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Abstract. Cake cutting is one of the most fundamental settings in fair division
and mechanism design without money. In this paper, we consider different lev-
els of three fundamental goals in cake cutting: fairness, Pareto optimality, and
strategyproofness. In particular, we present robust versions of envy-freeness and
proportionality that are not only stronger than their standard counter-parts but also
have less information requirements. We then focus on cake cutting with piecewise
constant valuations and present three desirable algorithms: CCEA (Controlled
Cake Eating Algorithm), MEA (Market Equilibrium Algorithm)andCSD (Con-
strained Serial Dictatorship). CCEA is polynomial-time, robust envy-free, and
non-wasteful. It relies on parametric network flows and recent generalizations of
the probabilistic serial algorithm. For the subdomain of piecewise uniform valua-
tions, we show that it is also group-strategyproof. Then, weshow that there exists
an algorithm(MEA) that is polynomial-time, envy-free, proportional, and Pareto
optimal. MEA is based on computing a market-based equilibrium via a convex
program and relies on the results of Reijnierse and Potters [24] and Devanur et al.
[15]. Moreover, we show that MEA and CCEA are equivalent to mechanism 1 of
Chen et. al. [12] for piecewise uniform valuations. We then present an algorithm
CSD and a way to implement it via randomization that satisfies strategyproof-
ness in expectation, robust proportionality, and unanimity for piecewise constant
valuations. For the case of two agents, it is robust envy-free, robust proportional,
strategyproof, and polynomial-time. Many of our results extend to more general
settings in cake cutting that allow for variable claims and initial endowments.
We also show a few impossibility results to complement our algorithms. The im-
possibilities show that the properties satisfied by CCEA andMEA are maximal
subsets of properties that can be satisfied by any algorithm for piecewise constant
valuation profiles.

1 Introduction

Cake cutting is one the most fundamental topics in fair division (see e.g., [23, 8, 25]). It
concerns the setting in which a cake is represented by an interval [0, 1] and each of the
n agents has a value function over the cake. The main aim is to divide the cake fairly.
The framework is general enough to encapsulate the important problem of allocating
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a heterogeneous divisible good among multiple agents with different preferences. The
cake cutting problem applies to many settings including thedivision of rent among
housemates, disputed land between land-owners, and work among co-workers. It is
especially useful in scheduling the use of a valuable divisible resource such as server
time.

Within the cake cutting literature, the most important criteria of a fair allocation are
envy-freenessandproportionality. In an envy-free allocation, each agent considers his
allocation at least as good as any other agent’s allocation.An envy-free allocation is
guaranteed to exist (see e.g., [28, 29]). In a proportional allocation, each agent gets at
least 1/n of the value he assigns to the cake. A desirable aspect of envy-freeness is that
it implies proportionality.3

Computation of a fair allocation of cake is one of the fundamental problems in
algorithmic economics. Brams and Taylor [7] designed an envy-free cake cutting al-
gorithm for an arbitrary number of players. Although their algorithm is guaranteed to
eventually terminate, its running time is unbounded. Moreover, the algorithm can di-
vide the cake into infinitely small segments. Since the result of Brams and Taylor [7],
researchers have examined restricted value density functions and proposed envy-free
algorithms for them. In order to ascertain the running time of a cake cutting algorithm,
it is important to know the computational model and input to the problem. In most
of the literature (see e.g., [25]), it is assumed that the value an agent ascribes to any
segment of the cake can be queried or evaluated via an oracle.While the classical liter-
ature uses this query model, computer scientists recently looked at the problem from the
point of view of full report, as is common in mechanism design. Throughout the paper
we focus onpiecewise constant value density functionsandpiecewise uniform value
density functions. Piecewise constant value density functions are one of the most fun-
damental class of value functions. Piecewise uniform valuations are a restricted class of
piecewise constant valuations. Chen et al. [11, 12] presented a discrete, strategyproof,
polynomial-time, envy-free and Pareto optimal algorithm for piecewise uniform valua-
tions. They stated that generalizing their results for piecewise constant valuations is an
open problem. They also presented an envy-free and proportional algorithm that satis-
fies strategyproofness by resorting to randomization.

In this paper, we consider three of the most enduring goals inmechanism design and
fair division: fairness, Pareto optimality and strategyproofness. Since many fair division
algorithms need to be deployed on a large scale, we will also aim for algorithms that
arecomputationallyefficient. Our main research question in this paper is as follows:
among the different levels of fairness, Pareto optimality, strategyproofness, and efficient
computability, what are the maximal set of properties that can be satisfied simultane-
ously for piecewise constant and piecewise uniform valuations?Our main contribution
is a detailed study of this question including the formulation of a number of desirable
cake cutting algorithms satisfying many of the properties.

In the case where Pareto optimality cannot be satisfied, we also consider a weaker
notion of efficient callednon-wastefulness. Non-wastefulness dictates that every portion

3 This statement holds with the additional assumption offull allocation: that every portion of
the cake that is desired by at least one agent is allocated to some agent. Otherwise, the empty
allocation satisfies envy-freeness, but not proportionality.
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of the cake that is desired by at least one agent is allocated to some agent who desires
it.

For fairness, we not only consider the standard notions envy-freeness and propor-
tionality but we also propose the concept ofrobust fairness— in particularrobust envy-
freenessandrobust proportionality. The main idea of an allocation being robust envy-
free is that even if an agent readjusts his value density function, as long as the ordinal
information of the function is unchanged, then the allocation remains envy-free. The
main advantages of robust envy-freeness are less information requirements and envy-
freeness under uncertainty.4

For strategic properties, we consider three notions of truthfulness namely strate-
gyproofness, weak group-strategyproofness and group-strategyproofness. In most of
the cake-cutting literature, an algorithm is considered ‘strategyproof’ if truth-telling is a
maximin strategy [6] and it need not be dominant strategy incentive compatible. When
we refer to strategyproofness, we will mean the reporting the truthful valuations is a
dominant strategy. This stronger notion of strategyproofness has largely been ignored
in cake-cutting barring a few recent exceptions [11, 12, 21,20]. 5

We presentCCEA (Controlled Cake Eating Algorithm)for piecewise constant valu-
ations and show that it is polynomial-time and robust envy-free and robust proportional.
CCEA depends on a reduction to the generalizations [1, 18] ofthe PS (probabilistic
serial) algorithm introduced by Bogomolnaia and Moulin [3] in the context of ran-
dom assignments.6 The algorithm relies on solving the parametric network flows(see
e.g., [16]). We show that the algorithm can handle variable claims and private endow-
ments for piecewise constant valuations and also satisfies group-strategyproofness un-
der piecewise uniform valuations.

If we insist on Pareto optimality, then we show that there exists an algorithm which
we refer to as theMEA (Market Equilibrium Algorithm)that is discrete, polynomial-
time Pareto optimal, envy-free, and proportional for piecewise constant valuations. The
algorithm relies on the Walras equilibrium formulation of Reijnierse and Potters [24]
for finding anα-envy-free for general cake cutting valuations and the result of Deva-
nur et al. [15] that market equilibrium for Fischer markets with linear utilities can be
computed in polynomial time. Both CCEA and MEA not only coincide on piecewise
uniform valuations but are also group-strategyproof.

Although CCEA and MEA are desirable algorithms, they are notstrategyproof for
piecewise constant valuations. We present another algorithm calledCSD (Constrained
Serial Dictatorship)which is strategyproof in expectation, robust proportional, and sat-
isfies unanimity. For the important case of two agents7, it is polynomial-time, and robust

4 Although full information is a standard assumption in cake cutting, it can be argued that it is
unrealistic that agents have exact utility value for each segment of the cake. Even if they do
report exact utility values, they may be uncertain about these reports. Robust fairness bypasses
these issues.

5 Procaccia [23] writes that the “design of strategyproof cake cutting algorithms is largely an
open problem.”

6 The CC algorithm of Athanassoglou and Sethuraman [1] is a generalization of the EPS al-
gorithm [18] which in turn is a generalization of PS algorithm of Bogomolnaia and Moulin
[3].

7 Many fair division problems involve disputes between two parties.
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envy-free. To the best of our knowledge, it is the first cake cutting algorithm for piece-
wise constant valuations that satisfies strategyproofness, proportionality, and unanimity
at the same time. CSD requires some randomization to achievestrategyproof in expec-
tation. However, CSD is discrete in the sense that it gives the same utility guarantee
(with respect to the reported valuation functions) over allrealizations of the random al-
location. Although CSD uses some essential ideas of the well-knownserial dictatorship
rule for discrete allocation, it is significantly more involved.

