Skip to main content

Cloud-Based Remote Processing and Data-Mining Platform for Automatic Risk Assessment in Hypertensive Patients

  • Conference paper
Ambient Assisted Living and Daily Activities (IWAAL 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8868))

Included in the following conference series:

Abstract

The aim of this paper is to describe the design and the preliminary validation of a platform developed to collect and automatically analyze biomedical signals for risk assessment of cardiovascular events in hypertensive patients. This m-health platform, based on cloud computing, was designed to be flexible, extensible, and transparent, and to provide proactive remote monitoring via data-mining functionalities. Clinical trials were designed to test the system. The data of a retrospective study were adopted to train and test the platform. The developed system was able to predict a future vascular event within the next 12 months with an accuracy rate of 67%. In an ongoing prospective trial, almost all the recruited patients accepted favorably the system with a limited rate of inadherences causing of data losses (<20%). The developed platform supported clinical decision by processing tele-monitored data and providing quick and accurate risk assessment of cardiovascular events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fortino, G., Pathan, M., Di Fatta, G.: BodyCloud: Integration of Cloud Computing and body sensor networks. In: 2012 IEEE 4th International Conference on Cloud Computing Technology and Science (CloudCom), pp. 851–856 (2012)

    Google Scholar 

  2. Hsieh, J.C., Hsu, M.W.: A cloud computing based 12-lead ECG telemedicine service. BMC Med. Inform. Decis. Mak. 12, 77 (2012)

    Article  Google Scholar 

  3. Pandey, S., Voorsluys, W., Niu, S., Khandoker, A., Buyya, R.: An autonomic cloud environment for hosting ECG data analysis services. Future Generation Computer Systems 28, 147–154 (2012)

    Article  Google Scholar 

  4. Rajendra Acharya, U., Paul Joseph, K., Kannathal, N., Lim, C.M., Suri, J.S.: Heart rate variability: a review. Med. Biol. Eng. Comput. 44, 1031–1051 (2006)

    Article  Google Scholar 

  5. Malik, M., Bigger, J.T., Camm, A.J., Kleiger, R.E., Malliani, A., Moss, A.J., Schwartz, P.J.: Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur. Heart. J. 17, 354–381 (1996)

    Article  Google Scholar 

  6. Guzzetti, S., Magatelli, R., Borroni, E., Mezzetti, S.: Heart rate variability in chronic heart failure. Autonomic Neuroscience-Basic & Clinical 90, 102–105 (2001)

    Article  Google Scholar 

  7. Kruger, C., Lahm, T., Zugck, C., Kell, R., Schellberg, D., Schweizer, M.W.F., Kubler, W., Haass, A.: Heart rate variability enhances the prognostic value of established parameters in patients with congestive heart failure. Zeitschrift Fur Kardiologie 91, 1003–1012 (2002)

    Article  Google Scholar 

  8. La Rovere, M.T., Pinna, G.D., Maestri, R., Mortara, A., Capomolla, S., Febo, O., Ferrari, R., Franchini, M., Gnemmi, M., Opasich, C., Riccardi, P.G., Traversi, E., Cobelli, F.: Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation 107, 565–570 (2003)

    Article  Google Scholar 

  9. Aronson, D., Mittleman, M.A., Burger, A.J.: Measures of heart period variability as predictors of mortality in hospitalized patients with decompensated congestive heart failure. Am. J. Cardiol. 93, 59–63 (2004)

    Article  Google Scholar 

  10. Hadase, M., Azuma, A., Zen, K., Asada, S., Kawasaki, T., Kamitani, T., Kawasaki, S., Sugihara, H., Matsubara, H.: Very low frequency power of heart rate variability is a powerful predictor of clinical prognosis in patients with congestive heart failure. Circulation Journal 68, 343–347 (2004)

    Article  Google Scholar 

  11. Smilde, T.D.J., van Veldhuisen, D.J., van den Berg, M.P.: Prognostic value of heart rate variability and ventricular arrhythmias during 13-year follow-up in patients with mild to moderate heart failure. Clinical Research in Cardiology 98, 233–239 (2009)

    Article  Google Scholar 

  12. Melillo, P., Bracale, M., Pecchia, L.: Nonlinear Heart Rate Variability features for real-life stress detection. Case study: students under stress due to university examination. Biomed. Eng. Online 10, 96 (2011)

    Article  Google Scholar 

  13. Melillo, P., De Luca, N., Bracale, M., Pecchia, L.: Classification Tree for Risk Assessment in Patients Suffering From Congestive Heart Failure via Long-Term Heart Rate Variability. IEEE J. Biomed. Health Inform. 17, 727–733 (2013)

