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Abstract. Cake cutting is one of the most fundamental settings in faisidn
and mechanism design without money. In this paper, we censiiferent lev-
els of three fundamental goals in cake cutting: fairnessetBaptimality, and
strategyproofness. In particular, we present robust @essbf envy-freeness and
proportionality that are not only stronger than their seddccounter-parts but also
have less information requirements. We then focus on cakieguwvith piecewise
constant valuations and present three desirable alg®itR@EA (Controlled
Cake Eating Algorithm)MEA (Market Equilibrium AlgorithmandCSD (Con-
strained Serial Dictatorship)CCEA is polynomial-time, robust envy-free, and
non-wasteful. It relies on parametric network flows and negeneralizations of
the probabilistic serial algorithm. For the subdomain efggwise uniform valua-
tions, we show that it is also group-strategyproof. Thensh@w that there exists
an algorithm(MEA) that is polynomial-time, envy-free, proportional, and&ar
optimal. MEA is based on computing a market-based equilibrvia a convex
program and relies on the results of Reijnierse and Pottdisashd Devanur et al.
[15]. Moreover, we show that MEA and CCEA are equivalent tehamism 1 of
Chen et. al. [12] for piecewise uniform valuations. We thesspnt an algorithm
CSDand a way to implement it via randomization that satisfieatstyyproof-
ness in expectation, robust proportionality, and unairait piecewise constant
valuations. For the case of two agents, it is robust envg;frebust proportional,
strategyproof, and polynomial-time. Many of our resultteexi to more general
settings in cake cutting that allow for variable claims aniial endowments.
We also show a few impossibility results to complement ogoathms. The im-
possibilities show that the properties satisfied by CCEA liith are maximal
subsets of properties that can be satisfied by any algorithpiécewise constant
valuation profiles.

1 Introduction

Cake cutting is one the most fundamental topics in fair divigsee e.g., [23, 8, 25]). It
concerns the setting in which a cake is represented by awvah{®, 1] and each of the
n agents has a value function over the cake. The main aim ividedihe cake fairly.
The framework is general enough to encapsulate the impqgstablem of allocating
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a heterogeneous divisible good among multiple agents viftarént preferences. The
cake cutting problem applies to many settings includingdivésion of rent among
housemates, disputed land between land-owners, and wookgeo-workers. It is
especially useful in scheduling the use of a valuable dilésiesource such as server
time.

Within the cake cutting literature, the most importantamia of a fair allocation are
envy-freenesandproportionality. In an envy-free allocation, each agent considers his
allocation at least as good as any other agent’s allocatinrenvy-free allocation is
guaranteed to exist (see e.g., [28, 29]). In a proportiolhatation, each agent gets at
least ¥n of the value he assigns to the cake. A desirable aspect offeeegess is that
it implies proportionality?

Computation of a fair allocation of cake is one of the fundatakproblems in
algorithmic economics. Brams and Taylor [7] designed arydree cake cutting al-
gorithm for an arbitrary number of players. Although thdgaithm is guaranteed to
eventually terminate, its running time is unbounded. Muegpthe algorithm can di-
vide the cake into infinitely small segments. Since the tesfuBrams and Taylor [7],
researchers have examined restricted value density éurscind proposed envy-free
algorithms for them. In order to ascertain the running tirha oake cutting algorithm,
it is important to know the computational model and inputhe problem. In most
of the literature (see e.g., [25]), it is assumed that theevaln agent ascribes to any
segment of the cake can be queried or evaluated via an oYéhbik the classical liter-
ature uses this query model, computer scientists recertked at the problem from the
point of view of full report, as is common in mechanism desiginroughout the paper
we focus onpiecewise constant value density functiamsl piecewise uniform value
density functionsPiecewise constant value density functions are one of thet fun-
damental class of value functions. Piecewise uniform tadna are a restricted class of
piecewise constant valuations. Chen et al. [11, 12] preseatdiscrete, strategyproof,
polynomial-time, envy-free and Pareto optimal algorittongiecewise uniform valua-
tions. They stated that generalizing their results for @igse constant valuations is an
open problem. They also presented an envy-free and propattlgorithm that satis-
fies strategyproofness by resorting to randomization.

In this paper, we consider three of the most enduring goasichanism design and
fair division: fairness, Pareto optimality and strategygfness. Since many fair division
algorithms need to be deployed on a large scale, we will dhedfar algorithms that
are computationallyefficient. Our main research question in this paper is as follows
among the dferent levels of fairness, Pareto optimality, strategyfness, andgcient
computability, what are the maximal set of properties theat be satisfied simultane-
ously for piecewise constant and piecewise uniform vadaa®Our main contribution
is a detailed study of this question including the formwaatof a number of desirable
cake cutting algorithms satisfying many of the properties.

In the case where Pareto optimality cannot be satisfied, seecansider a weaker
notion of dficient callechon-wastefulnesdlon-wastefulness dictates that every portion

3 This statement holds with the additional assumptiofiutifallocation: that every portion of
the cake that is desired by at least one agent is allocateahie agent. Otherwise, the empty
allocation satisfies envy-freeness, but not proportityali



of the cake that is desired by at least one agent is allocatedrme agent who desires
it.

For fairness, we not only consider the standard notions-émgness and propor-
tionality but we also propose the conceptatbust fairness— in particularobust envy-
freenesandrobust proportionality The main idea of an allocation being robust envy-
free is that even if an agent readjusts his value densitytiimcas long as the ordinal
information of the function is unchanged, then the allamatiemains envy-free. The
main advantages of robust envy-freeness are less inf@medguirements and envy-
freeness under uncertainty.

For strategic properties, we consider three notions ohtulitess namely strate-
gyproofness, weak group-strategyproofness and groagegiproofness. In most of
the cake-cutting literature, an algorithm is considerégitegyproof’ if truth-telling is a
maximin strategy [6] and it need not be dominant strateggritice compatible. When
we refer to strategyproofness, we will mean the reportirgtththful valuations is a
dominant strategy. This stronger notion of strategypres$rhas largely been ignored
in cake-cutting barring a few recent exceptions [11, 1229].°

We presen€CCEA (Controlled Cake Eating Algorithrfgr piecewise constant valu-
ations and show that it is polynomial-time and robust emegfind robust proportional.
CCEA depends on a reduction to the generalizations [1, 18 @PS (probabilistic
serial) algorithm introduced by Bogomolnaia and Moulin [3] in thentext of ran-
dom assignmentsThe algorithm relies on solving the parametric network fl@aese
e.g., [16]). We show that the algorithm can handle variatdans and private endow-
ments for piecewise constant valuations and also satisfiegpestrategyproofness un-
der piecewise uniform valuations.

If we insist on Pareto optimality, then we show that theresexan algorithm which
we refer to as thtMEA (Market Equilibrium Algorithm}hat is discrete, polynomial-
time Pareto optimal, envy-free, and proportional for pigise constant valuations. The
algorithm relies on the Walras equilibrium formulation ofifRierse and Potters [24]
for finding ana-envy-free for general cake cutting valuations and thelrefiDeva-
nur et al. [15] that market equilibrium for Fischer marketishwinear utilities can be
computed in polynomial time. Both CCEA and MEA not only cddeon piecewise
uniform valuations but are also group-strategyproof.

Although CCEA and MEA are desirable algorithms, they arestiategyproof for
piecewise constant valuations. We present another aigocalledCSD (Constrained
Serial DictatorshipWwhich is strategyproof in expectation, robust proportlpaad sat-
isfies unanimity. For the important case of two agéritss polynomial-time, and robust

4 Although full information is a standard assumption in caketing, it can be argued that it is
unrealistic that agents have exact utility value for eadnsnt of the cake. Even if they do
report exact utility values, they may be uncertain aboutéheports. Robust fairness bypasses
these issues.

5 Procaccia [23] writes that the “design of strategyproofecaktting algorithms is largely an
open problem.”

6 The CC algorithm of Athanassoglou and Sethuraman [1] is @mgdination of the EPS al-
gorithm [18] which in turn is a generalization of PS algonittof Bogomolnaia and Moulin
[3].

7 Many fair division problems involve disputes between twatiga.



envy-free. To the best of our knowledge, it is the first cakiirog algorithm for piece-
wise constant valuations that satisfies strategyproofpesgortionality, and unanimity
at the same time. CSD requires some randomization to ackieategyproof in expec-
tation. However, CSD is discrete in the sense that it givessime utility guarantee
(with respect to the reported valuation functions) overedllizations of the random al-
location. Although CSD uses some essential ideas of thekmellvnserial dictatorship
rule for discrete allocation, it is significantly more invet.
Our main technical results are as follows.

Theorem 1. For cake cutting with piecewise constant valuations, thexists an algo-
rithm (CCEA) that is discrete, polynomial-time, robustefree, and non-wasteful.

Theorem 2. For cake cutting with with piecewise constant valuatiohgré exists an
algorithm (MEA) that is discrete, polynomial-time, Pareqatimal, and envy-free.

Theorem 3. For cake cutting with piecewise uniform valuations, thexésts algo-
rithms (CCEA and MEA) that are discrete, group strategyfpolynomial-time, robust
envy-free and Pareto optimal.

Theorem 4. For cake cutting with piecewise constant valuations, thedsts a ran-
domized implemention of an algorithm (CSD) that is (ex padt)ist proportional, (ex
post) symmetric, and (ex post) unanimous and strategypnoexpectation. For two
agents, it is polynomial-time, robust proportional and usbenvy-free.

Our positive results are complemented by the following isgioility results. These
impossibility results suggest the properties satisfied B & and MEA are maximal

subsets of properties that can be satisfied by any algorithipiécewise constant valu-
ation profiles.

Theorem 5. For piecewise constant valuation profiles with at least tvgerts, there
exists no algorithm that is both Pareto optimal and robustgartional.

Theorem 6. For piecewise constant valuation profiles with at least tvgerts, there
exists no algorithm that is strategyproof, Pareto optinaaid proportional.

Theorem 7. For piecewise constant valuation profiles with at least tvgerts, there
exists no algorithm that is strategyproof, robust propantl, and non-wasteful.

As a consequence of CCEA and MEA, we generalize the posiselts regarding
piecewise uniform valuations in [11, 12] and piecewise tamisvaluations in [13] in
a number of ways such as handling richer cake cutting ssitingndling more gen-
eral valuations functions, achieving a stronger envy-é@ecept, or a stronger strate-
gyproofness notion. Moreover, we prove that CCEA and MEA -e tlifferent algo-
rithms — are equivalent in the domain of piecewise constahtations. Furthermore,
we show that both CCEA and MEA are generalizations of the ma&thanism in
[12, 11]. We also show which combinations of properties arpdssible to satisfy si-
multaneously. Some of our main results are summarized iteTab

After presenting our main results, we enrich the cake agitiomain in two ways.
We allow agents to have initial endowments of the cake. Megeave consider the
more general setting in which agents may havedent claims or entitlements to the
cake. We show that many of our results carry over to these gemeral settings.



Restriction DISC R-EF EF R-PROP PROP GSP W-GSP SP PO UNAN HOLY

Algorithms

CCEA - + + + + + - + +
CCEA pw uniform  + + + + + + + + 4+ + +
MEA + - + + - - - + + +
MEA pw uniform  + + + + + + + + o+ + +
CMSD - + + - - + - +

CMSD pw uniform - + + - - + o+ +

CMSD 2 agents - + + + + - + + +

Table 1. Properties satisfied by the cake cutting algorithms for pi@dgwise) constant valua-
tions: DISC (discrete), R-EF (robust envy-freeness), Eiwydreeness), R-PROP (robust pro-
portionality), PROP (proportionality), GSP (group stgteroof), W-GSP (weak group strate-
gyproof), SP (strategyproof), UNAN (unanimity), PO (Pareptimal) and POLYT (polynomial-
time).

2 Preliminaries

2.1 Cake cutting setting

We consider a cake which is represented by the intervdl][A piece of cakas a
finite union of disjoint subintervals of [@]. The length of an interval = [x,y] is
len(l) = y — x. As usual, the set of agentshs= {1, ..., n}. Each agent has a piecewise
continuousvalue density functionjv [0, 1] — [0, «]. The value of a piece of cakeé

to agent is Vi(X) = fx Vi()dX = Y ex flvi(x)dx As generally assumed, valuations are
non-atomic Vi([x, X]) = 0) and additiveV;(X U Y) = Vi(X) + Vi(Y) whereX andY
are disjoint. The basic cake cutting setting can be repteddry the set of agents and
their valuations functions, which we will denoteagrofile of valuationsin this paper
we will assume that each agent’s valuation function is peivaformation for the agent
that is not known to the algorithm designer. Each agent tegos valuation function
to the designer and the designer then decides how to maké#dhatmns based on the
reported valuations.

Later on we will also consider two important extensions ddecautting: claims and
private endowments. We will assume that agents have thenfimlf claimson the cake
respectivelyr,, ..., c,. In the original cake cutting problem agents have equahdai
Each agente N has gorivate endowment(i) which is a segment of the cake privately
owned byi. The cake is assembled by joining the piecés), . .., w(n). Therefore the
cake cutting setting in its full generality can be represdrats a quadruplé\( v, w, C).

An allocation is a partitioning of the cake intqpieces of cakey, . .., X, such that
the pieces are disjoint (aside from the interval boundadgdX; is allocated to agent
i € N. A cake cutting algorithm takes as inpM, {/, w, ¢) and returns an allocation.

2.2 Preference functions

In this paper we will only considgriecewise unifornand piecewise constantalua-
tions functions. A function ipiecewise unifornif the cake can be partitioned into a
finite number of intervals such that for some constangithervi(x) = k; or vi(x) = 0



over each interval. A function igiecewise constarit the cake can be partitioned into
a finite number of intervals such thatis constant over each interval. In order to report
his valuation function to the algorithm designer, each agalhspecify a set of points
{d1, ..., dm} that represents the consecutive points of discontinuithefagent’s valua-
tion function as well as the constant value of the valuatiorcfion between every pair
of consecutivel;’s.

For a functionv;, we will refer byV; = Vi ivi(¥) 2 vi(y) >0 = vi(x) 2 vi(y) >
0 Vxy € [0, 1]} as the set of density functiomsdinally equivalento v;. Note that if
an algorithm takes as input and returns the same output for avfye Vi, then it is
oblivious to the exact cardinal information gf

2.3 Properties of allocations

An allocationis a partition of the interval [AL] into a set{Xy,..., Xn, W}, wheren is
the number of agents anf] is a piece of cake that is allocated to age#tnd W is the
piece of the cake that is not allocated. All of the fairness éficiency notations that
we will discuss next are with respect to the reported vatmdtinctions. In arnvy-free
allocation, we haveV;(X;) > Vi(X;) for each pair of agerit j € N,. An allocation is
individually rationalif Vi(X;) > Vi(w(i)). In aproportionalallocation, each agent gets
at least In of the value he has for the entire cake. An allocation sasisfifenmetry or
equal treatment of equalfany two agents with identical valuations get same utility
Clearly, envy-free implies proportionality and also syntrpeAn allocationX is Pareto
optimalif no agent can get a higher value without some other agetihgéess value.
Formally, X is Pareto optimal if there does not exists another allonaticsuch that
Vi(Y)) = Vi(X) for all i € N andV;(Y;) > Vi(X) for somei € N. For anyS ¢ [0, 1],
defineD(S) = {i € N|Vi(S) > 0}. An allocationX is non-wastefulf for all S C [0, 1],
S C Uiep(s) Xi. In other words, an allocation is non-wasteful if every oriof the cake
desired by at least one agent is allocated to some agent veiresié.

We now define robust analogues of the fairness concepts defbwe. An alloca-
tion satisfiegobust proportionalityif for all i, j € N and for allv] € Vi, fxi Vi(x)dx >

1/n folvi’(x)dx An allocation satisfiesobust envy-freenestfor all i, j € N and for
allvi € Vi, fx Vi(x)dx > fx Vi(x)dx. Notice that both robust envy-freeness and robust
i i

proportionality would require each agents to get a pieceagé®f the same length if
every agent desires the entire cake.

We give an example of piecewise constant value density immeind demonstrate
how the standard concept of envy-freeness is not robustumdertainty.

Example 1 (A cake-cutting problem with piecewise constaluations).Consider the
cake cutting problem in Figure 1.An allocation in which batfjents get regions in
which their value density function is the highest is enwgefrAgent 1 gets utility one
for his allocation and has the same utility for the allocatid agent 2. However if its
probability density function is slightly lower in region ,[0.1], then agent 1 will be
envious of agent 2.



1Q

01 03 O

Fig. 1. Example of a cake cutting problem with piecewise constalueveensity functions. The
area with vertical lines is under the value density functibagent 1 and the area with horizontal
lines is under the value density function of agent 2.
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Fig. 2. Example of a cake cutting problem with piecewise constahevelensity functions. The
area with vertical lines is under the value density functibagent 1 and the area with horizontal
lines is under the value density function of agent 2. Theatidm functions of both agents are
ordinally equivalent to the ones in Figure 1.



2.4 Properties of cake cutting algorithms

A deterministic cake cutting algorithis a mapping from the set of valuation profiles
to the set of allocations. Aandomized cake cutting algorithima mapping from the set
of valuation profiles to a space of distributions over thedetllocations. The output
of the algorithm in this case for a specific valuation profi@irandom sample of the
distributional function over the set of allocation for tipabfile.

An algorithm (either deterministic or randomized) satsfieopertyP if it always
returns (with probability 1) an allocation that satisfy pesty P. A deterministic algo-
rithm is strategyproofif no agent ever has an incentive to misreport in order to get a
better allocation. The notion of strategyproofness is the well-established in social
choice (see e.g., [17]) and much stronger than the notiostiEtegyproofness’ used in
some of the cake-cutting literature (see e.g., [6]). Bytstygproof, we mean truthful
as has been used in [11]. Similarly, a deterministic albarits group-strategyprooff
there exists no coalitio® < N such that members & can misreport their prefer-
ences so that each agentSmyets as preferred an allocation and at least one agent gets
a strictly better payh. A deterministic algorithm isveak group-strategyprodf there
exists no coalitiorS € N such that members & can misreport their preferences so
that each agent i gets a strictly more preferred allocation. A randomizeaatm
is strategyproof in expectatioifi the expected utility from the random allocation that
every agent receives in expectation under a profile whereeperted truthfully is at
least as large as the expected that he receives under a priodite he misreports while
fixing the other agents’ reports.

We say that a cake cutting algorithm satisfieanimity if when each agent’s most
preferred In length of the cake is disjoint from another agenty length of the cake,
then each agent gets their most preferred piece of cake giHdyin.

2.5 Relation between the properties of cake cutting algoritms

In this subsection, we recap the main properties of cakénguaigorithms: i) propor-
tionality, ii) robust proportionality, iii) envy-freenssiv) robust envy-freeness, v) sym-
metry, vi) non-wastefulness, vii) Pareto optimality, yiiinanimity ix) strategyproof-
ness, x) weak group strategyproofness, xi) group strategypess, xii) polynomial-
time.

Remark 1.For cake cuttinga) Envy-freeness and non-wastefulness proportional-
ity; b) Robust proportionality—> proportionality,c) Robust envy-freeness= envy-
freenessg) Robust envy-freeness and non-wastefulness robust proportionality;
€) Group strategyproofness= weak group strategyproofness= strategyproof-
nessyf) Pareto optimality— non-wastefulnesg) Pareto optimality— unanimity;
h) two agents, proportionality— envy-freeness) two agents, robust proportionality
= robust envy-freeness.

2.6 The free disposal assumption

We may assume without lost of generality that every part efdake is desired by at
least one agent. If that is not the case, then we can discargdtis that are desired



by no one and rescale what is left so that we get d]lnterval representation
of the cake. Notice that this procedure preserves the afm#oned properties of
fairness, #iciency and truthfulness. The free disposal assumptionvikadre making
is necessary to ensure strategyproofness for piecewit@nmialuation functions. See
[12] for a discussion on the necessity of this assumption.

Before we present our algorithms, we will first take a detouhe literature on random
assignments, as some of the algorithms in the random assigriiterature are closely
related to our algorithms.

3 A detour to random assignments

An assignment problem is a tripl&l(H, >) such thatN = {1,...,n} is a set of agents,
H = {hy,...,h} is a set of houses ang= (x1,...,%n) is the preference profile in
which x; denotes the preferences of ageater housesi. A deterministic assignment
is a one-to-one mapping frodto H. A random allocatioris a probability distribution
over H. A random assignment gives a random allocation to each agent. It can be
represented by a bistochastic matpxn which theith row is denoted byp; and all

i € Abandh € H, pnh > 0, Xjea Pjh = Zven Piv = 18 The termpy, denotes the
probability with which agentgets housé. An assignment problem has commonalities
with cake cutting with piecewise constant valuations. Talep have some fundamental
differences. For example, in cake cutting, the agents do notdmatéuous constant
valuations over pre-determined segments of the cake.

Given two random assignmentsandq, p; ziSD gii.e., a player weakly SD prefers
pi to qi if for all h, Y cinehety Pin; = Zhietheheh Ging- Another way to see the SD
relation is as follows. A playerweakly SD prefers allocatiop; to g if for all vNM
utilities consistent with his ordinal preferencegets at least as much expected utility
underp; as he does under. Furthermorep xS° g, i.e., p stochastically dominatesif
pi x>0 g foralli € N andq # p.