Our main technical results are as follows.

Theorem 1. For cake cutting with piecewise constant valuations, thereexists an algo-
rithm (CCEA) that is discrete, polynomial-time, robust envy-free, and non-wasteful.

Theorem 2. For cake cutting with with piecewise constant valuations, there exists an
algorithm (MEA) that is discrete, polynomial-time, Paretooptimal, and envy-free.

Theorem 3. For cake cutting with piecewise uniform valuations, there exists algo-
rithms (CCEA and MEA) that are discrete, group strategyproof, polynomial-time, robust
envy-free and Pareto optimal.

Theorem 4. For cake cutting with piecewise constant valuations, thereexists a ran-
domized implemention of an algorithm (CSD) that is (ex post)robust proportional, (ex
post) symmetric, and (ex post) unanimous and strategyproofin expectation. For two
agents, it is polynomial-time, robust proportional and robust envy-free.

Our positive results are complemented by the following impossibility results. These
impossibility results suggest the properties satisfied by CCEA and MEA are maximal
subsets of properties that can be satisfied by any algorithm for piecewise constant valu-
ation profiles.

Theorem 5. For piecewise constant valuation profiles with at least two agents, there
exists no algorithm that is both Pareto optimal and robust proportional.

Theorem 6. For piecewise constant valuation profiles with at least two agents, there
exists no algorithm that is strategyproof, Pareto optimal,and proportional.

Theorem 7. For piecewise constant valuation profiles with at least two agents, there
exists no algorithm that is strategyproof, robust proportional, and non-wasteful.

As a consequence of CCEA and MEA, we generalize the positive results regarding
piecewise uniform valuations in [11, 12] and piecewise constant valuations in [13] in
a number of ways such as handling richer cake cutting settings, handling more gen-
eral valuations functions, achieving a stronger envy-freeconcept, or a stronger strate-
gyproofness notion. Moreover, we prove that CCEA and MEA — two different algo-
rithms — are equivalent in the domain of piecewise constant valuations. Furthermore,
we show that both CCEA and MEA are generalizations of the mainmechanism in
[12, 11]. We also show which combinations of properties are impossible to satisfy si-
multaneously. Some of our main results are summarized in Table 1.

After presenting our main results, we enrich the cake cutting domain in two ways.
We allow agents to have initial endowments of the cake. Moreover we consider the
more general setting in which agents may have different claims or entitlements to the
cake. We show that many of our results carry over to these moregeneral settings.
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Restriction DISC R-EF EF R-PROP PROP GSP W-GSP SP PO UNAN POLYT
Algorithms

CCEA - + + + + + - - - - + +

CCEA pw uniform + + + + + + + + + + +

MEA + - + - + - - - + + +

MEA pw uniform + + + + + + + + + + +

CMSD - - - - + + - - + - + -
CMSD pw uniform - - - + + - - + + + -
CMSD 2 agents - + + + + - - + - + +

Table 1. Properties satisfied by the cake cutting algorithms for pw (piecewise) constant valua-
tions: DISC (discrete), R-EF (robust envy-freeness), EF (envy-freeness), R-PROP (robust pro-
portionality), PROP (proportionality), GSP (group strategyproof), W-GSP (weak group strate-
gyproof), SP (strategyproof), UNAN (unanimity), PO (Pareto optimal) and POLYT (polynomial-
time).

2 Preliminaries

2.1 Cake cutting setting

We consider a cake which is represented by the interval [0, 1]. A piece of cakeis a
finite union of disjoint subintervals of [0, 1]. The length of an intervalI = [x, y] is
len(I ) = y− x. As usual, the set of agents isN = {1, . . . , n}. Each agent has a piecewise
continuousvalue density function vi : [0, 1] → [0,∞]. The value of a piece of cakeX
to agenti is Vi(X) =

∫
X

vi(x)dx=
∑

I∈X

∫
I
vi(x)dx. As generally assumed, valuations are

non-atomic (Vi([x, x]) = 0) and additive:Vi(X ∪ Y) = Vi(X) + Vi(Y) whereX andY
are disjoint. The basic cake cutting setting can be represented by the set of agents and
their valuations functions, which we will denote asa profile of valuations. In this paper
we will assume that each agent’s valuation function is private information for the agent
that is not known to the algorithm designer. Each agent reports his valuation function
to the designer and the designer then decides how to make the allocations based on the
reported valuations.

Later on we will also consider two important extensions of cake cutting: claims and
private endowments. We will assume that agents have the followingclaimson the cake
respectively:c1, . . . , cn. In the original cake cutting problem agents have equal claims.
Each agenti ∈ N has aprivate endowmentω(i) which is a segment of the cake privately
owned byi. The cake is assembled by joining the piecesω(1), . . . , ω(n). Therefore the
cake cutting setting in its full generality can be represented as a quadruple (N, v, ω, c).

An allocation is a partitioning of the cake inton pieces of cakeX1, . . . ,Xn such that
the pieces are disjoint (aside from the interval boundaries) andXi is allocated to agent
i ∈ N. A cake cutting algorithm takes as input (N, v, ω, c) and returns an allocation.

2.2 Preference functions

In this paper we will only considerpiecewise uniformandpiecewise constantvalua-
tions functions. A function ispiecewise uniformif the cake can be partitioned into a
finite number of intervals such that for some constantki , eithervi(x) = ki or vi(x) = 0
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over each interval. A function ispiecewise constantif the cake can be partitioned into
a finite number of intervals such thatvi is constant over each interval. In order to report
his valuation function to the algorithm designer, each agent will specify a set of points
{d1, ..., dm} that represents the consecutive points of discontinuity ofthe agent’s valua-
tion function as well as the constant value of the valuation function between every pair
of consecutived j ’s.

For a functionvi , we will refer byV̂i = {v′i : vi(x) ≥ vi(y) > 0 ⇐⇒ v′i (x) ≥ v′i (y) >
0 ∀x, y ∈ [0, 1]} as the set of density functionsordinally equivalentto vi . Note that if
an algorithm takes as inputvi and returns the same output for anyv′i ∈ V̂i , then it is
oblivious to the exact cardinal information ofvi .

2.3 Properties of allocations

An allocation is a partition of the interval [0, 1] into a set{X1, . . . ,Xn,W}, wheren is
the number of agents andXi is a piece of cake that is allocated to agenti. And W is the
piece of the cake that is not allocated. All of the fairness and efficiency notations that
we will discuss next are with respect to the reported valuation functions. In anenvy-free
allocation, we haveVi(Xi) ≥ Vi(X j) for each pair of agenti, j ∈ N,. An allocation is
individually rational if Vi(Xi) ≥ Vi(ω(i)). In aproportionalallocation, each agent gets
at least 1/n of the value he has for the entire cake. An allocation satisfies symmetry or
equal treatment of equalsif any two agents with identical valuations get same utility.
Clearly, envy-free implies proportionality and also symmetry. An allocationX is Pareto
optimal if no agent can get a higher value without some other agent getting less value.
Formally, X is Pareto optimal if there does not exists another allocation Y such that
Vi(Yi) ≥ Vi(Xi) for all i ∈ N andVi(Yi) > Vi(Xi) for somei ∈ N. For anyS ⊆ [0, 1],
defineD(S) = {i ∈ N|Vi(S) > 0}. An allocationX is non-wastefulif for all S ⊆ [0, 1],
S ⊆ ∪i∈D(S)Xi . In other words, an allocation is non-wasteful if every portion of the cake
desired by at least one agent is allocated to some agent who desires it.

We now define robust analogues of the fairness concepts defined above. An alloca-
tion satisfiesrobust proportionalityif for all i, j ∈ N and for allv′i ∈ V̂i ,

∫
Xi

v′i (x)dx ≥

1/n
∫ 1

0
v′i (x)dx. An allocation satisfiesrobust envy-freenessif for all i, j ∈ N and for

all v′i ∈ V̂i ,
∫

Xi
v′i (x)dx ≥

∫
X j

v′i (x)dx. Notice that both robust envy-freeness and robust

proportionality would require each agents to get a piece of cake of the same length if
every agent desires the entire cake.