    Article  Google Scholar 

  14. Melillo, P., Formisano, C., Bracale, U., Pecchia, L.: Classification tree for real-life stress detection using linear Heart Rate Variability analysis. Case study: students under stress due to university examination. In: Long, M. (ed.) World Congress on Medical Physics and Biomedical Engineering, Beijing, China, May 26-31, vol. 39, pp. 477–480. Springer, Heidelberg (2013)

    Google Scholar 

  15. Melillo, P., Fusco, R., Sansone, M., Bracale, M., Pecchia, L.: Discrimination power of long-term heart rate variability measures for chronic heart failure detection. Med. Biol. Eng. Comput. 49, 67–74 (2011)

    Article  Google Scholar 

  16. Pecchia, L., Melillo, P., Bracale, M.: Remote health monitoring of heart failure with data mining via CART method on HRV features. IEEE Trans Bio. Med. Eng. 58, 800–804 (2011)

    Article  Google Scholar 

  17. Pecchia, L., Melillo, P., Sansone, M., Bracale, M.: Discrimination power of short-term heart rate variability measures for CHF assessment. IEEE Trans. Inf. Technol. Biomed. 15, 40–46 (2011)

    Article  Google Scholar 

  18. Hervás, R., Fontecha, J., Ausín, D., Castanedo, F., Bravo, J., López-de-Ipiña, D.: Mobile monitoring and reasoning methods to prevent cardiovascular diseases. Sensors-Basel 13, 6524–6541 (2013)

    Article  Google Scholar 

  19. Hautala, A.J., Karjalainen, J., Kiviniemi, A.M., Kinnunen, H., Mäkikallio, T.H., Huikuri, H.V., Tulppo, M.P.: Physical activity and heart rate variability measured simultaneously during waking hours. Am J. Physiol.-Cell. Ph 298, H874 (2010)

    Google Scholar 

  20. Brennan, M., Palaniswami, M., Kamen, P.: Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans. Bio. IEEE Trans. Bio. Med. Eng. 48, 1342–1347 (2001)

    Article  Google Scholar 

  21. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology 278, H2039–H2049 (2000)

    Google Scholar 

  22. Carvajal, R., Wessel, N., Vallverdú, M., Caminal, P., Voss, A.: Correlation dimension analysis of heart rate variability in patients with dilated cardiomyopathy. Computer Methods and Programs in Biomedicine 78, 133–140 (2005)

    Article  Google Scholar 

  23. Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of Scaling Exponents and Crossover Phenomena in Nonstationary Heartbeat Time-Series. Chaos 5, 82–87 (1995)

    Article  Google Scholar 

  24. Penzel, T., Kantelhardt, J.W., Grote, L., Peter, J.H., Bunde, A.: Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Trans. Bio. Med. Eng. 50, 1143–1151 (2003)

    Article  Google Scholar 

  25. Trulla, L.L., Giuliani, A., Zbilut, J.P., Webber, C.L.: Recurrence quantification analysis of the logistic equation with transients. Phys. Lett. A 223, 255–260 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  26. Webber, C.L., Zbilut, J.P.: Dynamical Assessment of Physiological Systems and States Using Recurrence Plot Strategies. Journal of Applied Physiology 76, 965–973 (1994)

    Google Scholar 

  27. Zbilut, J.P., Thomasson, N., Webber, C.L.: Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals. Medical Engineering & Physics 24, 53–60 (2002)

    Article  Google Scholar 

  28. Melillo, P., Pecchia, L., Ursino, M.: Nonlinear analysis research in biomedical engineering. Focus on Nonlinear Analysis Research. Nova Science Publishers (2013)

    Google Scholar 

  29. Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: RUSBoost: A hybrid approach to alleviating class imbalance. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 40, 185–197 (2010)

    Article  Google Scholar 

  30. Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics 26, 1651–1686 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees. Wadsworth International Group, Belmont (1984)

    MATH  Google Scholar 

  32. Kuncheva, L.I., Rodríguez, J.J.: An experimental study on rotation forest ensembles. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 459–468. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  33. Garcia, J., Martinez, I., Sornmo, L., Olmos, S., Mur, A., Laguna, P.: Remote processing server for ECG-based clinical diagnosis support. IEEE Trans. Inf. Technol. Biomed. 6, 277–284 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Melillo, P., Scala, P., Crispino, F., Pecchia, L. (2014). Cloud-Based Remote Processing and Data-Mining Platform for Automatic Risk Assessment in Hypertensive Patients. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds) Ambient Assisted Living and Daily Activities. IWAAL 2014. Lecture Notes in Computer Science, vol 8868. Springer, Cham. https://doi.org/10.1007/978-3-319-13105-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13105-4_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13104-7

  • Online ISBN: 978-3-319-13105-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics