
of the weights of the edges in the corresponding path in L(A,B)∗ and the
values E(t0) and E(t1). �

Theorem 5.5. Given t0, t1 ∈ R2, a bottleneck path from t0 to t1 with respect
to A,B ⊂ R2 with k = |B| ≤ |A| = n can be computed in time O(n2k6(k2 +
log n)).

BOTTLENECK PARTIAL-MATCHING VORONOI DIAGRAMS 21

Proof. We first compute the arrangement L(A,B) and the associated bottle-
neck graph L(A,B)∗ in time O(n2k8) by Theorem 4.9. The number of edges
and vertices of L(A,B)∗ is O(n2k6) due to Theorem 3.12 and the weights of
its edges are all nonnegative. Therefore, the path with minimum bottleneck
value in the graph can be found in O(n2k6 log n) time via the implemen-
tation of Dijkstra’s algorithm using heaps. By Lemma 5.4, the associated
polygonal path is guaranteed to be a bottleneck path from t0 to t1. �

5.3. Finding the Cover Radius of a Convex Polygon. As a third ap-
plication of our bottleneck diagrams, we investigate a covering problem.
Given a pair of finite point sets A,B ⊂ R2, and a convex polygon Q ⊂ R2,
we want to determine the minimal δ ∈ R such that for any position of the
point set B in Q there is a matching whose bottleneck value is at most δ.
We can think of the points in A as antennas equipped with disks of radius
δ modeling the region on which they provide signal. The point set B can
be thought of as a robot that moves in Q and needs to connect each of its
points to a different antenna (for instance, to learn its position). The target
is to minimize the power consumed by the antennas while ensuring that the
robot can move in Q having a one-to-one connection for its receivers.

Definition 5.6. The cover radius of a convex polygon Q with respect to
finite point sets A,B ⊂ R2 is the maximum bottleneck value among all
t ∈ R2 such that B + t ⊂ Q.

Theorem 5.7. Let Q be a convex polygon with m vertices. The cover radius
of Q with respect to A,B ⊂ R2 with k = |B| ≤ |A| = n can be computed in
time O

(
n2k8 + (n2k6 +m) log(n+m)

)
.

Proof. We start by computing L(A,B) and a bottleneck labeling as indicated
in Theorem 4.9. Note that the set of translations t ∈ R2 for which B + t ⊂
Q is a convex polygon Q̂, which is the intersection of k translated copies
of Q. This polygon is indeed given by the m linear inequalities obtained
by imposing that the extreme point of B in the direction orthogonal to
an edge of Q is on the right hand side of the corresponding edge. This
polytope can be computed easily in O(k log k + m logm) time and has at

most m edges. Then, we compute the overlay of the boundary of Q̂ and
L(A,B). Note that every edge of L(A,B) can intersect the boundary of

Q̂ in at most two points. Thus, the number of vertices of the overlay is
O(n2k6 +m) and, hence, it can be computed in O

(
(n2k6 +m) log(n+m)

)
time using the techniques described in [10]. The next step involves traversing
the overlay and maintaining the maximum of E in every cell. Since the
function is convex, the maximum can be calculated as the maximum of the
values attained at the vertices of the overlay. �

6. Conclusion and Open Problems

In this work, we introduced and investigated Voronoi-type diagrams suited
for the study of the bottleneck partial-matching problem under translations.
As our main results, we obtained low complexity bounds on these diagrams
and devised efficient algorithms for their construction that allowed to solve

22 MATTHIAS HENZE AND RAFEL JAUME

the matching problem both in arbitrary dimension and in its lexicographic
variant.

We have seen that the complexity bound of O(n2k6) in Theorem 3.12 is
sharp in terms of the parameter n, i.e., the size of the bigger point set, but
we do not know whether it might be improved with respect to k. Since any
improvement of this kind that comes with a speed-up in the construction of
the (lex-)bottleneck diagram translates into a better bound on the running
time of our algorithms for the partial-matching problems, we consider this
as an interesting open problem for future research. In fact, we believe that
the lower bound in Proposition 3.13 is optimal.

Conjecture 6.1. For any pair of point sets A,B ⊂ R2 with k = |B| ≤
|A| = n, there is a lex-bottleneck diagram of complexity O(n2k2).

References

[1] H. Alt, N. Blum, K. Mehlhorn, and M. Paul. Computing a maximum cardinality

matching in a bipartite graph in time O(n1.5
√

m/ logn). Information Processing Let-
ters, 37(4):237–240, Feb. 1991.

[2] H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. Congruence, similarity, and symme-
tries of geometric objects. Discrete & Computational Geometry, 3(1):237–256, 1988.

[3] R. Ben-Avraham, M. Henze, O. E. Raz, R. Jaume, M. Sharir, B. Keszegh, and
I. Tubis. Minimum Partial-Matching and Hausdorff RMS-Distance under Translation:
Combinatorics and Algorithms. submitted full version. http://arxiv.org/abs/1411.
7273.

[4] R. Ben-Avraham, M. Henze, O. E. Raz, R. Jaume, M. Sharir, B. Keszegh, and
I. Tubis. Minimum Partial-Matching and Hausdorff RMS-Distance under Translation:
Combinatorics and Algorithms. In A. S. Schulz and D. Wagner, editors, Proc. 22nd
Annual European Symposium on Algorithms, volume 8737 of LNCS, pages 100–111,
2014.

[5] C. Berge. Two theorems in graph theory. In Proc. of the National Academy of Sciences
of the United States of America, volume 43, pages 842–844, 1957.

[6] R. E. Burkard, M. Dell’Amico, and S. Martello. Assignment Problems. Society for
Industrial and Applied Mathematics, 2009.

[7] R. E. Burkard and F. Rendl. Lexicographic bottleneck problems. Operations Research
Letters, 10(5):303–308, 1991.

[8] T. M. Chan. Random sampling, halfspace range reporting, and construction of (≤k)-
levels in three dimensions. SIAM Journal on Computing, pages 586–595, 1999.

[9] B. Chazelle, L. Guibas, and D. Lee. The power of geometric duality. BIT Numerical
Mathematics, 25(1):76–90, 1985.

[10] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer-Verlag TELOS, Santa Clara, CA, USA, 3rd ed.
edition, 2008.

[11] F. Della Croce, V. T. Paschos, and A. Tsoukias. An improved general procedure for
lexicographic bottleneck problems. Operations Research Letters, 24(4):187–194, 1999.

[12] H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, Berlin, Heidelberg,
1987.

[13] H. Edelsbrunner and L. J. Guibas. Topologically sweeping an arrangement. Journal
of Computer and System Sciences, 38(1):165–194, 1989.

[14] A. Efrat, A. Itai, and M. J. Katz. Geometry helps in bottleneck matching and related
problems. Algorithmica, 31(1):1–28, 2001.

[15] H. N. Gabow and R. E. Tarjan. Algorithms for two bottleneck optimization problems.
Journal of Algorithms, 9(3):411–417, Sept. 1988.

http://arxiv.org/abs/1411.7273
http://arxiv.org/abs/1411.7273

BOTTLENECK PARTIAL-MATCHING VORONOI DIAGRAMS 23

[16] M. Henze and R. Jaume. Bottleneck Partial-Matching Voronoi Diagrams and Ap-
plications. In Proc. 25th International Symposium on Algorithms and Computation,
LNCS, 2014.

[17] M. Henze, R. Jaume, and B. Keszegh. On the complexity of the partial least-squares
matching Voronoi diagram. In Proc. 29th European Workshop on Computational Ge-
ometry, pages 193–196, 2013.

[18] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipar-
tite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

[19] A. P. Punnen and K. Nair. Improved complexity bound for the maximum cardinality
bottleneck bipartite matching problem. Discrete Applied Mathematics, 55(1):91–93,
1994.

[20] G. Rote. Partial least-squares point matching under translations. In Proc. 26th Eu-
ropean Workshop on Computational Geometry, pages 249–251, 2010.

[21] P. T. Sokkalingam and Y. P. Aneja. Lexicographic bottleneck combinatorial problems.
Operations Research Letters, 23(1–2):27–33, 1998.

Appendix A. k-Sensitive Analysis of Previous Algorithms

The following k-sensitive analysis of previous algorithms for the bottle-
neck partial-matching problem under translation is not intended to be a
complete account of all involved details. Rather we focus on the crucial
ideas and adjustments needed in order to make these algorithms work in the
general situation.