We give an example of piecewise constant value density function and demonstrate
how the standard concept of envy-freeness is not robust under uncertainty.

Example 1 (A cake-cutting problem with piecewise constant valuations).Consider the
cake cutting problem in Figure 1.An allocation in which bothagents get regions in
which their value density function is the highest is envy-free. Agent 1 gets utility one
for his allocation and has the same utility for the allocation of agent 2. However if its
probability density function is slightly lower in region [0, 0.1], then agent 1 will be
envious of agent 2.

6
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Fig. 1. Example of a cake cutting problem with piecewise constant value density functions. The
area with vertical lines is under the value density functionof agent 1 and the area with horizontal
lines is under the value density function of agent 2.

0.1 0.3 0.5 1
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3

2

Fig. 2. Example of a cake cutting problem with piecewise constant value density functions. The
area with vertical lines is under the value density functionof agent 1 and the area with horizontal
lines is under the value density function of agent 2. The valuation functions of both agents are
ordinally equivalent to the ones in Figure 1.
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2.4 Properties of cake cutting algorithms

A deterministic cake cutting algorithmis a mapping from the set of valuation profiles
to the set of allocations. Arandomized cake cutting algorithmis a mapping from the set
of valuation profiles to a space of distributions over the setof allocations. The output
of the algorithm in this case for a specific valuation profile is a random sample of the
distributional function over the set of allocation for thatprofile.

An algorithm (either deterministic or randomized) satisfies propertyP if it always
returns (with probability 1) an allocation that satisfy propertyP. A deterministic algo-
rithm is strategyproofif no agent ever has an incentive to misreport in order to get a
better allocation. The notion of strategyproofness is the one well-established in social
choice (see e.g., [17]) and much stronger than the notion of ‘strategyproofness’ used in
some of the cake-cutting literature (see e.g., [6]). By strategyproof, we mean truthful
as has been used in [11]. Similarly, a deterministic algorithm isgroup-strategyproofif
there exists no coalitionS ⊆ N such that members ofS can misreport their prefer-
ences so that each agent inS gets as preferred an allocation and at least one agent gets
a strictly better payoff. A deterministic algorithm isweak group-strategyproofif there
exists no coalitionS ⊆ N such that members ofS can misreport their preferences so
that each agent inS gets a strictly more preferred allocation. A randomized algorithm
is strategyproof in expectationif the expected utility from the random allocation that
every agent receives in expectation under a profile where he reported truthfully is at
least as large as the expected that he receives under a profilewhere he misreports while
fixing the other agents’ reports.

We say that a cake cutting algorithm satisfiesunanimity, if when each agent’s most
preferred 1/n length of the cake is disjoint from another agent, 1/n length of the cake,
then each agent gets their most preferred piece of cake of length 1/n.

2.5 Relation between the properties of cake cutting algorithms

In this subsection, we recap the main properties of cake cutting algorithms: i) propor-
tionality, ii) robust proportionality, iii) envy-freeness, iv) robust envy-freeness, v) sym-
metry, vi) non-wastefulness, vii) Pareto optimality, viii) unanimity ix) strategyproof-
ness, x) weak group strategyproofness, xi) group strategyproofness, xii) polynomial-
time.

Remark 1.For cake cutting,a) Envy-freeness and non-wastefulness=⇒ proportional-
ity; b) Robust proportionality=⇒ proportionality;c) Robust envy-freeness=⇒ envy-
freeness;d) Robust envy-freeness and non-wastefulness=⇒ robust proportionality;
e) Group strategyproofness=⇒ weak group strategyproofness=⇒ strategyproof-
ness;f) Pareto optimality=⇒ non-wastefulness;g) Pareto optimality=⇒ unanimity;
h) two agents, proportionality=⇒ envy-freeness;i) two agents, robust proportionality
=⇒ robust envy-freeness.

2.6 The free disposal assumption

We may assume without lost of generality that every part of the cake is desired by at
least one agent. If that is not the case, then we can discard the parts that are desired
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by no one and rescale what is left so that we get a [0, 1] interval representation
of the cake. Notice that this procedure preserves the aforementioned properties of
fairness, efficiency and truthfulness. The free disposal assumption thatwe are making
is necessary to ensure strategyproofness for piecewise uniform valuation functions. See
[12] for a discussion on the necessity of this assumption.

Before we present our algorithms, we will first take a detour to the literature on random
assignments, as some of the algorithms in the random assignment literature are closely
related to our algorithms.

3 A detour to random assignments

An assignment problem is a triple (N,H,%) such thatN = {1, . . . , n} is a set of agents,
H = {h1, . . . , hn} is a set of houses and%= (%1, . . . ,%n) is the preference profile in
which%i denotes the preferences of agenti over housesH. A deterministic assignment
is a one-to-one mapping fromN to H. A random allocationis a probability distribution
over H. A random assignmentp gives a random allocation to each agent. It can be
represented by a bistochastic matrixp in which the ith row is denoted bypi and all
i ∈ A, andh ∈ H, pih ≥ 0,

∑
j∈A p jh =

∑
h′∈H pih′ = 1.8 The termpih denotes the

probability with which agenti gets househ. An assignment problem has commonalities
with cake cutting with piecewise constant valuations. Theyalso have some fundamental
differences. For example, in cake cutting, the agents do not havecontinuous constant
valuations over pre-determined segments of the cake.

Given two random assignmentsp andq, pi %
S D
i qi i.e., a playeri weakly SD prefers

pi to qi if for all h,
∑

hj∈{hk:hk%ih} pih j ≥
∑

hj∈{hk:hk%ih} qih j . Another way to see the SD
relation is as follows. A playeri weakly SD prefers allocationpi to qi if for all vNM
utilities consistent with his ordinal preferences,i gets at least as much expected utility
underpi as he does underqi . Furthermorep %S D q, i.e., p stochastically dominates qif
pi %

S D
i qi for all i ∈ N andq , p.
An algorithm satisfiesSD-efficiencyif each returned assignment is Pareto optimal

with respect to the SD-relation (see e.g., [34]). An algorithm satisfiesSD envy-freeness
if each agent (weakly) SD prefers his allocation to that of any other agent. SD envy-
freeness is a very demanding notion of fairness. The reader may be able to notice that
our notion of robust envy-freeness in cake cutting is based on a similar idea as SD
envy-freeness. We will consider random allocations as fractional allocations and ran-
dom assignments as fractional assignments. Viewing the probability of getting a house
simply as getting a fraction of the house is especially useful when some houses are not
complete but only partial. In this vein, the definition of SD dominance should also be
considered from the perspective of fractional allocationsrather than probability distri-
butions.

The most basic assignment problem concernsn agents having strict preferences
overn objects. For this basic setting a simple yet ingeniousPS (probabilistic serial)al-
gorithm introduced by Bogomolnaia and Moulin [3] and Crès and Moulin [14] which

8 The bistochasticity of the matrixp holds when there are the same number of agents as there are
objects, which can be assumed without lost of generality by adding dummy agents or objects
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uses thesimultaneous eating algorithm (SEA). Each house is considered to have a di-
visible probability weight of one, and agents simultaneously and with the same eating
rate consume the probability weight of their most preferredhouse until no house is left.
The random allocation allocated to an agent by PS is then given by the amount of each
object he has eaten until the algorithm terminates. The mainresult of Bogomolnaia
and Moulin [3] was that the fractional assignment returned by the PS algorithm is SD
envy-free and SD-efficient.

The PS algorithm has been extended in various ways. The EPS (extended PS al-
gorithm) of Katta and Sethuraman [18] generalized PS to the case for indifferences
using parametric network flows. EPS also generalized theegalitarian ruleof Bogomol-
naia and Moulin [5] for dichotomous preferences. Yilmaz [34] and Athanassoglou and
Sethuraman [1] extended the work of [18] to propose PS generalization which also takes
care of private endowments whereei indicates the endowment of agenti. For the case of
endowments, Yilmaz [34] introduced the idea of justified envy-freeness. An assignment
p satisfies justified envy-freeness if for alli, j ∈ N, pi %

S D
i p j or¬(pi %

S D
j ej .) The algo-

rithms in [34, 1] satisfy justified envy-freeness in the presence of private endowments.
In our algorithm CCEA, we rely on the full power of the controlled-consuming (CC) al-
gorithm of Athanassoglou and Sethuraman [1] which combinesalmost all the desirable
features of other extensions of PS. In particular, we use thefollowing fact.There exists
an extension of the PS algorithm which can simultaneously handle indifferences in pref-
erences, unacceptable objects in preferences, allocationof multiple objects to agents,
agent owning fractions of houses, partial houses being available, and still returns an
assignments which satisfies SD justified envy-freeness and SD-efficiency.In addition,
if there are no private endowments, then the extension can also handle variable eating
rates. The Controlled-Consuming (CC) algorithm of Athanassoglou and Sethuraman
[1] can handle the case where each agent owns fractions of thecomplete houses. We
also require that for some houses, only an arbitrary fraction of the house is available
to the market. This can be handled by a modification to CC (page30, [1]). Finally we
require the agents to want to be allocated as many houses as possible. This does not
require any modification to CC. In the absence of endowments but presence of variable
eating rates, CC is equivalent to the EPS algorithm that can also cater for variable eating
rates (Section 6.4, [18]).

4 CCEA — Controlled Cake Eating Algorithm

CCEA is based on CC (Controlled Consuming) algorithm of Athanassoglou and Sethu-
raman [1]. Since the original PS algorithm utilized the simultaneous eating algorithm,
hence the nameControlled Cake Eating Algorithm.CCEA first divides the cake up into
disjoint intervals each of whose endpoints are consecutivepoints of discontinuity of the
agents’ valuation functions. We will refer to these intervals asintervals induced by the
discontinuity points. The idea is to form a one-to-one correspondence of the set ofcake
intervals with a set of houses of an assignment problem. Since intervals may have dif-
ferent lengths, we consider the house corresponding to the interval with the maximum
length as a complete house where as intervals correspondingto other houses are partial
houses. The preferences of agents over the houses are naturally induced by the relative
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height of the piecewise constant function lines in the respective intervals. If an agenti
owns a sub-intervalJ j , then in the housing setting,eih j is set tosize(h j) and not to one.
The reason is that an agent can only own as much of the house as exists. The technical
heart of the algorithm is in CC (Controlled Consuming) algorithm of Athanassoglou
and Sethuraman [1]. We recommend the reader to Section 3.2 of[1] in which an illus-
trative example on CC is presented. Once CC has been used to compute a fractional
assignmentp, it is straightforward to compute a corresponding cake allocation. If an
agenti gets a fraction of househ j , then in the cake allocation agenti gets the same
fraction of subintervalJ j .

Input : Piecewise constant value functions.
Output : A robust envy-free allocation.

1 Divide the regions according to agent value functions. LetJ = {J1, . . . , Jm} be the
set of subintervals of [0, 1] formed by consecutive marks.

2 Consider (N′,H,%, size(·)) where

– H = {h1, . . . , hm} wherehi = Ji for all i ∈ {1, . . . ,m}
– % is defined as follows:h %i h′ if and only if vi(x) ≥ vi(y) for x ∈ h andy ∈ h′;
%n+1 is defined in the way that each house in the market is unacceptable to agent
n+ 1.

– size(h j) = 1 for h j ∈ arg maxj∈{1,...,m}(len(J j));

size(h j) =
len(J j )

(maxj∈{1,...,m}(len(J j )))

for all h j < arg maxj∈{1,...,m}(len(J j));

3 p←− CC(N′,H,%, size(·))
4 For intervalJ j , agenti is an allocated subinterval ofJ j , denoted byJi

j , which is of

lengthpih j/size(h j)× len(J j). For example, ifJ j = [ai, bi ], then one possibility ofJi
j

can be [ai +
∑i−1

n=1 pih j /size(h j) × len(J j), ai +
∑i

n=1 pih j/size(h j) × len(J j)].
Xi ←−

⋃m
j=1 Ji

j for all i ∈ N
5 return X = (X1, . . . ,Xn)

Algorithm 1: Controlled Cake Eating Algorithm (CCEA) to compute a robustenvy-
free allocation for piecewise constant value functions.

In Example 2, we show how CCEA transforms a cake cutting problem with piece-
wise constant valuations into a random assignment problem.

Example 2 (Illustration of CCEA).We examine how CCEA runs on the cake cut-
ting problem in Figure 1. Firstly, letJ = {J1, . . . , J4} be the set of subintervals of
[0, 1] formed by consecutive points of discontinuity are identified: J1 = [0, 0.1], J2 =

[0.1, 0.3], J3 = [0.3, 0.5], andJ4 = [0.5, 1]. J2 is discarded because it is desired by no
agent. In set{h1, h3, h4}, each househ j corresponds to subintervalJ j . The preferences of
the agents overH are inferred from their valuation function height in the subintervals so
thath1 ≻1 h4 ≻1 h3 andh3 ∼2 h4 ≻2 h1.We also set the number of units of each house
that is available. SinceJ4 is the biggest interval, we considerh4 as complete house.
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So, size(h4) = 1, size(h1) = 0.2, andsize(h3) = 0.4. If we run CC over the housing
market instance with the specified set of agents, houses, fraction of houses available to
the market, and agent preferences, then the assignment returned by CC is as follows:
p1h1 = 0.2, p1h3 = 0, p1h4 = 0.6, p2h1 = 0, p2h3 = 0.4, andp2h4 = 0.4. The house assign-
mentp can be used to divide the subintervals among the agents:X1 = {[0, 0.1], [0.7, 1]}
andX2 = {[0.3, 0.5], [0.5, 0.7]}.

CCEA satisfies the strong fairness property of robust envy-freeness.

Proposition 1. For piecewise constant valuations, CCEA satisfies robust envy-freeness
and non-wastefulness.

Let m be the number of relevant subintervals in a cake cutting problem with piece-
wise constant valuations.

Proposition 2. CCEA runs in time O(n5m2 log(n2/m)), where n is the number of agents
and m is the number of subintervals defined by the union of discontinuity points of the
agents’ valuation functions.

Although CCEA satisfies the demanding property of robust envy-freeness, it is not
immune to manipulation. We show that CCEA is not strategyproof even for two agents.
In the next section, we will present a different algorithm that is both robust envy-free
and strategyproof for two agents.

Proposition 3. For piecewise constant valuations, CCEA is not strategyproof even for
two agents.

If we restricted the preferences to piecewise uniform with no private endowment or
variable claims, then CCEA is not only strategyproof but group-strategyproof. We first
show that in this restricted setting, CCEA is in fact equivalent to the algorithm of [11].

Lemma 1. For piecewise uniform value functions with no private endowments and
variable claims, CCEA is equivalent to Mechanism 1 of Chen etal. [11].

Since the set of valuations that can be reported is bigger in cake cutting than in
the assignment problem, establishing group strategyproofness does not follow automat-
ically from group-strategyproofness of CC for dichotomouspreferences (Theorem 2,
[5]). Using similar arguments, we give a detailed proof thatCCEA and hence Mecha-
nism 1 of Chen et al. [11] is group strategyproof for piecewise uniform valuations.9 In
Section 8, we extend the result to the case where agents may have variable claims.

Proposition 4. For cake cutting with piecewise uniform value functions, CCEA is
group strategyproof.

For piecewise uniform valuations, CCEA is also Pareto optimal. The result follows
directly from lemma 1 along with the fact that Mechanism 1 of Chen et al. [11] is Pareto
optimal.

Proposition 5. For cake cutting with piecewise uniform value functions, CCEA is
Pareto optimal.

9 Chen et al. [11] had shown that their mechanism for piecewiseuniform valuations is strate-
gyproof.
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5 MEA — Market Equilibrium Algorithm

In the previous section we presented CCEA which is not Paretooptimal for piecewise
constant valuations. It turns out that if we relax the robustnotion of fairness to envy-
freeness, then we can use fundamental results in general equilibrium theory and recent
algorithmic advances [15] to formulate a convex program that always returns an envy-
free and Pareto optimal allocation as its optimal solution.For each valuation profile, let
J = {J1, . . . , Jk} be the intervals whose endpoints are consecutive points in the union of
break points of the agents’ valuation functions. Letxi j be the length of any subinterval
of Ji that is allocated to agentj. Then we run a convex program to compute a Pareto
optimal and envy-free allocation. We will call the convex program outlined in Algo-
rithm 2 as theMarket Equilibrium Algorithm (MEA). MEA is based on computing the
market equilibrium via a primal-dual algorithm for a convexprogram that was shown
to be polynomial-time solvable by Devanur et al. [15]. Notice that if we ignore strate-
gyproofness, or in other words, if we assume that agents report truthfully, then agents
are truly indifferent between which subinterval they receive since their valuation func-
tion is a constant over anyJi . Hence, one we determine the length ofJ j to be allocated
to an agent, we can allocate any subinterval of that length tothe agent.

Input : Cake-cutting problem with piecewise constant valuations.
Output : A proportional, envy-free, and Pareto optimal allocation.

1 Let J = {J1, . . . , Jk} be the intervals whose endpoints are consecutive points in the union of
break points of the agents’ valuation functions.

2 Let xi j be the length of any subinterval ofJi that is allocated to agentj.
3 l i ←− len(Ji)
4 Solve the following convex program.

min −

n∑
j=1

log(uj )

s.t. uj =

k∑
i=1

vi j xi j ∀ j = 1, . . . ,n

n∑
j=1

xi j ≤ l i ∀i = 1, . . . , k

xi j ≥ 0 ∀i, j.

5 Let u⋆j , x⋆i j be an optimal solution to the convex program. Partition every interval Ji into n

subintervals where thej-th subintervalJ j
i has lengthx⋆i j .

6 Yj ←− ∪
k
i=1J j

i be the allocation of eachj = 1, . . . ,n.
7 return Y = (Y1, . . . ,Yn).

Algorithm 2: The Market Equilibrium Algorithm to compute a Pareto optimal, envy-
free, and proportional allocation.

Proposition 6. MEA is polynomial-time, Pareto efficient and envy free.
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We mention here that the connection between a fair and efficient algorithm for cake
cutting and computing market equilibria was already pointed by Reijnierse and Potters
[24]. Reijnierse and Potters [24] presented an algorithm tocompute an approximately
envy-free and Pareto optimal allocation for cake cutting with general valuations. How-
ever their algorithm is not polynomial-time even for piecewise constant valuations [37].

MEA requires the machinery of convex programming. It remains open whether
MEA can be implemented via linear programming. Cohler et al.[13] presented an al-
gorithm that uses a linear program to compute an optimal envy-free allocation. The
allocation is Pareto optimal among all envy-free allocations. However it need not be
Pareto optimal in general.

Although MEA is not robust envy-free like CCEA, it is Pareto optimal because
it maximizes the Nash product. What is interesting is that under uniform valuations,
both MEA and CCEA are equivalent. In the next result we demonstrate this equiva-
lence (Proposition 7). The proof requires a careful comparison of both CCEA and MEA
under uniform valuations.

Proposition 7. For piecewise uniform valuations, the allocation given by CCEA is
identical to that given by MEA.

Corollary 1. For piecewise uniform valuations, MEA is group-strategyproof.

Thus if we want to generalize Mechanism 1 of Chen et al. [11] topiecewise con-
stant valuations and maintain robust envy-freeness then weshould opt for CCEA. On
the other hand, if want to still achieve Pareto optimality, then MEA is the appropriate
generalization. In both generalization, we lose strategyproofness.

6 Impossibility Results

Thus far, we presented two polynomial time algorithms, eachof which satisfies a dif-
ferent set of properties. CCEA is robust envy-free and non-wasteful, whereas MEA is
Pareto optimal and envy-free. This naturally leads to the following question: does there
exist an algorithm satisfies all of the properties that CCEA and MEA satisfy? It turns out
that the answer is no, as Theorem 5 shows that there is no algorithm that is both Pareto
efficient and robust proportional. Similarly, Theorem 6 arguesthat there is no algorithm
that satisfies the properties CCEA satisfies along with strategyproofness. Lastly, Theo-
rem 7 argues that there is no algorithm that satisfies the properties CCEA satisfies plus
strategyproofness. The impossibility results are summarized in Table 2.

Impossibility Reference

Pareto efficient and robust proportional Theorem. 5
Strategyproof, Pareto optimal, and proportional Theorem 6
Strategyproof, robust proportional, and non-wasteful Theorem 7

Table 2. Impossibility results for cake-cutting algorithms for piecewise constant valuations.
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Consequently, we may conclude that the properties satisfiedby CCEA and MEA are
respectively maximal subsets of properties that an algorithm can satisfy for piecewise
constant valuations.

7 CSD — Constrained Serial Dictatorship Algorithm

In the previous sections, we saw that CCEA and MEA are only strategyproof for piece-
wise uniform valuations. In light of the impossibility results established in the preivous
section, it is reasonable to ask what other property along with strategyproofness can
be satisfied by some algorithm. It follows from (Theorem 3, [26]) that the only type of
strategyproof and Pareto optimal mechanisms are dictatorships. Chen et al. [12] raised
the question whether there exists a strategyproof and proportional algorithm for piece-
wise constant valuations. The algorithm CSD answers this question partially.

Before diving into the CSD algorithm, it is worth noting thatthere is some funda-
mental difference between random assignment setting and the cake cutting setting. In
the random assignment setting, the objects that we are allocating are well defined and
known to the public. On the other hand, in the cake cutting setting, the discontinuity
points of each agent’s valuation function is private information for the agent. Hence,
any algorithm that uses the reported discontinuity points to artificially create the ob-
jects runs into the risk of having the objects created by the algorithm be manipulated
by the reports of the agents. In order to illustrate this difficulty, consider the uniform
allocation rule. The uniform allocation rule (that assigns1/n of each house) [10] is both
strategyproof and proportional in the random assignment setting. However it cannot be
adapted for cake cutting with piecewise constant valuations since strategyproofness is
no longer satisfied if allocating 1/n of each interval (induced by the agent valuations)
is done deterministically.

Proposition 8. The uniform allocation rule (done deterministically) is not strate-
gyproof.

Now we are ready to present CSD. In order to motivate CSD, we will give a
randomized algorithm that is strategyproof and robust proportional in expectation. The
algorithm is a variant of random dictatorship: each agent has uniform probability of
being chosen as a dictator. However, if the whole cake is acceptable to each agent,
then each time a dictator is chosen, he will take the whole cake. This approach is not
helpful since we return to square one of having to divide the whole cake. We add an
additional requirement which is helpful. We require that each time a dictator is chosen,
the piece he takes has to be of maximum value 1/n length of the total size of the cake.
We will call this algorithm Constrained Random Serial Dictatorship (CRSD). Formally
speaking, CRSD draws a random permutation of the agents. Thealgorithm then makes
the allocation to agents in the order that the lottery is drawn. Everytime when it is
agenti’s turn to receive his allocation, CRSD looks at the remaining portion of the
cake and allocates a maximum value 1/n length piece of the cake to agenti (break ties
arbitrarily). Notice that CRSD is strategyproof, as in every draw of lottery, it is in the
best interest of the agents to report their valuation function truthfully in order to obtain
a piece that maximizes his valuation function out of the remaining pieces of cake. Later

15



Input : Cake-cutting problem with piecewise constant valuations.
Output : A robust proportional allocation.

1 for eachπ ∈ ΠN do
2 C←− [0, 1] (intervals left)
3 for i = 1 ton do
4 Xπ

π(i) ←−maximum preference cake piece of size 1/n from C
5 C←− C − Xπ

π(i).
6 i ←− i + 1.
7 end for
8 end for
9 Construct a disjoint and exhaustive interval setJ ′ induced by the discontinuities in agent

valuations and the cake cuts in then! cake allocations.
10 Yi ←− empty allocation for eachi ∈ N.
11 for eachJj = [aj , bj ] ∈J ′ do
12 for eachi ∈ N do
13 Let pi j =

count(i,J j )
n! wherecount(i, Jj ) is the number of permutations in whichi getsJj .

14 GenerateAi j ⊆ Jj , which is of lengthpi j |Jj | according to some subroutine.
15 Yi ←− Yi ∪ Ai j

16 end for
17 end for
18 return Y = (Y1, . . . ,Yn)

Algorithm 3: CSD (Constrained Serial Dictatorship)— proportional and unanimous
algorithm for piecewise constant valuations

on we will see, through the proof of Proposition 10, that CRSDis robust proportional
in expectation.

CSD is an algorithm that derandomizes CRSD by looking at its allocation for all
n! different permutations and aggregate them in a suitable manner.The algorithm is
formally presented as Algorithm 3.