An algorithm satisfieSD-gficiencyif each returned assignment is Pareto optimal
with respect to the SD-relation (see e.g., [34]). An aldunitsatisfiesSD envy-freeness
if each agent (weakly) SD prefers his allocation to that of ather agent. SD envy-
freeness is a very demanding notion of fairness. The readgra able to notice that
our notion of robust envy-freeness in cake cutting is based similar idea as SD
envy-freeness. We will consider random allocations adifvaal allocations and ran-
dom assignments as fractional assignments. Viewing thiegiitity of getting a house
simply as getting a fraction of the house is especially Usefien some houses are not
complete but only partial. In this vein, the definition of SPndinance should also be
considered from the perspective of fractional allocati@tber than probability distri-
butions.

The most basic assignment problem concerreggents having strict preferences
overn objects. For this basic setting a simple yet ingeni@8qprobabilistic serialpal-
gorithm introduced by Bogomolnaia and Moulin [3] and Crad &oulin [14] which

8 The bistochasticity of the matripgholds when there are the same number of agents as there are
objects, which can be assumed without lost of generalitydajregy dummy agents or objects



uses thesimultaneous eating algorithm (SEAach house is considered to have a di-
visible probability weight of one, and agents simultanépasd with the same eating
rate consume the probability weight of their most prefefredse until no house is left.
The random allocation allocated to an agent by PS is themdgyehe amount of each
object he has eaten until the algorithm terminates. The mesnlt of Bogomolnaia
and Moulin [3] was that the fractional assignment returngdhe PS algorithm is SD
envy-free and SD{écient.

The PS algorithm has been extended in various ways. The E@&h¢ed PS al-
gorithm) of Katta and Sethuraman [18] generalized PS to #se dor indiferences
using parametric network flows. EPS also generalize@gaditarian ruleof Bogomol-
naia and Moulin [5] for dichotomous preferences. Yilmaz][84d Athanassoglou and
Sethuraman [1] extended the work of [18] to propose PS génatian which also takes
care of private endowments whegendicates the endowment of agénfor the case of
endowments, Yilmaz [34] introduced the idea of justifiedyefmeeness. An assignment
p satisfies justified envy-freenessifforal] € N, p; =>° pj or=(p; szD ej.) The algo-
rithms in [34, 1] satisfy justified envy-freeness in the e of private endowments.
In our algorithm CCEA, we rely on the full power of the conteal-consuming (CC) al-
gorithm of Athanassoglou and Sethuraman [1] which combétraest all the desirable
features of other extensions of PS. In particular, we usédf@ving fact. There exists
an extension of the PS algorithm which can simultaneousiglegndjferences in pref-
erences, unacceptable objects in preferences, allocationultiple objects to agents,
agent owning fractions of houses, partial houses beinglabhs, and still returns an
assignments which satisfies SD justified envy-freeness Rrefi€iency.In addition,
if there are no private endowments, then the extension canhandle variable eating
rates. The Controlled-Consuming (CC) algorithm of Athaogtou and Sethuraman
[1] can handle the case where each agent owns fractions a@thplete houses. We
also require that for some houses, only an arbitrary fraatibthe house is available
to the market. This can be handled by a modification to CC (3a8g¢l]). Finally we
require the agents to want to be allocated as many housessaibleo This does not
require any modification to CC. In the absence of endowmaritpiiesence of variable
eating rates, CC is equivalent to the EPS algorithm that sancater for variable eating
rates (Section 6.4, [18]).

4 CCEA — Controlled Cake Eating Algorithm

CCEA is based on CC (Controlled Consuming) algorithm of Atesoglou and Sethu-
raman [1]. Since the original PS algorithm utilized the diiaeous eating algorithm,
hence the nam€ontrolled Cake Eating Algorithn€CCEA first divides the cake up into
disjoint intervals each of whose endpoints are consecpbirs of discontinuity of the
agents’ valuation functions. We will refer to these intéswasintervals induced by the
discontinuity pointsThe idea is to form a one-to-one correspondence of the szikef
intervals with a set of houses of an assignment problem eSitervals may have dif-
ferent lengths, we consider the house corresponding toteeval with the maximum
length as a complete house where as intervals correspotodatiger houses are partial
houses. The preferences of agents over the houses arellyatghaced by the relative

10



height of the piecewise constant function lines in the repeintervals. If an agerit
owns a sub-interval;, then in the housing settingy, is set tosizgh;) and not to one.
The reason is that an agent can only own as much of the houséstss he technical
heart of the algorithm is in CC (Controlled Consuming) aithon of Athanassoglou
and Sethuraman [1]. We recommend the reader to Section 312 iofwhich an illus-
trative example on CC is presented. Once CC has been usednjout® a fractional
assignmenp, it is straightforward to compute a corresponding cakecalion. If an
agenti gets a fraction of housk;, then in the cake allocation agengets the same
fraction of subinterval;.

Input: Piecewise constant value functions.
Output: A robust envy-free allocation.
1 Divide the regions according to agent value functions. Jfet= {J4, ..., Jn} be the|
set of subintervals of [] formed by consecutive marks.
2 Consider N, H, >, siz€-)) where

— H={hy,...,hn} whereh; = Jiforallie {1,...,m}
— x is defined as followsh ; b’ if and only if vi(X) > vi(y) for x e handy € h;
zn+1 is defined in the way that each house in the market is unadaepteagent

n+1.
— sizgh;) = 1 for h; € arg maxeq,..my(len(J;));
sizgh;) = len(%,)

3 p«— CC(N',H, z, siz-))

4 For intervalJ;, agent is an allocated subinterval df, denoted by]ij, which is of
lengthpin, /sizehj) x len(J;). For example, ifl; = [&;, bi], then one possibility oﬂij
can be § + Z'n;ll Pin, /sizeh;) x len(J;), a + X, pin,/Siz&h;) x len(J;)].

X — U?llJ'j foralli e N

5 return X = (Xg,...,Xp)

Algorithm 1: Controlled Cake Eating Algorithm (CCEA) to compute a robeisty-
free allocation for piecewise constant value functions.

In Example 2, we show how CCEA transforms a cake cutting rmbkith piece-
wise constant valuations into a random assignment problem.

Example 2 (lllustration of CCEA)We examine how CCEA runs on the cake cut-
ting problem in Figure 1. Firstly, let = {Ji,..., Js} be the set of subintervals of
[0, 1] formed by consecutive points of discontinuity are idied: J; = [0,0.1], J, =
[0.1,0.3],J; = [0.3,0.5], andJ4 = [0.5,1]. J is discarded because it is desired by no
agent. In sethy, hz, hs}, each housh; corresponds to subinterva. The preferences of
the agents ovet are inferred from their valuation function heightin the subrvals so
thath; >1 hy >1 hg andhz ~» hs >5 hy. We also set the number of units of each house
that is available. Sincd, is the biggest interval, we considbj as complete house.
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So, sizdhy) = 1, siz€h;) = 0.2, andsize€hg) = 0.4. If we run CC over the housing
market instance with the specified set of agents, house&sidineof houses available to
the market, and agent preferences, then the assignmemedthy CC is as follows:
Pin, = 0.2, pin, = 0, P1n, = 0.6, pan, = 0, pan, = 0.4, andpan, = 0.4. The house assign-
mentp can be used to divide the subintervals among the agknts:{[0, 0.1], [0.7, 1]}
andX; = {[0.3,0.5],[0.5,0.7]}.

CCEA satisfies the strong fairness property of robust enegfess.

Proposition 1. For piecewise constant valuations, CCEA satisfies robust-fieeness
and non-wastefulness.

Let m be the number of relevant subintervals in a cake cuttinglprobwith piece-
wise constant valuations.

Proposition 2. CCEA runs in time @°n¥ log(n?/m)), where n is the number of agents
and m is the number of subintervals defined by the union obdiswity points of the
agents’ valuation functions.

Although CCEA satisfies the demanding property of robusyeénseness, it is not
immune to manipulation. We show that CCEA is not strateggpesen for two agents.
In the next section, we will present aflidirent algorithm that is both robust envy-free
and strategyproof for two agents.

Proposition 3. For piecewise constant valuations, CCEA is not strategypeven for
two agents.

If we restricted the preferences to piecewise uniform wdtprivate endowment or
variable claims, then CCEA is not only strategyproof butugratrategyproof. We first
show that in this restricted setting, CCEA is in fact equévdlto the algorithm of [11].

Lemma 1. For piecewise uniform value functions with no private end@nmts and
variable claims, CCEA is equivalent to Mechanism 1 of Cheal.4f.1].

Since the set of valuations that can be reported is biggeake cutting than in
the assignment problem, establishing group strategypessfdoes not follow automat-
ically from group-strategyproofness of CC for dichotomgusferences (Theorem 2,
[5]). Using similar arguments, we give a detailed proof tB&tEA and hence Mecha-
nism 1 of Chen et al. [11] is group strategyproof for piecewigiform valuations.In
Section 8, we extend the result to the case where agents maywagable claims.

Proposition 4. For cake cutting with piecewise uniform value functions,E2Cis
group strategyproof.

For piecewise uniform valuations, CCEA is also Pareto ogtiffihe result follows
directly from lemma 1 along with the fact that Mechanism 1 b&@ et al. [11] is Pareto
optimal.

Proposition 5. For cake cutting with piecewise uniform value functions,E2Cis
Pareto optimal.

9 Chen et al. [11] had shown that their mechanism for piecewistorm valuations is strate-
gyproof.
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5 MEA — Market Equilibrium Algorithm

In the previous section we presented CCEA which is not Pametional for piecewise

constant valuations. It turns out that if we relax the romation of fairness to envy-
freeness, then we can use fundamental results in geneiiibéqm theory and recent
algorithmic advances [15] to formulate a convex progran #éh&ays returns an envy-
free and Pareto optimal allocation as its optimal solutier.each valuation profile, let
J =1{J1,..., X} be the intervals whose endpoints are consecutive poinkeinrnion of

break points of the agents’ valuation functions. ketbe the length of any subinterval

of J; that is allocated to agerjt Then we run a convex program to compute a Pareto

optimal and envy-free allocation. We will call the convexogram outlined in Algo-
rithm 2 as theMarket Equilibrium Algorithm (MEA)MEA is based on computing the
market equilibrium via a primal-dual algorithm for a cony@ogram that was shown
to be polynomial-time solvable by Devanur et al. [15]. Nettbat if we ignore strate-
gyproofness, or in other words, if we assume that agentstrépehfully, then agents
are truly indiferent between which subinterval they receive since théiratimn func-
tion is a constant over any. Hence, one we determine the lengthlpto be allocated
to an agent, we can allocate any subinterval of that lengtihe@gent.

Input: Cake-cutting problem with piecewise constant valuations
Output: A proportional, envy-free, and Pareto optimal allocation

1 LetJ = {Jy,..., X} be the intervals whose endpoints are consecutive pointsiniion of
break points of the agents’ valuation functions.

2 Letx; be the length of any subinterval dfthat is allocated to agerjt

3 | —len(J)

4 Solve the following convex program.

n
min - Zlog(uj)
=1
K
s.t. uj = Zvijxij Vi=1...,n
i=1

n
Dixp <l vi=1... .k
=1

Xj =0 Vi,j.

5 Letur, x5 be an optimal solution to the convex program. Partition eweterval J; into n
subintervals where thpth subintervall! has length.

6 Y; « UK, J be the allocation of each=1,...,n.
7 return Y = (Y,...,Yn).

Algorithm 2: The Market Equilibrium Algorithm to compute a Pareto optingavy-
free, and proportional allocation.

Proposition 6. MEA is polynomial-time, Paretgfécient and envy free.
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We mention here that the connection between a fair éinclent algorithm for cake
cutting and computing market equilibria was already palritg Reijnierse and Potters
[24]. Reijnierse and Potters [24] presented an algoritheotmpute an approximately
envy-free and Pareto optimal allocation for cake cuttinthwieneral valuations. How-
ever their algorithm is not polynomial-time even for pie¢gsconstant valuations [37].

MEA requires the machinery of convex programming. It rereadpen whether
MEA can be implemented via linear programming. Cohler efld] presented an al-
gorithm that uses a linear program to compute an optimal &gy allocation. The
allocation is Pareto optimal among all envy-free alloaagioHowever it need not be
Pareto optimal in general.

Although MEA is not robust envy-free like CCEA, it is Paretptional because
it maximizes the Nash product. What is interesting is thateuruniform valuations,
both MEA and CCEA are equivalent. In the next result we derratesthis equiva-
lence (Proposition 7). The proof requires a careful conspardf both CCEA and MEA
under uniform valuations.

Proposition 7. For piecewise uniform valuations, the allocation given bgEA is
identical to that given by MEA.

Corollary 1. For piecewise uniform valuations, MEA is group-strateggdr

Thus if we want to generalize Mechanism 1 of Chen et al. [11jiezewise con-
stant valuations and maintain robust envy-freeness theshweld opt for CCEA. On
the other hand, if want to still achieve Pareto optimalitgri MEA is the appropriate
generalization. In both generalization, we lose strategyimess.

6 Impossibility Results

Thus far, we presented two polynomial time algorithms, eafalvhich satisfies a dif-

ferent set of properties. CCEA is robust envy-free and nasteful, whereas MEA is
Pareto optimal and envy-free. This naturally leads to thleviong question: does there
exist an algorithm satisfies all of the properties that CCRAMEA satisfy? It turns out

that the answer is no, as Theorem 5 shows that there is nathlgdhat is both Pareto
efficient and robust proportional. Similarly, Theorem 6 arghasthere is no algorithm
that satisfies the properties CCEA satisfies along withesisgtroofness. Lastly, Theo-
rem 7 argues that there is no algorithm that satisfies thesptiep CCEA satisfies plus
strategyproofness. The impossibility results are sunwedrin Table 2.

Impossibility Reference
Pareto éicient and robust proportional Theorem. 5
Strategyproof, Pareto optimal, and proportional Theorem 6

Strategyproof, robust proportional, and non-wasteful orbam 7
Table 2. Impossibility results for cake-cutting algorithms for pesvise constant valuations.
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Consequently, we may conclude that the properties satisfi€@CEA and MEA are
respectively maximal subsets of properties that an algoritan satisfy for piecewise
constant valuations.

7 CSD — Constrained Serial Dictatorship Algorithm

In the previous sections, we saw that CCEA and MEA are onstestyyproof for piece-
wise uniform valuations. In light of the impossibility rd®iestablished in the preivous
section, it is reasonable to ask what other property alorly strategyproofness can
be satisfied by some algorithm. It follows from (Theorem &]J2hat the only type of
strategyproof and Pareto optimal mechanisms are dictapssChen et al. [12] raised
the question whether there exists a strategyproof and piiopal algorithm for piece-
wise constant valuations. The algorithm CSD answers thestipn partially.

Before diving into the CSD algorithm, it is worth noting thtaere is some funda-
mental diference between random assignment setting and the cakegcsstiting. In
the random assignment setting, the objects that we areatithgcare well defined and
known to the public. On the other hand, in the cake cuttinirggtthe discontinuity
points of each agent’s valuation function is private infation for the agent. Hence,
any algorithm that uses the reported discontinuity poiatartificially create the ob-
jects runs into the risk of having the objects created by therahm be manipulated
by the reports of the agents. In order to illustrate thifiailty, consider the uniform
allocation rule. The uniform allocation rule (that assidyis of each house) [10] is both
strategyproof and proportional in the random assignmetihgeHowever it cannot be
adapted for cake cutting with piecewise constant valuatgince strategyproofness is
no longer satisfied if allocating/h of each interval (induced by the agent valuations)
is done deterministically.

Proposition 8. The uniform allocation rule (done deterministically) is tnstrate-
gyproof.

Now we are ready to present CSD. In order to motivate CSD, wkgmie a
randomized algorithm that is strategyproof and robust pridgnal in expectation. The
algorithm is a variant of random dictatorship: each agesstin@form probability of
being chosen as a dictator. However, if the whole cake ispaabte to each agent,
then each time a dictator is chosen, he will take the whole cékis approach is not
helpful since we return to square one of having to divide thele cake. We add an
additional requirement which is helpful. We require thatleame a dictator is chosen,
the piece he takes has to be of maximum valireléngth of the total size of the cake.
We will call this algorithm Constrained Random Serial Diotahip (CRSD). Formally
speaking, CRSD draws a random permutation of the agentsal§jbathm then makes
the allocation to agents in the order that the lottery is draBverytime when it is
agenti’s turn to receive his allocation, CRSD looks at the remajniortion of the
cake and allocates a maximum valy@ length piece of the cake to agern(break ties
arbitrarily). Notice that CRSD is strategyproof, as in gvdraw of lottery, it is in the
best interest of the agents to report their valuation fumctiuthfully in order to obtain
a piece that maximizes his valuation function out of the ri@ing pieces of cake. Later
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Input: Cake-cutting problem with piecewise constant valuations
Output: A robust proportional allocation.
1 for eachr € ITN do
2  C «—]0,1] (intervals left)
3 fori=1tondo
4 X1y <— maximum preference cake piece of size from C
5 C—C- Xy
6 i —i+1.
7 end for
8 end for
9 Construct a disjoint and exhaustive interval $ét induced by the discontinuities in agent
valuations and the cake cuts in thiecake allocations.
10 Y; «— empty allocation for eache N.
11 for eachJ; =[a;, bjl e #'do
12  for eachi € N do

13 Letp; = Cou”nf”") wherecounti, J;) is the number of permutations in whiclgetsJ;.
14 Generatéy; C J;, which is of lengthp;j|J;| according to some subroutine.

15 Y — YiUA;

16  end for

17 end for

18 return Y = (Y,...,Yy)

Algorithm 3: CSD (Constrained Serial Dictatorship)— proportional am@nimous
algorithm for piecewise constant valuations

on we will see, through the proof of Proposition 10, that CRSBobust proportional
in expectation.

CSD is an algorithm that derandomizes CRSD by looking atliesation for all
n! different permutations and aggregate them in a suitable maRmeralgorithm is
formally presented as Algorithm 3.

Although CSD does not necessarily requitecuts of the cake, it may take expo-
nential time if the number of agents is not a constant. In Exer8, we illustrate how
CSD works.

Example 3 (lllustration of CSD)Ve implement CSD on the cake cutting problem in
Figure 1.For permutation 12, agent 1 first chooses the cadee (0, 0.1], [0.6, 1]}
and agent 2 then takes the remaining pig€el, 0.6]}. For permutation 21, agent 2
first chooses the cake pie¢[.3,0.8]} and agent 1 then takes the remaining piece
{[0,0.3],[0.8, 1]}.

The set of all relevant subintervals induced by the two pé¢atns are
{[0,0.1],[0.1,0.3],[0.3,0.6],[0.6,0.8],[0.8, 1]}. When we we additionally consider the
discontinuities in the players’ valuations, the set of vafg subintervals is 7’ =
{[0,0.1],[0.1,0.3],[0.3,0.5],[0.5, 0.6],[0.6,0.8],[0.8, 1].

Then

Y; = {[0,0.1], %[0.1, 0.3], %[0.6, 0.8],[0.8, 1]}
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1. GeneratdJ; ~ unif[a;, b;].
2: Fora; < x<2b; —aj, let mod §) = xif a; < x< b; andx— (b; — &) if x> b;. Let

i-1 i
Ay =1 mod U;+ " palby—ap), mod Uj+ ) pe(b; - a))]
k=1 k=1
if mod (U; + i3 pii(by —a)) < mod U + Ty Pe(b; — a)) and
i i-1
Ay =Ta, mod Us+ ) pglby—a)lul mod U+ ) puyb; - ay). by
k=1 k=1

otherwise.

Algorithm 4: A subroutine that converts fractional allocation into subivals via ran-
domization

and
Y, = {%[0.1, 0.3],[0.3,0.5],[0.5, 0.6], %[0.6, 0.8]}.

Proposition 9. For piecewise constant valuations, CSD is well-defined atdrns a
feasible cake allocation in which each agents gets a pies&ef/n.

Proposition 10. For piecewise constant valuations, CSD satisfies robugignttonal-
ity and symmetry.

Notice that unlike CRSD, CSD interprets the probability bdeating each interval
to an agent as allocation a fractional portion of the inteteahat agent. Unless the
actual way of allocating the fractions is specified, one camtiscuss the notion of
strategyproofness for CSD because a deviating agent isleut@ltproperly evaluate
his allocation against his true valuation function in thparted profile. Contrary to
intuition, CSD may or may not be strategproof depending om the fractional parts
of each interval are allocated. In fact, the following rekiiflustrates this issue.

Remark 2.CSD is not strategyproof if the fraction of each interval g¥ is allocated
deterministically (please see the appendix for the proof).

In light of difficulty, we will implement a method (see Algorithm 4) that randy
allocating the fractions of intervals to agents. With timglementation, CSD is strate-
gyproof in expectation.

We will refer this randomized implemention of CSD @enstrained Mixed Serial
Dictatorship or CMSDfor short.

Proposition 11. CSD implemented with the aforementioned random allocatitanis
strategyproof in expectation.

Although CSD is strategyproof in expectation, it fails taisfg truthfulness based
on group-based deviations no matter how the fractionaspréach interval are allo-
cated.
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Proposition 12. For cake cutting with piecewise constant valuations, CSDhas
weakly group-strategyproof even for two agents.

Moreover, for cake cutting with piecewise uniform valuagp CSD is not weakly
group-strategyproof for at least seven agents. The statsabeve follows from the fact
that RSD is not weakly group-strategyproof for dichotompregerences when there are
at least seven agents [4, 5].

Even though CSD satisfies both proportionality and symmétdoes not satisfy
the stronger notion of envy-freeness.

Proposition 13. CSD is not necessarily envy-free for three agents even émepiise
uniform valuations.

Another drawback of CSD is that it is not Pareto optimal feggwise constant val-
uations. The statement follows from the fact that RSD is ieBicient [3]. However
for the case of two agents, it is robust envy-free and polyiabtime.

Proposition 14. For two agents and piecewise constant valuations, CSD isstodnvy-
free, and polynomial-time but not Pareto optimal.

Remark 3.For piecewise uniform valuations, CSD can be modified to bdeiareto
optimal. The main change is that for each permutation CSB rélsultant outcome
needs to be made Pareto optimal. This can be done by usindeén [2].

8 Extensions

In this section, we show how some of our positive results eamog CCEA extend to
more general settings where agents may have variable ctaithey may have initial
endowments (please see Algorithm 5).

8.1 Variable claims

We consider the concept efariable claimsin cake cutting. It is generally assumed
in the literature that each agent has equal claim to the ¢akbis case we modify the
definition of proportionality and envy-freeness accordiingeasoning about claims has
a long tradition in the fair division literature. Howeveidfstrand of research assumes
that agents have uniform and identical preferences overvltiode of the divisible object
and their only concern is the proportion of the object they(gee e.g., [30, 35]). Brams
and Taylor [8] refer to variable claims as entitlements andth upon entitlements in
cake cutting at a few places in their book. They present argémdea of handling
entitlements by cloning agents (Page 152, [8]) but doingasplead to an exponential
blowup of time and space. Brams et al. [9] also considereitleaments in pie-cutting
but presented an impossibility result and also a positigaltdor two agents. On the
other hand, one of our algorithms handles variable claimartaitrary number of agents
and does not require cloning.
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Input: Piecewise constant value functions with priority clairos (.., c,) or private endow
ments (1, ..., wp)
Output: A robust envy-free and individually rational allocation.

LetN’ = NuU {n+ 1} wheren + 1 is the agent owning all public cake but with no interest in

1

2

3

6

any of the cake. Join the segmeatd), ..., w(n), w(n + 1) to assemble a cake.
Divide the regions according to agent value functions. l@t= {J;,..., Jn} be the set of
subintervals of [01] formed by consecutive marks.
Consider V', H, =, e rate(*), siz€-)) where

— H={hy,...,hy} whereh; = J forallie{1,...,m}
— x is defined as followsh x; h’" if and only if vi(x) > vi(y) for x € handy € h’;
zn:1 IS defined in the way that each house in the market is unaddeptaagent + 1.

. B len(J;)
sizehy) = G e

— rate(i) = claim(i);

— en, = sizéh;) if J; € «(i) and zero otherwise.

p «— CC(N’, H, =, e rate(-), sizg-))
For intervalJ;, agenti is allocated a subinterval af;, denoted byJ;, which is of length
Pin; / sizehy) x len(J;).

X — ULy pin;/sizghy)J; forallie N
return X = (Xg, ..., Xp)

Algorithm 5: Controlled Cake Eating Algorithm (CCEA) to compute a robeisty-
free allocation for piecewise constant value functionsE@GQvorks for either private
endowments or variable claims but is not defined for both.

An allocation satisfiesproportionality for variable claimsif Vi(X) >

Ci/ Zjen CjVi([0, 1]) for all i € N. An allocation satisfiembust proportionality for vari-
able claimsf for all i € N and for allv] € Vi, fx Vi(X)dx = (Ci/ Zjen Cj) f[o 1]\/i(x)dx

An allocation satisfieenvy-freeness for variable claimi$ Vi(X;) > (ci/cj)Vi(X))

foralli, j € N.

An allocation satisfiembust envy-freeness for variable claiififor all i, j € N and

forall v € Vi, o vi(ddx = (ci/c,-)fxj v/ (x)dx.

Proposition 15. For cake cutting with variable claims and piecewise consteaaua-
tions, CCEA satisfies robust envy-freeness for variablienda

For uniform valuations, group-strategyproofness of CCEéneholds when agents

have variable claims.

Proposition 16. For cake cutting with piecewise uniform value functions sadable
claims, CCEA is group-strategyproof.

On the other hand, it can be shown that the following natuadification of CSD

does not satisfy proportionality in the presence of vagatiaims: each agemtgets
Ci/(Xjen Cj) length of the most preferred interval for each permutation
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We note that MEA can be easily adapted to cater for varialaliens. Each agent’s
budget is proportional to his claim.

Proposition 17. For cake cutting with with piecewise constant valuationd gariable
claims, there exists an algorithm (MEA) that is polynontiaie, Pareto optimal, envy-
free, and proportional.

8.2 Private endowments

In the cake cutting literature, the cake is generally caergid to be a public good which
is divided among the agents. It could also be that each agegsipart of the cake and
then the assembled cake needs to be reassigned among the faggn We call the
setting cake cutting witprivate endowmentsn this context, individual rationality is a
minimal requirement and envy-freeness need to be redefladsic cake cutting can
be modelled by cake cutting with private endowments in thiediong manner: none
of the agents have any endowments and one additional agensstbe whole cake but
has no interest in the cake.

An allocation isindividually rationalif Vi(Xi) > Vi(w(i)). An allocation satisfies
justified envy-freeness for private endowméintg(X;) > Vi(X;j) or Vj(Xi) < Vj(w(j))
for each pair of agerit j € N. Eitheri should not be envious dfor if he is envious,
then givingi’s allocation toj violates individual rationality° It is not entirely clear how
to obtain the canonical concept of justified envy-freendsisimakes into account both
private endowments and variable claims.

An allocation satisfiembust justified envy-freeness for private endowmiéfasall
i, j € N eithervv/ e V, :fxi v/ (X)dx > ij V/(¥dxor3v; e \7j:fxiv’j(x)dx< fw(j)v'j(x)dx
If i does not get an unambiguously as preferred a pie¢s,ashas a counter claim that
i's endowment is better thais piece for some ordinally equivalent valuation function
of j.

Proposition 18. For cake cutting with private endowments and piecewisetenhsal-
uations, CCEA satisfies robust justified envy-freenessrieate endowments.

Generalizing CSD to handle endowments without losing itpprties seems to be
a challenging task. We have not addressed it in this paper.

9 Related work and discussion

A mathematical analysis of cake cutting started with thekvadiPolish mathematicians
Steinhaus, Knaster, and Banach [27]. As applications offigision have been identi-
fied in various multiagent settings, a topic which was onaestered a mathematical
curiosity has developed into a full-fledged sub-field of neatlatical social sciences (see
e.g., [22]). In particular, in the last few decades, theditere of cake cutting has grown
considerably (see e.g., [22, 8, 25, 23)).

10 The definition of justified envy-freeness for private endamis is based on a similar concept
due to Yilmaz [34] for the domain of housing assignment peois.
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The relation between the random assignment problem andadtiag has been
noticed before [12]. However, in their discussion of redaterk, Chen et al. argue that
techniques from the random assignment literature canndiireetly applied even to
piecewise uniform functions—a subclasses of piecewisstanhfunctions. Stumbling
blocks identified include the fact that in the random assignihproblem, each agents
gets one object. We observed that PS satisfies envy-freemassvhen agents get mul-
tiple objects! Another issue raised is that ‘if two agents desire two sairls, both
agents would value the longer subinterval more than thetetiorhis problem can be
circumvented by using the algorithm to compute the grea@simon denominator of
the lengths of the intervals and then dividing the intenmalgequally sizes subinter-
vals. However the number of subintervals can be exponeantthk input size. We use
the idea of Athanassoglou and Sethuraman [1] that some sousg only be partially
available.

Chen et al. [12] stated that generalizing their strategypatgorithm for piecewise
uniform valuations to the case for piecewise constant i&na as an open problem.
We presented two algorithms — CCEA and MEA — that generalizehénism 1 of
Chenetal. [11, 12]. Although they both satisfy certain dese properties, both natural
generalizations are not strategyproof.

A number of works in the cake-cutting literature reason alstiategyproofness.
However they refer to a very weak notion of strategyproamvasich is equivalent to a
maximin strategy. Apart from the papers of Chen et al. [1],, &2 are aware of no pos-
itive results regarding discrete, strategyproof, anddljorithms even for the restricted
domain of piecewise constant valuations. In this paper vesgnt a proportional algo-
rithm (CSD) for piecewise constant valuations that althoogt formally strategyproof
seems less like likely to manipulate in comparison to CCEAvd are allowed to use
randomization, then we show that CSD can be adapted to kegtmoof in expec-
tation. Notice that if we instead require our algorithm tostetegyproof always, and
proportional in expectation, then CRSD would satify thesapprties. Moreover, we
note that Chen et al. [11] also presented an algorithm tlranidomized, envy-free and
proportional, and strategyproof in expectation. Howeitatpes not satisfy unanimity
and requires much more randomization in contrast to CSentiains an open question
whether there exists an algorithm that always returns agstigmal allocation and is
always immune to agent manipulation.

A difficulty that arises in coming up with strategyproof and préipoal algorithm
lies in that there is no restriction on the distribution oé tthiscontinuity points of the
agents’ valuation functions. To illustrate this point, pape the algorithm designer
knows that the discontinuity points of the agents’ valuafionctions come from a set
S ={X,...,%}, where 0< x; < ... < X« < 1. Consequently, a mechanism that parti-
tions [Q 1] into intervals of the formX;, ;1] and allocates An of each interval to each
agent would be proportional, envy-free and strategypieedn if the designer does not
know such &, but instead we require the minimum distance between angbrsec-
utive discontinuity points of the agent’s valuation fulctito be at least some> 0,
then there exists a strategyproof aigroportional algorithm for this setting.

11 Even in the first paper on the PS algorithm for strict prefeesnit was observed that PS can
be extended to the case where there are many more objectagéats (Page 310, [3]).
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As for private endowments, we are only aware of [31] wheregteiendowment are
considered in pie-cutting. However, in comparison to ousifee results concerning
envy-freeness, Thomson [31] presents a negative resutecoimg the core.

10 Conclusion

In this paper, we made a number of conceptual and technicadibotions. It will be
interesting to consider new results with respect to robassions of fairness, endow-
ments, and variable claims. Cake cutting is an exciting feeltd-of microeconomics
with numerous applications to computer science. In ordetHeory to be more rele-
vant to practice, we envision exciting work in much richerdals of cake cutting.
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Proof of Theorem 5

Proof. Consider the following two-agent profile.
Agent 1:

vi(x) = V4 for x € [0,0.5], vi(X) = v; for x € (0.5, 1].
Agent 2:

Va(x) = V2 for x € [0, 0.5], vo(X) = V2 for x € (0.5,1].

Choosevs, Vi, V4, V2 > 0 in such a way that} > vi andvi > V2 andz—é > é
By either robust envy-freeness or robust proportiondlity,mechanism must make the
following allocationx wherex; = x. = X2 = x2 = 0.25. On the other hand, in order for
the mechanism to be Paretfiieient,x must be an element &' = {x|xt = 0 orx3 = 0}.
Hence, we have reached an impossibility. O

Proof of Theorem 6

Proof. For cake cutting with piecewise constant valuations and?2, it follows from
(Theorem 3, [26]) that the only type of strategyproof andeRapptimal mechanisms
are dictatorships. Consequently, there exists no strptegyand Pareto optimal mech-
anism that is also proportional or symmetric. O

Proof of Theorem 7

Proof. The following example shows that there exists no cake+aytilgorithm that is
strategyproof, robust proportional, and non-wasteful.

Profile 1:

1:wi(X) = aif xe[0,0.5], vai(x) = bif xe[0.5,1]
2 :vp(X) = aif xe[0,0.5], vo(X) = bif xe[0.5,1]

for somea > b > 0.

Since the algorithm is robust proportional, it must be theedhat each agent receive
1/2 of [0,0.5] and X2 of [0.5,1]. This is because the fractional parts of §6] and
[0.5, 1] that each agent receives must stochastically dominatetiiform allocation,
otherwise the allocation would not satisfy proportionafiir some valuation function
in the ordinal equivalence class.

Without lost of generality (up to reordering and regroupimigthe cake), we
may assume that agent 1 receivesQ[@5] U [0.5,0.75] and agent 2 receives
[0.25,0.5]U [0.75,1].
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Now consider profile 2:

1:vi(X) = aif xe[0,0.25], vi(X) = bif x € [0.5,0.75], v1(X) = O otherwise

2 :vp(X) = aif xe[0,0.5], vo(X) = bif xe[0.5,1]

By SP, agent 1 must again receive Q5] U [0.5,0.75] and agent 2 receives
[0.25,0.5] U [0.75,1]. If agent 1 receives anything less in profile 2, then he wdoul
deviate from profile 2 to profile 1. If agent 1 receives anyghinore in profile 2, then
he would deviate from profile 1 to profile 2.

Now consider profile 3:

1:vi(X) = aif xe[0,0.25],vi(x) = bif x€[0.5,0.75], v1(X) = O otherwise

2:vy(X) =a+eif xe[0,0.25],vo(X) = aif x € [0.25,0.5],vo(X) = bif xe[0.5,1]

By robust proportionality, both agent 1 and 2 must receji&df [0, 0.25]. By non-
wastefulness, agent 2 must receiv[0.5] and [Q75, 1] since agent 1 has a utility of
0 on these intervals. Hence, agent 2 in profile 2 would mistegmthat he receives the
allocation in profile 3.

O

Proof of Proposition 1

Proof (Sketch)First of all, CCEA is non-wasteful because an agent is nelmawved
to eat a piece of the cake that he has no desire for. On the loéimgt, the algorithm
terminates only when every portion of the cake that is dddiseat least one agent is
completely consumed by some agent who desires it.

Next, we show that the algorithm is robust envy-free. Comsadfractional assign-
mentp returned by the CC algorithm. Without private endowments€€juivalent to
the EPS algorithm of Katta and Sethuraman [18]. Assignmesattisfies justified envy-
freeness in presence of variable eating raigg;) > u;(p;) for all utilities u consistent
with preferences off over the houses. The intuition is that at any point duringrthre
ning of CC, an ageritwill be ‘eating’ his most favoured object(s) at the same este
any other agenteven if j is also the eating the same object(s). Hence, fori'ajl\7i, it
is the case that fof # i, [, vi(x)dx> ij vV (X)dx. _

Proof of Proposition 2
Proof (Sketch)For a cake cutting instande|l| = nmis the input size whera is the

number of agents and is the number of relevant subintervals. Once the lengthiseof t
subintervals inJy, ..., Jn} are computed, the size of each house can be computed in
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linear time. The number of houses in CCEAnisWe now analyse the running time of
CC onn agents andn houses (Section 3.5, [1]). In the CC algorithm, the flow netwo
consists ofV| vertices andE| arcs whergV| = O(n?) and|E| = O(n’m). The number
of parametric flow problems needed to be solve@(sm). A parametric flow network
problem can be solved in tim@(|V||E| log(V|?/|E|)) due to Gallo et al. [16]. Hence, the
running time of CCEA i0(nm(n?)(n’m) log(n*/n’m)) = O(n°n? log(n?/m)). o

Proof of Proposition 3

Proof (Sketch)CCEA is not strategyproof even if all the piecewise intesvate of
equal length, and there are no private endowments or var@aims, and agents have
strict preferences over the intervals. In this case CCEAjisvalent to the classic PS
algorithm. It is known that PS is not strategyproof even facspreferences when there
are more objects than agents [19]. O

Proof of Lemma 1

Proof (Sketch)ln the absence of private endowments and variable claimgAC&n
be solved by invoking EPS instead of CC but with the slight ification that in the
corresponding flow network of EPS, the capacity of each larf) {s set tosizgh) in
step 2 of EPS (Algorithm 1, [18]). Let us refer to this sim@diCCEA as SimpleCCEA.
When SimpleCCEA is run, it invokes EPS and solves repeatethptric network flow
problems (Step 3, Algorithm 1, [18]). In the step, EPS corap bottleneck set of
agents and houses at each break-point. SimpleCCEA comipotidsneck sets in the
same way as Mechanism 1 of Chen et al. [11] and then alloda¢eesources in the
bottleneck sets to the agents in the bottleneck set. The flawarks of the slightly
modified EPS (Figure 2, [18]) and that of Mechanism 1 (Figurfl2]) are identical
with only two insignificant diferences namely that in the flow network of Mechanism 1
of Chen et al. [11] i) the source and target are swapped atigeadlrcs are inverted and
i) the size of the housgstervals is not normalized. However, the eventual alliocest
are same. O

Proof of Proposition 4

Proof. In light of lemma 1, it stfices to show that SimpleCCEA is GSP. We begin with
some notations.

Let len(X) denote the length ok C [0, 1]. Since the utility function is piecewise uni-
form, it sufices to consider the length of pieces of the cake that areediebir each
agent.

LetS C N be a coalition of agents who misreport their true preference

Let | denote the instance where every agent reports truthfutlyf‘atienote the instance
where agents ii$ misreport.

LetD4,..., Dy C [0, 1] denote the pieces of cake that are truly desired by eadft.age

Let D/,..., Dy < [0, 1] denote the desired pieces of cake that are reported by each
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agent.

Let Aq,..., Ay C [0, 1] denote the allocation received by each agent under trutéf
ports.

LetAl,..., A, € [0, 1] denote the allocation received by each agent when thesigen
S misreport.

Let Xy, ..., Xk be the bottleneck sets of agents with respect to the truemmetes of
agents arranged in the order that they are being allocatédwetglgorithm in instanck
Let X3, ..., X, be the bottleneck sets of agents with respect to the truenemdes of
agents arranged in the order that they are being allocatékebglgorithm in instance
1.

Let len(X;) denote the length of the allocation each agent receivdgibottieneck set
X. Let

X = {i € X | len(A/ 0 D}) > len(A N D;) = len(A)}12
X = {i € X | len(A N Dy) < len(A))

In other words>2| is the subset of agents &f who weakly gain in utility when the
A
agents inS misreport, andX, is the subset of agents of who weakly lose in utility

when the agents i misreport. We will show that for all = 1,...,k, X = )2.. This
would then directly imply tha® must be empty since no coaliti@can exist such that
by misreporting, everyone in the coalition is weakly betti#rand at least one agent in
the coalition is strictly betterfd.

We will prove this result via induction ok In order to carry on with the induction,
we will show that no agent iX; appears in the coalitio8. We begin with a lemma.

Lemma 2. It is the case that X= )Zl. In other words, no agent inX{s strictly worse
off when some subset of agents misreport their preference.

It is clear that)Zl C X;. Suppose the claim does not hold, then there exists some

agenti € X;\X;. In other words, ageritis strictly worse & due to the misreports.
Since an agent would only misreport his preference if misrpg weakly improves his
utility, we deduce thait ¢ S, which implies thaD; = D;. Consequently, the following
set of inequalities hold for agent

len(A) = len(Af N D;) = len(A/ N Dy) < len(A),

where the first equality follows from the fact that ¢ D] by the way the algorithm
allocates the pieces of cake to agents. The second equaliaw$ fromD; = D;. And

the last inequality follows frome X3\ X;.

We claim that sinceX; is the first bottleneck set with respect to the true prefezenc
it cannot be the case th&n(X/) = len(A)) < len(A) = len(X1), whereX/ is the
bottleneck set thatbelongs to in the instandé. Suppose this is the case, then we have

12 The fact thaten(A; N D;) = len(A)) makes use of the free disposal property, i.e. the allogatio
that the mechanism gives agenis a subset of the pieces desired by agemder truthful
reports.
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thatlen(X]) < len(X) < len(X1).23 It is clear thatX| cannot contain an agent who
misreports inl’, since a misreporting agent X only receives a piece of cake with
lengthlen(X]) < len(Xy), which is strictly less than what he would've gotten had he
reported truthfully. Hence, every agentif must report his true preferencelin Since

X is the first bottleneck set iff, we have that

len((Ujex; D’j) N [0,1]) len((Ujex;Dj) N [0, 1])
X1 - X1

_ len((ujex, D)) N[0, 1)

X4l

len(X}) =

= len(Xa),

where the first and third equalities follows from the way thgoathm makes
an allocation, the second equality follows from the factt tthe agents inX| have
the same reports i’ as inl, and the inequality follows from the fact thag €
arg minsen w. This contradicts the fact th&n(X]) < len(Xy).
Lemma 3. Itis the case that X= )21 = X;. In other words, no agent inXs strictly
better gf when some subset of agents misreport their preference.

~ A
Since we have established thét = Xi, andX; C Xy, it suffices to show that

~ A
Xy € X1. Suppose not, then for dlke X;, we have thalen(A/ N D;) > len(A;) and there
exists somg € X; such thaten(A’ N Dj) > len(A;). Summing over € X, we get that

len(Uicx, (A N D) = > len(A N D) > " len(Ay) = len(Uiex Ay) = len(Uiex D),

ieXy ieXy

where the first two equalities follow from the fact that thgs and A N Dy’s are dis-
joint subsets and the third equality follows from the way #éitgorithm allocates to the
agents in the smallest bottleneck set. But this set of in@sacontradict the fact that
Uiex, (A N Dj) C Uiex, Di, which implies thaten(Uiex, (Al N D;)) < len(Uiex, Di). Hence,
it must be the case that for eveine X;, we have thaten(A' N Dj) = len(A;), which

A
implies thati € X;.

Lemma 4. No agent in X appears in the coalition S and, Xs also the first bottleneck
set for I'.

By the previous lemma, no agent)% is strictly better & by misreporting his pref-
erence. Thus, any agent Xa would potentially be irS if by misreporting, he makes
himself no worse fi and simultaneously make some other agei® strictly better df.
The only way that this can happen is by misreporting, the &sgerX; make their col-
lective claim over their desired pieces smaller, so thahtsg@e later bottleneck set can
claim some of their desired pieces. On the other hand, thafislg inequality

len(Uiex, D) = len(Uiex, AY) = len(Uiex, (AT N Dy)) = len(Uiex, Di)
13t is shown in [12] that the length of allocation of agents Wigancreases with respect to the

index of bottleneck sets.
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implies that if any subset of agents ®f wants to misreport so they are not worse
off, then collectively, they must over-report their preferete obtain allocations that
together is weakly larger in total than the allocations theyld get had they reported
truthfully. Thus, having a subset of agentsXn misreport will not benefit the other
agents in the coalitio®. Hence, we may conclude that no agenXinappears in the
coalition S. Provided that every agent i§; also reports truthfully in’, there is no
incentive for an agent that belongs to a subsequent bot#eset inl to misreport
and preventX; from being the first bottleneck set il since that would make the
misreporting agent strictly worsefpas in doing so, he needs to create a bottleneck
setX’ such thaten(X’) < len(X) and he would consequently receive an allocation of
len(X).

Since no agent iX; appears in the coalitio andX; is also the first bottleneck set
for I’, we can remov&; from N andUiex, Ai from [0, 1] and do induction on the set of
remaining agentdl\ X; and the remaining piece of cake [\ Uiex, A to be allocated
and the proof is complete by invoking the inductive hypoihesth X, being the first
bottleneck set in the new instance. O

Proof of Proposition 6

Proof. Consider the following math program

wherel; = len(J),

Notice that the feasible region of the math program contalifeasible allocations.
An optimal solution given by the LP is not Pareto dominateday other feasible
allocation because that would contradict the optimalitythed solution. Hence, it is
Pareto ficient.

To see that the optimal solution of the math program is alseramy free allocation,

if we instead viewx;; as the fractional amount ok that is allocated to agerjt then
scaling thev;;'s appropriately (i.e. settingi’j = v;jli), then solving the math program
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stated in the proposition is equivalent to solving the feitog math program.

1l
P
>

St uj= ) ViXj V]

n
Dixj<l Vi=1...k

Xj >0 Vi,j
which in turn equivalent to solving

n
max Z logu;
=1

k
s.t. u; :Zv{jxij Yi=1,...,n
i=1

i=
n
Dixj<l Vi=1...k
=1

X;>0 Vi,j.

Notice that the above math program is a convex program sigcara/maximizing
a concave function (or equivalently minimizing a convexdtion) subject to linear
constraints.

In (pp 105-107, [32]), Vazirani invites us to consider a nedrietting of buyers
(agents) and divisible goods (intervals). Each good israssito be desired by at least
one buyer (i.e. for every goddv;; > 0 for some buyej). There is a unit of each good
and each buyer is given the same amount of money say 1 dalfarHich he uses to
purchases the good(s) that maximizes his utility subject $et of given prices. The
task is to find a set of equilibrium prices such that the mackedrs (meaning all the
demands are met and no part of any item is leftover) when tgerbseek purchase
good(s) to maximize their utility given the equilibrium pes.

Using duality theory, one can interpret the dual variapleassociated with the
constraintsz';=1 Xj < 1 as the price of consuming a unit of gobdy invoking the
KKT conditions, Vazirani [32] shows the prices given by th@imal dual solution is a
unique set of equilibrium prices. Moreover, the primal oyl solution for each buyer
j is precisely the quantity of good(s) that the buyer ends uptmsing that maximizes
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his utility given the equilibrium prices.

Now we can argue as to why the optimal primal solution is aryérae allocation.
Because given the equilibrium prices, if a buyer desiresrarduyer’s allocation, since
he has the same purchasing power as any other buyer, he wstddd use his money
to obtain the allocation of the buyer that he envies. Thisldioesult in some surplus

and deficit of goods, contradicting the fact that the givaogsare equilibrium prices.
O

Proof of Proposition 7

Proof. For piecewise uniform valuations, it is known that CCEA isiigglent to mech-

anism 1 in [12], which we will refer to aSimpleCCEAThe remainder of the proof
will focus on showing the equivalence between SimpleCCEdtae convex program
for piecewise uniform valuations. To do so, given an allmeaof SimpleCCEA, which

is a feasible solution of the convex program, we will find acfgtrices corresponding
to the allocation and show that the prices are in fact thelibguim prices defined by
Vazirani on pages 105-107 of [32]. Moreover, this allocatwould be an allocation
that maximizes the agents’ utility given the equilibriunices.

Using the same notations as those in [12], given a valuatiofig, let B be the set
of buyergagents an¢ be the set of goods or intervals. L&tbe thei-th bottleneck set
computed by SimpleCCEA, i.&; = Sy € arg minycs avg'S’, X) in thei-th iteration
of the subroutine of SimpleCCEA.

LetG; be the set of goods that are distributed amongst the buy8&yslimthe convex
program, since each buyer is endowed with 1 dollar and eveygibin S; receives
avgSi, X) units of good(s), it is natural to define the price of a unitath good € G;
to be

1 ISil

P= S, %)~ Ten(D(S; X))

Notice that the prices for each good is well defined (i.e. egmbd has exactly one
nonnegative price). This follows from the following obsations:

(i) UG; = G (or every good has at least one price). This follows from ggimption
that every good is desired by at least one agent, which meahSimple CCEA
will allocate all of the goods.

(i) G NG; = 0foralli # j(or every good has at most one price). This follows
from the fact that no fractional parts of any good is alloddteagents from two
or more bottleneck sets, which another algorithmic propefrSimple CCEA.

To show that they's form a set of equilibrium prices, we will show that givereth
p«’s, the buyers in everg; will choose to purchasenly goods fromG; to maximize
their utility function. We will do induction on the number bbttleneck sets. Consider
the first bottleneck se$1, we will show that

Lemma 5. G; are the only items that are desirable by buyersin S
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Proof. SimpleCCEA findsS; by solving a parametrized max flow problem on a bipar-
tite network. The network has a node for every buyer and a fard®sery good. There
is a directed edge from a buyeto a goodj with infinite capacity if goodj is desired
by buyeri. In addition, there is a sourceand a sink. There is a directed edge frosn
to each buyer with capacity1 and a directed edge from edge gojom t with capacity
equaling the quantity of goofl A is set to 0 initially so that the unique min cut in the
network forad = 0is{s, BU G U t}. 4 is gradually raised untils, BU G U t} is no longer
the unique min cut, at which pois; andG; are found by looking for another min cut
of the form{su S; U Gy, B\S; U G\G; U t}. Since{sU S; UGy, B\S; UG\Gi U t}isa
min cut, it must be the case that = nbr(S;) in the network, which proves the lemma.
(If nbr(S1)\G1 # 0, then there will be an infinite capacity edge crossing the@utthe
other hand, ilG1\nbr(S;) # 0, then replacings; with nbr(S;) on thes side of the cut
would give a cut with a smaller capacity.) O

Since the agents have piecewise uniform valuation, in thengeof the convex
program, each buyer i8; has the same utility for the items that he desireGn
Moreover, given that the prices of goods are identicabin each buyer is indierent
between choosing among his desirable items for the bestiiteierms of bang per
buck. Hence, for all buyers 81, the allocation given by SimpleCCEA maximizes
buyer’s utility given the pricegg’s. Moreover, notice that the money of buyers3n
and goods irG; are exhausted by the allocation given by SimpleCCEA.

After the goods irG; are allocated to the buyers 8 we repeat the same argument
for the remaining buyers and goods and the inductive hypatalows to conclude
that for evenyi and for all buyers ir5;, the allocation given by SimpleCCEA maximizes
buyer’s utility given the pricegy’s. Moreover, the money of buyers #) and goods in
G; are exhausted by the allocation given by SimpleCCEA. Theeedlight diference
between the inductive step and the base case, as it is pogsibsome buydyin B\S;
also desires certain goods @y for somej < i. However, Chen et al. [12] state that
avgSi, X) is a weakly increasing function of which means thap; = 1/avgsS;, Xi)
is a weakly decreasing function of Since we are dealing with piecewise uniform
valuations, the utility of a buyer over his desirable goosidentical, this means that
for any buyer inS;, the goods that maximize his bang for buck ar&ijn

Putting everything together and we have shown that constitute the set of equi-
librium prices and SimpleCCEA gives an equilibrium allaoat which is an optimal
solution to the convex program. O

Proof of Proposition 8

Consider the following profile of two agents.
Profile 1:

vi(X) = 1if x€[0,0.2], vi(x) = 0 if x € (0.2, 1].
Vo(X) = 0if x € [0,0.6], vo(x) = 1 if x € (0.6, 1].

The uniform allocation rule gives us the allocation:
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Ys : (3[0,0.2], (0.6, 1]).

Y2 : {3[0,0.2],3(0.6, 1]}.

Let A c (0.6, 1] be the allocation that agent 2 receives in this case.
Now consider profile 2:

vi(X) = 1if xe€[0,0.2], vi(x) = 0 if x € (0.2, 1].
Vo(X) = 0if x € [0,0.1\A, vo(X) = 1 if x e A

The uniform allocation rule gives us the allocation:
Y1 1 {3[0,0.2], 3AL
Y2 : {3[0,0.2], 3A.

Hence, agent 2 in profile 2 would misreport so that the replgtefile is profile 1.

Proof of Proposition 9

Proof. We first prove that CSD is well-defined and results in a feasdlocation in
which each agent getgi size of the cake. Let?’ = {J,..., J;} be a partitioning of
the interval [ 1] induced by the discontinuities in agent valuations ardcdike cuts in
then! cake allocations. We make a couple of claims abgutthat following from the
way _#’ is constructed.

Claim. An agent is completely inlierent over each subinterval jgf’.

Claim. Let X" denote a maximum preference cake piece of sjzechosen by agerit
in the serial order. For eachl € _#” either X" containsJ completely or it does not
contain any part of.

Now consider a matrix of dimensiant x £: B = (by;) such thaty;; = 1 if Jj ¢ X7
andb;; = 0if J; ¢ XT. Since for eachr € ITN, each agerite N gets ¥/n of the cake in
X7, then it follows thaty, !, ¥:f_, byjlen(J;) = ni/n. Hence,

n!

i Z bijlen(J;)/n! = 1/n.

j:]_ i=

Also consider a matrix of dimensiamx £: M = (mj) such thaim; denotes the
fraction of J; that agent gets inY;. From the algorithm CSD, we know that; =

°°”?§‘J")J wherecountj, J;) is the number of permutations in whidhgets J;. It is

immediately seen that each column sums up to 1. Hence asttomplete allocated
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to the agents. We now prove that each agent gets a total cage @i size In. We do
so by showing thaEle mjlen(J;) = 1/n.

1/n= Z Z bijlen(3;)/n! = Z(Z bij)len(J;)/n! = Z(counn J)len(J;)/n!