A.1. The Algorithm of Alt, Mehlhorn, Wagener & Welzl [2]. The
first algorithm was introduced in [2], where the authors prove a running
time of O(n6 log n) for the balanced situation. Their approach consists
of two steps and can be adjusted toward the unbalanced case as follows.
First, for every choice of a1, a2, a3 ∈ A and b1, b2, b3 ∈ B they define
ε(b1, a1, b2, a2, b3, a3) to be the minimum ε ∈ R such that there is a transla-
tion placing bi into an ε-neighborhood of ai, for all i = 1, 2, 3. They claim
that the bottleneck distance under translations is attained by one of these
O(n6) values, and they compute every such value in constant time. In the
unbalanced case, the number of values and the time for its computation is
then O(n3k3). They sort these values into an array E and perform a bi-
nary search, testing for every ε ∈ E whether there is a bottleneck matching
under translations having cost ε. In order to do that, they assume that
‖b + t − a‖2 = ε2, for a fixed pair ab ∈ A × B, which restricts the set
of candidate translations to a circle. They parametrize the circle by polar
coordinates and compute the set of angles α(a′, b′) for which b′ lies in an
ε-neighborhood of a′, for all a′b′ ∈ A × B. The computation of such inter-
vals on the circle is not trivial and requires some careful observations that
carry over to the unbalanced case without modification. The arrangement
in this circle induced by the circular intervals α can then be computed by
sorting their endpoints. In every interval, the authors construct the bipar-
tite graph whose edges are shorter than ε and they look for a maximum
matching in it. This is done by computing the graph for an arbitrary initial
point and traversing the circular arrangement, adding or deleting at each
interval the corresponding edge or edges. If edges are only added, nothing
is left to be done. If some edges are deleted leaving some points of B un-
matched, suitable augmenting-path computations need to be performed in
order to decide whether there is a maximum matching in the next interval.

24 MATTHIAS HENZE AND RAFEL JAUME

The construction of each of the arrangements in the O(nk) circles for a fixed
value ε ∈ E can be done in O(nk log n). The traversal requires O(nk) time

to construct the initial graph, O(nk+k5/2) to prune non-relevant edges and
obtain a maximum matching for the initial graph using the Hopcroft-Karp
algorithm, and O(nk) time per cell to compute the augmenting path to up-
date the maximum matching. The updates of the bipartite graph require
constant time for each edge. Thus, the total time required for each ε ∈ E
is O(nk · (nk log n + nk + k5/2 + nk · nk)) = O(n3k3). Since sorting the
values in E is done in O(n3k3 log n) time, the whole algorithm runs in time
O(n3k3 log n).

A.2. The Algorithm of Efrat, Itai & Katz [14]. An improved algorithm
with a running time of O(n5 log2 n) in the balanced case has been described
in [14]. This improvement requires the use of a non-trivial data structure
and parametric search techniques combined with sorting networks. The data
structure is used to create an oracle that, given ε ∈ E in the above notation,
answers whether the bottleneck distance of A and B under translations is at
most ε. The corresponding oracle in [2] runs in O(n6) time and, according to
the preceding analysis, can be adapted to run in O(n3k3) in the unbalanced
case. A gain in the computation of augmenting paths enables the authors
in [14] to improve this oracle to run in O(n5 log n) time. This is done by
utilizing a data structure based on constructing a layered graph from the
matching after each possible edge deletion. Adapting the analysis for the un-
balanced case leads to an augmenting paths computation in time O(k log n)
instead of the O(nk) by standard techniques. Therefore, the oracle runs
in O(n2k3 log n) time. However, the time to sort the O(n3k3) values into E
dominates the running time and thus prevents the new algorithm to improve
upon the simpler one in [2]. This problem is solved by using, instead of the
binary search, an adaptation of the parametric search technique due to Cole
in order to avoid the construction of E, and hence reducing the number of
oracle calls to O(log n). Therefore, the final running time for the general
unbalanced situation is O(n2k3 log2 n).

Institut für Informatik, Freie Universität Berlin, Takustrasse 9, 14195
Berlin, Germany

E-mail address: matthias.henze@fu-berlin.de

Institut für Informatik, Freie Universität Berlin, Takustrasse 9, 14195
Berlin, Germany

E-mail address: jaume@inf.fu-berlin.de

	1. Introduction
	2. Bottleneck and Lexicographic Bottleneck Matchings
	3. Bottleneck Partial-Matching Voronoi Diagrams
	3.1. Definitions and Basic Properties
	3.2. Complexity of the Bottleneck Diagrams

	4. Construction of the Bottleneck Diagrams
	4.1. Notation and Techniques for Matchings in Weighted Bipartite Graphs
	4.2. Main Construction Theorem

	5. Applications
	5.1. Solving the Bottleneck Partial-Matching Problem
	5.2. Computing a Bottleneck Path
	5.3. Finding the Cover Radius of a Convex Polygon

	6. Conclusion and Open Problems
	References
	Appendix A. k-Sensitive Analysis of Previous Algorithms
	A.1. The Algorithm of Alt, Mehlhorn, Wagener & Welzl
	A.2. The Algorithm of Efrat, Itai & Katz