Although CSD does not necessarily requiren! cuts of the cake, it may take expo-
nential time if the number of agents is not a constant. In Example 3, we illustrate how
CSD works.

Example 3 (Illustration of CSD).We implement CSD on the cake cutting problem in
Figure 1.For permutation 12, agent 1 first chooses the cake piece {[0, 0.1], [0.6, 1]}
and agent 2 then takes the remaining piece{[0.1, 0.6]}. For permutation 21, agent 2
first chooses the cake piece{[0.3, 0.8]} and agent 1 then takes the remaining piece
{[0, 0.3], [0.8, 1]}.

The set of all relevant subintervals induced by the two permutations are
{[0, 0.1], [0.1, 0.3], [0.3, 0.6], [0.6,0.8], [0.8,1]}. When we we additionally consider the
discontinuities in the players’ valuations, the set of relevant subintervals isJ ′ =

{[0, 0.1], [0.1, 0.3], [0.3, 0.5], [0.5,0.6], [0.6,0.8], [0.8,1].
Then

Y1 = {[0, 0.1],
1
2

[0.1, 0.3],
1
2

[0.6, 0.8], [0.8, 1]}
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1: GenerateU j ∼ uni f [aj , bj ].
2: Foraj ≤ x ≤ 2bj − aj , let mod (x) = x if aj ≤ x ≤ bj andx− (bj − aj ) if x > bj . Let

Ai j = [ mod (U j +

i−1∑
k=1

pk j(bj − aj )), mod (U j +

i∑
k=1

pk j(bj − aj))]

if mod (U j +
∑i−1

k=1 pk j(bj − aj )) ≤ mod (U +
∑i

k=1 pk j(bj − aj )) and

Ai j = [aj , mod (U j +

i∑
k=1

pk j(bj − aj ))] ∪ [ mod (U j +

i−1∑
k=1

pn j(bj − aj )),bj ]

otherwise.

Algorithm 4: A subroutine that converts fractional allocation into subintervals via ran-
domization

and

Y2 = {
1
2

[0.1, 0.3], [0.3, 0.5], [0.5, 0.6],
1
2

[0.6, 0.8]}.

Proposition 9. For piecewise constant valuations, CSD is well-defined and returns a
feasible cake allocation in which each agents gets a piece ofsize1/n.

Proposition 10. For piecewise constant valuations, CSD satisfies robust proportional-
ity and symmetry.

Notice that unlike CRSD, CSD interprets the probability of allocating each interval
to an agent as allocation a fractional portion of the interval to that agent. Unless the
actual way of allocating the fractions is specified, one cannot discuss the notion of
strategyproofness for CSD because a deviating agent is unable to properly evaluate
his allocation against his true valuation function in the reported profile. Contrary to
intuition, CSD may or may not be strategproof depending on how the fractional parts
of each interval are allocated. In fact, the following remark illustrates this issue.

Remark 2.CSD is not strategyproof if the fraction of each interval ofJ ′ is allocated
deterministically (please see the appendix for the proof).

In light of difficulty, we will implement a method (see Algorithm 4) that randomly
allocating the fractions of intervals to agents. With this implementation, CSD is strate-
gyproof in expectation.

We will refer this randomized implemention of CSD asConstrained Mixed Serial
Dictatorship, or CMSDfor short.

Proposition 11. CSD implemented with the aforementioned random allocationrule is
strategyproof in expectation.

Although CSD is strategyproof in expectation, it fails to satisfy truthfulness based
on group-based deviations no matter how the fractional parts of each interval are allo-
cated.
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Proposition 12. For cake cutting with piecewise constant valuations, CSD isnot
weakly group-strategyproof even for two agents.

Moreover, for cake cutting with piecewise uniform valuations, CSD is not weakly
group-strategyproof for at least seven agents. The statement above follows from the fact
that RSD is not weakly group-strategyproof for dichotomouspreferences when there are
at least seven agents [4, 5].

Even though CSD satisfies both proportionality and symmetry, it does not satisfy
the stronger notion of envy-freeness.

Proposition 13. CSD is not necessarily envy-free for three agents even for piecewise
uniform valuations.

Another drawback of CSD is that it is not Pareto optimal for piecewise constant val-
uations. The statement follows from the fact that RSD is not SD-efficient [3]. However
for the case of two agents, it is robust envy-free and polynomial-time.

Proposition 14. For two agents and piecewise constant valuations, CSD is robust envy-
free, and polynomial-time but not Pareto optimal.

Remark 3.For piecewise uniform valuations, CSD can be modified to be made Pareto
optimal. The main change is that for each permutation CSD, the resultant outcome
needs to be made Pareto optimal. This can be done by using the idea in [2].

8 Extensions

In this section, we show how some of our positive results concerning CCEA extend to
more general settings where agents may have variable claimsor they may have initial
endowments (please see Algorithm 5).

8.1 Variable claims

We consider the concept ofvariable claimsin cake cutting. It is generally assumed
in the literature that each agent has equal claim to the cake.In this case we modify the
definition of proportionality and envy-freeness accordingly. Reasoning about claims has
a long tradition in the fair division literature. However this strand of research assumes
that agents have uniform and identical preferences over thewhole of the divisible object
and their only concern is the proportion of the object they get (see e.g., [30, 35]). Brams
and Taylor [8] refer to variable claims as entitlements and touch upon entitlements in
cake cutting at a few places in their book. They present a general idea of handling
entitlements by cloning agents (Page 152, [8]) but doing so can lead to an exponential
blowup of time and space. Brams et al. [9] also considered entitlements in pie-cutting
but presented an impossibility result and also a positive result for two agents. On the
other hand, one of our algorithms handles variable claims for arbitrary number of agents
and does not require cloning.
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Input : Piecewise constant value functions with priority claims (c1, . . . , cn) or private endow-
ments (ω1, . . . , ωn)

Output : A robust envy-free and individually rational allocation.

1 Let N′ = N ∪ {n+ 1} wheren+ 1 is the agent owning all public cake but with no interest in
any of the cake. Join the segmentsω(1), . . . , ω(n), ω(n+ 1) to assemble a cake.

2 Divide the regions according to agent value functions. LetJ = {J1, . . . , Jm} be the set of
subintervals of [0,1] formed by consecutive marks.

3 Consider (N′,H,%,e, rate(·), size(·)) where

– H = {h1, . . . ,hm} wherehi = Ji for all i ∈ {1, . . . ,m}
– % is defined as follows:h %i h′ if and only if vi(x) ≥ vi(y) for x ∈ h andy ∈ h′;
%n+1 is defined in the way that each house in the market is unacceptable to agentn+ 1.

– size(hj ) = 1 for hj ∈ arg maxj∈{1,...,m}(len(Jj ));

size(hj ) =
len(J j )

(maxj∈{1,...,m}(len(J j )))

for all hj < arg maxj∈{1,...,m}(len(Jj ));
– rate(i) = claim(i);
– eih j = size(hj ) if Jj ∈ ω(i) and zero otherwise.

4 p←− CC(N′,H,%,e, rate(·), size(·))
5 For intervalJj , agenti is allocated a subinterval ofJj , denoted byJi

j , which is of length
pih j /size(hj) × len(Jj ).
Xi ←−

⋃m
j=1 pih j/size(hj )Jj for all i ∈ N

6 return X = (X1, . . . ,Xn)

Algorithm 5: Controlled Cake Eating Algorithm (CCEA) to compute a robustenvy-
free allocation for piecewise constant value functions. CCEA works for either private
endowments or variable claims but is not defined for both.

An allocation satisfiesproportionality for variable claims if Vi(Xi) ≥

ci/
∑

j∈N c jVi([0, 1]) for all i ∈ N. An allocation satisfiesrobust proportionality for vari-
able claimsif for all i ∈ N and for allv′i ∈ V̂i ,

∫
Xi

v′i (x)dx≥ (ci/
∑

j∈N c j)
∫
[0,1]

v′i (x)dx.
An allocation satisfiesenvy-freeness for variable claims, if Vi(Xi) ≥ (ci/c j)Vi(X j)

for all i, j ∈ N.
An allocation satisfiesrobust envy-freeness for variable claimsif for all i, j ∈ N and

for all v′i ∈ V̂i ,
∫

Xi
v′i (x)dx≥ (ci/c j)

∫
X j

v′i (x)dx.