=1 i=1 jlll

4
= (W ergs;) = Z mylen(3).

=1

HenceY = (Yi,..., Yy) the allocation returned by CSD is a proper allocation of the
cake in which each agent gets a total cake piece of giae 1 O

Proof of Proposition 10

Proof. We first argue for proportionality of CSD. In the case whetagénts have the
same valuations as the valuation gfis guaranteed/h of the value of the whole cake
because of anonymity of CSD. First note that for each 7N and preference¥_; of
all agents other than V;(CSD"(V;, V-))) = Vi(CSD'(V;, (V, ..., Vi))).

The reason is that when valuations are not identical, pes$acs ofi in «
leave weakly better cake faras when their valuations are same as agehtence,
Vi(CSDV;, Vi) > VI(CSDV;, (Vi ..., Wi))) = Vi([0, 1])/n.

Finally, note that when an agent selects his best possikkegace in each permu-
tation, the exact height of the valuation function is noevaht and only the relative
height matters. Hence, CSD in fact satisfies robust propmatity. Symmetry for CSD
follows directly from symmetry for RSD. O

Proof of Remark 2

CSD would not be strategyproof if the fraction of each sudival of 7 is allocated

deterministically and the allocation is made public infatian before the agents submit

their valuation function. To see this, consider the follogvexample of two agents.
Profile 1:

vi(X) = 1if x€[0,0.5], vi(x) = 0if x € (0.5, 1].
Vo(X) = 1if x € [0,0.5], vo(x) = 0if x € (0.5, 1].

Running CSD gives us the allocation:
{%[O, 0.5], %(0.5, 1.
{3[0,0.5], (0.5, 1]}.
Profile 2:
vi(X) = 1if x€[0,0.5], vi(x) = 0if x € (0.5, 1].
Vo(X) = 0if x € [0,0.25], vo(X) = 1 if x € (0.25,0.75], vo(X) = 0 if x € (0.75,1].
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Running CSD gives us the allocation:
Y; = {[0,0.25], (0.25,0.5], (0.75, 1]}.

Y2 = {3[0.25,0.5], (0.5,0.75], 3(0.75, 1]}.

Now it is possible that the CSD mechanism decides to gived28] U (0.75,1]
to agent 1 and [@50.75] to agent 2 in profile 1. Consequently, know-
ing this, agent 2 in profile 2 would misreport his valuationndtion to be
Vo(X) = 1if x € [0,0.5],v2(X) = 0 if x € (0.5,1] in order to receive the alloca-
tion given in profile 1 and gain utility in doing so.

Proof of Proposition 11

Consider the profileB andP', whereP is a profile where every agent reports truthfully
andP' is a profile where agemimisreports while fixing every other agent’s report to be
the same as that iR. Let o- denote a permutation ofif = {1,...,n} and letS denote
the set of all permutations ofi]. Let Ji,. .., Jk denote the intervals whose fractional
allocations are specified to each agent by CSD in préfiend J, ... ., J;, denote the
intervals whose fractional allocations are specified theaent by CSD in profil@'.
LetVi(J) denote agerits total utility derived from receiving the intervdlandV;(A(o))
andV;(A’(0)) denote the agents total utility derived from his allocated pieces when
the serial ordering of the agentsdsin profile P and P' respectively. Letp; denote
the probability that interval; is assigned to agentSince random serial dictatorship is
strategyproof in expectation, we have that

Kk K
DIANVIE) = Y TVA@) = D S = Y pv(I)
j=1 ' ' j=1

€S oeS

Now CSD viewsp;; as allocating g;; fraction of intervall; to agent. In order for a
deviating agent to properly evaluate the utility derivezhfirhis allocation in the deviat-
ing profileP', we have to come up with an allocation rule that actuattginsthe utility
Z'j":l pij Vi (J]f) for agenti (either deterministically or in expectation) when the geofi
of reports isP'. In particular, say if we want to allocate a subintervalp#ith length

pi; times that ofJ; to agent at random, then this random allocation rule must satisfy
the property thaE'j":l E[Vi(Aj)] = pijVi(\]]{), whereAjj ij such thalA;j| = pijlAjl.

In order to do so, we will show that the randomized allocatide for CSD satisfy the
property that every agemntand intervall;, we have tha&[Vi(Aj)] = pi,-Vi(J]f) for all
valuation functiond/;, whereA;; c ij such thatAjj| = pijlAjl.

Notice thatmodU; + ZL;ll pnj(bj — &;j)) is uniformly distributed ond;, b;] and A;

has lengthp;j(bj — a;). The fact thaE[V;(A;})] = pijVi(JJf) follows from the following
lemma.
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Lemma 6. Let U be uniformly distributed on the intervi, b] and let0 < @ < 1. Let
A=[UU+ab-3)]ifU +a(b-a) <band A=[a,U - (1-a)(b-a)]uU[U,b]if
U + a(b - a) > b, then we have that HV;(A)] = aV,([a, b]), where \(X) = fxvi(x)dx
for any integrable function;v

Proof. Definevi = v; for a < x < bandvi(x) = vi(x+ (b—a)) for x outside B, b]. Since
vj is periodic, then it sfices to show that

b X+a(b—a) b
Eu[Vi(A)] = f f )y dx=a f F()dx = aVi((a. b]).

By drawing a picture of the region that we evaluate the irgkegver and due to the fact
thatv; is periodic, we have that

1 b x+a(b—a) 1 b Y b
—_ Vil ddx:—fv_- f dxd:afv_-xdx,
ima ), . voee g [ [ adv=a [ ae

which proves the lemma. O

Proof of Proposition 12

Proof. Let a = [0,0.25],b = (0.25,0.5],c = (0.5,0.75],d = (0.75, 1]. Consider the
following two profiles of valuations.
Profile 1:

vi(X) =4if xea vi(X) =3if xeb, vi(xX) =2if xec, i(X) = 1if xe d.
Vo(X) =3if xea va(X) =4if xeb, (X)) =1if xec, vo(X) =2if xed.

Running CSD gives us the allocation:
Y: = {3a,1b, ic, 1d}.

Yz = {3a, 3b, 3c, 3d}.

Profile 2:

vi(X) =4ifxea w(X)=2if xeb, vi(x) =3if xec, i(x) =1 if xe d.
Vo(X) =2if xea, vo(X) =4if xeb, vo(X) =1if xec, vo(x) =3if xed.

Running CSD gives us the allocation:
Y1 ={a,c}.
Y, = {b, d}.

Hence, agents with true valuation in profile 1 would misrépogether to profile 2,
which means that CSD is not group strategyproof for 2 agents. O

37



Proof of Proposition 13

Proof. There are three agents, each with piecewise uniform valuafinction.
vi(X) = 1.5 for x € [0, 2/3] and 0 otherwise.

Vo(X) = 1.5 for x € [0, 1/3] U (2/3, 1] and O otherwise.

v3(X) = 1.5 for x € (1/3, 1] and 0 otherwise.

Leta=[0,1/3],b=(1/3,2/3],c = (2/3,1].

We adopt the following implementation of CSD: when it is ajgénturn to pick,
out of the pieces of the remaining cake that he likes, he tdledeft-mostsuch piece
with length ¥n, where n is the number of agents.

If the priority ordering were ]2, 3, then a feasible assignment that respects the
preferencesis & a, 2« ¢,3« b.

If the priority ordering were 1,3,2, then a feasible assignhthat respects the pref-
erencesista 3« b, 2« c.

If the priority ordering were 21, 3, then a feasible assignment that respects the
preferencesis2-a, 1< b, 3« c.

If the priority ordering were 23,1, then a feasible assignment that respects the
preferencesis2- a,3« b, 1« c.

If the priority ordering were 31,2, then a feasible assignment that respects the
preferencesis 8- b, 1« a, 2« c.

If the priority ordering were 2,1, then a feasible assignment that respects the
preferencesis 8- b, 2 < a, 1 « c. Then, the CSD allocation is as follows.

Yi= (300.1/3] 5(1/3.2/3) 3(2/3.1)
Y= (300.1/3) 5(2/3.1])
Y= (232350131
Clearly, agent 1 envies agent 3 in this case. O

Proof of Proposition 15

Proof (Sketch)Consider a fractional assignmemnteturned by the CC algorithm. With-
out private endowments CC is equivalent to the EPS algorithiatta and Sethuraman
[18]. Assignmenp satisfies justified envy-freeness in presence of varialiiegeeates:
ui(pi) > (ci/cj)ui(p;) for all utilities u consistent with preferences iobver the houses.
The informal intuition is that at any point during the rungiof CC, an agentwith a
higher eating rate thapwill be ‘eating’ his most favoured object(s) faster thpaven
if j is also has the eating the same object(s). Hence, fof alV,, it is the case that for

j#i, fxivi'(x)dxz (ci/c,-)ijv{(x)dx O
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Proof of Proposition 16

Proof (Sketch)Given a variable claim instandeof n agents where agenhas claim
ratec; fori = 1,...,n. We may assume without lost of generality that the claimsrate
integral. If they are not, then we can simply multiple eadiirlratec; by a common
denominator to make eachintegral. Doing so will not change the allocation given by
the algorithm since only relative claim rates matter to tigeathm.

Now consider a cake cutting instankeof Y| | ¢i agents, where the agents have piece-
wise uniform utility function and there are no private endognts or variable claims.
Moreover, for every = 1,...,n, there are;; agents inl” each of whom has the same
utility function as that of ageritin 1. It is not difficult to see that if one aggregates the
allocation that the; agents in’ who share agerits valuation inl, then one would get
an equivalent allocation (in terms of utility) to ageéistallocation.

Suppose for the sake of contradiction that CCEA is not GSRhercase of variable
claims, then in some instantgethere exists some coalitidhof the agents that weakly
gains in utility by misreporting their preference. Now cinles the equivalent instance
I” with no variable claims under the aforementioned transétion, then there exists
some coalitiors’ of the agents id’ that weakly gains in utility by misreporting their
preference, which implies that CCEA is not group-strateggpfor the no variable
claims case, contradicting the result of Proposition 4. O

Proof of Proposition 17

Proof. The allocation can be obtained by solving the following aangrogram.

n
min —chlog(uj)
=1
k
st uj= ZVinjj Yi=1,...,n
i=1

i=
n
Dixg <l vi=1.. .k

-1
Xij >0 Vi, j.

The proof of the desired properties is similar to the caserevbie= 1. O

Proof of Proposition 18

Proof (Sketch)Consider a fractional assignmeptreturned by the CC algorithm.We
know thatp satisfies justified envy-freeness for the randloactional assignment prob-
lem (Prop. 4, [1]). Ifpi xP° pj, thenvv; € Vi: [ vi(X)dx> [ vi(x)dx. If ~(pi 25° &),

i j

thenav| € v : [, vi(X)dx < fw(j)v'j(x)dx HenceX satisfies justified envy-freeness for
private endowments. O
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