Proposition 15. For cake cutting with variable claims and piecewise constant valua-
tions, CCEA satisfies robust envy-freeness for variable claims.

For uniform valuations, group-strategyproofness of CCEA even holds when agents
have variable claims.

Proposition 16. For cake cutting with piecewise uniform value functions andvariable
claims, CCEA is group-strategyproof.

On the other hand, it can be shown that the following natural modification of CSD
does not satisfy proportionality in the presence of variable claims: each agenti gets
ci/(
∑

j∈n c j) length of the most preferred interval for each permutation.
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We note that MEA can be easily adapted to cater for variable claims. Each agent’s
budget is proportional to his claim.

Proposition 17. For cake cutting with with piecewise constant valuations and variable
claims, there exists an algorithm (MEA) that is polynomial-time, Pareto optimal, envy-
free, and proportional.

8.2 Private endowments

In the cake cutting literature, the cake is generally considered to be a public good which
is divided among the agents. It could also be that each agent brings part of the cake and
then the assembled cake needs to be reassigned among the agents fairly. We call the
setting cake cutting withprivate endowments. In this context, individual rationality is a
minimal requirement and envy-freeness need to be redefined.Classic cake cutting can
be modelled by cake cutting with private endowments in the following manner: none
of the agents have any endowments and one additional agents owns the whole cake but
has no interest in the cake.

An allocation isindividually rational if Vi(Xi) ≥ Vi(ω(i)). An allocation satisfies
justified envy-freeness for private endowmentsif Vi(Xi) ≥ Vi(X j) or V j(Xi) < V j(ω( j))
for each pair of agenti, j ∈ N. Either i should not be envious ofj or if he is envious,
then givingi’s allocation toj violates individual rationality.10 It is not entirely clear how
to obtain the canonical concept of justified envy-freeness which takes into account both
private endowments and variable claims.

An allocation satisfiesrobust justified envy-freeness for private endowmentsif for all
i, j ∈ N either∀v′i ∈ V̂i :

∫
Xi

v′i (x)dx≥
∫

X j
v′i (x)dxor∃v′j ∈ v̂ j :

∫
Xi

v′j(x)dx<
∫
ω( j)

v′j(x)dx.

If i does not get an unambiguously as preferred a piece asj’s, j has a counter claim that
j’s endowment is better thani’s piece for some ordinally equivalent valuation function
of j.

Proposition 18. For cake cutting with private endowments and piecewise constant val-
uations, CCEA satisfies robust justified envy-freeness for private endowments.

Generalizing CSD to handle endowments without losing its properties seems to be
a challenging task. We have not addressed it in this paper.

9 Related work and discussion

A mathematical analysis of cake cutting started with the work of Polish mathematicians
Steinhaus, Knaster, and Banach [27]. As applications of fair division have been identi-
fied in various multiagent settings, a topic which was once considered a mathematical
curiosity has developed into a full-fledged sub-field of mathematical social sciences (see
e.g., [22]). In particular, in the last few decades, the literature of cake cutting has grown
considerably (see e.g., [22, 8, 25, 23]).

10 The definition of justified envy-freeness for private endowments is based on a similar concept
due to Yilmaz [34] for the domain of housing assignment problems.
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The relation between the random assignment problem and cakecutting has been
noticed before [12]. However, in their discussion of related work, Chen et al. argue that
techniques from the random assignment literature cannot bedirectly applied even to
piecewise uniform functions—a subclasses of piecewise constant functions. Stumbling
blocks identified include the fact that in the random assignment problem, each agents
gets one object. We observed that PS satisfies envy-freenesseven when agents get mul-
tiple objects.11 Another issue raised is that ‘if two agents desire two subintervals, both
agents would value the longer subinterval more than the shorter.’ This problem can be
circumvented by using the algorithm to compute the greatestcommon denominator of
the lengths of the intervals and then dividing the intervalsin equally sizes subinter-
vals. However the number of subintervals can be exponentialin the input size. We use
the idea of Athanassoglou and Sethuraman [1] that some houses may only be partially
available.

Chen et al. [12] stated that generalizing their strategyproof algorithm for piecewise
uniform valuations to the case for piecewise constant valuations as an open problem.
We presented two algorithms — CCEA and MEA — that generalize Mechanism 1 of
Chen et al. [11, 12]. Although they both satisfy certain desirable properties, both natural
generalizations are not strategyproof.

A number of works in the cake-cutting literature reason about strategyproofness.
However they refer to a very weak notion of strategyproofness which is equivalent to a
maximin strategy. Apart from the papers of Chen et al. [11, 12], we are aware of no pos-
itive results regarding discrete, strategyproof, and fairalgorithms even for the restricted
domain of piecewise constant valuations. In this paper we present a proportional algo-
rithm (CSD) for piecewise constant valuations that although not formally strategyproof
seems less like likely to manipulate in comparison to CCEA. If we are allowed to use
randomization, then we show that CSD can be adapted to be strategyproof in expec-
tation. Notice that if we instead require our algorithm to bestrategyproof always, and
proportional in expectation, then CRSD would satify these properties. Moreover, we
note that Chen et al. [11] also presented an algorithm that israndomized, envy-free and
proportional, and strategyproof in expectation. However,it does not satisfy unanimity
and requires much more randomization in contrast to CSD. It remains an open question
whether there exists an algorithm that always returns a proportional allocation and is
always immune to agent manipulation.

A difficulty that arises in coming up with strategyproof and proportional algorithm
lies in that there is no restriction on the distribution of the discontinuity points of the
agents’ valuation functions. To illustrate this point, suppose the algorithm designer
knows that the discontinuity points of the agents’ valuation functions come from a set
S = {x1, . . . , xk}, where 0≤ x1 ≤ . . . ≤ xk ≤ 1. Consequently, a mechanism that parti-
tions [0, 1] into intervals of the form [xi, xi+1] and allocates 1/n of each interval to each
agent would be proportional, envy-free and strategyproof.Even if the designer does not
know such aS, but instead we require the minimum distance between any twoconsec-
utive discontinuity points of the agent’s valuation function to be at least someǫ > 0,
then there exists a strategyproof andδ-proportional algorithm for this setting.

11 Even in the first paper on the PS algorithm for strict preferences, it was observed that PS can
be extended to the case where there are many more objects thanagents (Page 310, [3]).
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As for private endowments, we are only aware of [31] where private endowment are
considered in pie-cutting. However, in comparison to our positive results concerning
envy-freeness, Thomson [31] presents a negative result concerning the core.

10 Conclusion

In this paper, we made a number of conceptual and technical contributions. It will be
interesting to consider new results with respect to robust versions of fairness, endow-
ments, and variable claims. Cake cutting is an exciting sub-field of microeconomics
with numerous applications to computer science. In order for theory to be more rele-
vant to practice, we envision exciting work in much richer models of cake cutting.
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Proof of Theorem 5

Proof. Consider the following two-agent profile.
Agent 1:

v1(x) = v1
a for x ∈ [0, 0.5], v1(x) = v1

b for x ∈ (0.5, 1].

Agent 2:

v2(x) = v2
a for x ∈ [0, 0.5], v2(x) = v2

b for x ∈ (0.5, 1].

Choosev1
a, v

1
b, v

2
a, v

2
b > 0 in such a way thatv1

a > v1
b andv2

a > v2
b and v1

a

v1
b
>

v2
a

v2
b
.

By either robust envy-freeness or robust proportionality,the mechanism must make the
following allocationx wherex1

a = x1
b = x2

a = x2
b = 0.25. On the other hand, in order for

the mechanism to be Pareto efficient,x must be an element ofP1 = {x|x1
b = 0 or x2

a = 0}.
Hence, we have reached an impossibility. ⊓⊔

Proof of Theorem 6

Proof. For cake cutting with piecewise constant valuations andn ≥ 2, it follows from
(Theorem 3, [26]) that the only type of strategyproof and Pareto optimal mechanisms
are dictatorships. Consequently, there exists no strategyproof and Pareto optimal mech-
anism that is also proportional or symmetric. ⊓⊔

Proof of Theorem 7

Proof. The following example shows that there exists no cake-cutting algorithm that is
strategyproof, robust proportional, and non-wasteful.

Profile 1:

1 : v1(x) = a if x ∈ [0, 0.5], v1(x) = b if x ∈ [0.5, 1]

2 : v2(x) = a if x ∈ [0, 0.5], v2(x) = b if x ∈ [0.5, 1]

for somea > b > 0.

Since the algorithm is robust proportional, it must be the case that each agent receive
1/2 of [0, 0.5] and 1/2 of [0.5, 1]. This is because the fractional parts of [0, 0.5] and
[0.5, 1] that each agent receives must stochastically dominate the uniform allocation,
otherwise the allocation would not satisfy proportionality for some valuation function
in the ordinal equivalence class.

Without lost of generality (up to reordering and regroupingof the cake), we
may assume that agent 1 receives [0, 0.25] ∪ [0.5, 0.75] and agent 2 receives
[0.25, 0.5]∪ [0.75, 1].
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Now consider profile 2:

1 : v1(x) = a if x ∈ [0, 0.25], v1(x) = b if x ∈ [0.5, 0.75], v1(x) = 0 otherwise

2 : v2(x) = a if x ∈ [0, 0.5], v2(x) = b if x ∈ [0.5, 1]

By SP, agent 1 must again receive [0, 0.25] ∪ [0.5, 0.75] and agent 2 receives
[0.25, 0.5] ∪ [0.75, 1]. If agent 1 receives anything less in profile 2, then he would
deviate from profile 2 to profile 1. If agent 1 receives anything more in profile 2, then
he would deviate from profile 1 to profile 2.

Now consider profile 3:

1 : v1(x) = a if x ∈ [0, 0.25], v1(x) = b if x ∈ [0.5, 0.75], v1(x) = 0 otherwise

2 : v2(x) = a+ ǫ if x ∈ [0, 0.25], v2(x) = a if x ∈ [0.25, 0.5], v2(x) = b if x ∈ [0.5, 1]

By robust proportionality, both agent 1 and 2 must receive 1/2 of [0, 0.25]. By non-
wastefulness, agent 2 must receive [0.25, 0.5] and [0.75, 1] since agent 1 has a utility of
0 on these intervals. Hence, agent 2 in profile 2 would misreport so that he receives the
allocation in profile 3.

⊓⊔

Proof of Proposition 1

Proof (Sketch).First of all, CCEA is non-wasteful because an agent is never allowed
to eat a piece of the cake that he has no desire for. On the otherhand, the algorithm
terminates only when every portion of the cake that is desired by at least one agent is
completely consumed by some agent who desires it.

Next, we show that the algorithm is robust envy-free. Consider a fractional assign-
mentp returned by the CC algorithm. Without private endowments CCis equivalent to
the EPS algorithm of Katta and Sethuraman [18]. Assignmentp satisfies justified envy-
freeness in presence of variable eating rates:ui(pi) ≥ ui(p j) for all utilities u consistent
with preferences ofi over the houses. The intuition is that at any point during therun-
ning of CC, an agenti will be ‘eating’ his most favoured object(s) at the same rateas
any other agentj even if j is also the eating the same object(s). Hence, for allv′i ∈ V̂i , it
is the case that forj , i,

∫
Xi

v′i (x)dx≥
∫

X j
v′i (x)dx.

⊓⊔

Proof of Proposition 2

Proof (Sketch).For a cake cutting instanceI , |I | = nm is the input size wheren is the
number of agents andm is the number of relevant subintervals. Once the lengths of the
subintervals in{J1, . . . , Jm} are computed, the size of each house can be computed in
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linear time. The number of houses in CCEA ism. We now analyse the running time of
CC onn agents andm houses (Section 3.5, [1]). In the CC algorithm, the flow network
consists of|V| vertices and|E| arcs where|V| = O(n2) and|E| = O(n2m). The number
of parametric flow problems needed to be solved isO(nm). A parametric flow network
problem can be solved in timeO(|V||E| log(|V|2/|E|)) due to Gallo et al. [16]. Hence, the
running time of CCEA isO(nm(n2)(n2m) log(n4/n2m)) = O(n5m2 log(n2/m)). ⊓⊔

Proof of Proposition 3

Proof (Sketch).CCEA is not strategyproof even if all the piecewise intervals are of
equal length, and there are no private endowments or variable claims, and agents have
strict preferences over the intervals. In this case CCEA is equivalent to the classic PS
algorithm. It is known that PS is not strategyproof even for strict preferences when there
are more objects than agents [19]. ⊓⊔

Proof of Lemma 1

Proof (Sketch).In the absence of private endowments and variable claims, CCEA can
be solved by invoking EPS instead of CC but with the slight modification that in the
corresponding flow network of EPS, the capacity of each arc (h, t) is set tosize(h) in
step 2 of EPS (Algorithm 1, [18]). Let us refer to this simplified CCEA as SimpleCCEA.
When SimpleCCEA is run, it invokes EPS and solves repeated parametric network flow
problems (Step 3, Algorithm 1, [18]). In the step, EPS computes a bottleneck set of
agents and houses at each break-point. SimpleCCEA computesbottleneck sets in the
same way as Mechanism 1 of Chen et al. [11] and then allocates the resources in the
bottleneck sets to the agents in the bottleneck set. The flow networks of the slightly
modified EPS (Figure 2, [18]) and that of Mechanism 1 (Figure 2, [11]) are identical
with only two insignificant differences namely that in the flow network of Mechanism 1
of Chen et al. [11] i) the source and target are swapped and allthe arcs are inverted and
ii) the size of the houses/intervals is not normalized. However, the eventual allocations
are same. ⊓⊔

Proof of Proposition 4

Proof. In light of lemma 1, it suffices to show that SimpleCCEA is GSP. We begin with
some notations.
Let len(X) denote the length ofX ⊆ [0, 1]. Since the utility function is piecewise uni-
form, it suffices to consider the length of pieces of the cake that are desired by each
agent.
Let S ⊆ N be a coalition of agents who misreport their true preference.
Let I denote the instance where every agent reports truthfully and I ′ denote the instance
where agents inS misreport.
Let D1, . . . ,Dn ⊆ [0, 1] denote the pieces of cake that are truly desired by each agent.
Let D′1, . . . ,D

′
n ⊆ [0, 1] denote the desired pieces of cake that are reported by each
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agent.
Let A1, . . . ,An ⊆ [0, 1] denote the allocation received by each agent under truthful re-
ports.
Let A′1, . . . ,A

′
n ⊆ [0, 1] denote the allocation received by each agent when the agents in

S misreport.
Let X1, . . . ,Xk be the bottleneck sets of agents with respect to the true preferences of
agents arranged in the order that they are being allocated bythe algorithm in instanceI .
Let X′1, . . . ,X

′
p be the bottleneck sets of agents with respect to the true preferences of

agents arranged in the order that they are being allocated bythe algorithm in instance
I ′.
Let len(Xi) denote the length of the allocation each agent receives in the bottleneck set
Xi . Let

∼

Xl = {i ∈ Xl | len(A′i ∩ Di) ≥ len(Ai ∩ Di) = len(Ai)}12

∧

Xl = {i ∈ Xl | len(A′i ∩ Di) ≤ len(Ai)}

In other words
∼

Xl is the subset of agents ofXl who weakly gain in utility when the

agents inS misreport, and
∧

Xl is the subset of agents ofXl who weakly lose in utility

when the agents inS misreport. We will show that for alll = 1, . . . , k, Xl =
∧

Xl . This
would then directly imply thatS must be empty since no coalitionS can exist such that
by misreporting, everyone in the coalition is weakly betteroff and at least one agent in
the coalition is strictly better off.

We will prove this result via induction onk. In order to carry on with the induction,
we will show that no agent inX1 appears in the coalitionS. We begin with a lemma.

Lemma 2. It is the case that X1 =
∼

X1. In other words, no agent in X1 is strictly worse
off when some subset of agents misreport their preference.

It is clear that
∼

X1 ⊆ X1. Suppose the claim does not hold, then there exists some

agenti ∈ X1\
∼

X1. In other words, agenti is strictly worse off due to the misreports.
Since an agent would only misreport his preference if misreporting weakly improves his
utility, we deduce thati < S, which implies thatDi = D′i . Consequently, the following
set of inequalities hold for agenti:

len(A′i ) = len(A′i ∩ D′i ) = len(A′i ∩ Di) < len(Ai),

where the first equality follows from the fact thatA′i ⊆ D′i by the way the algorithm
allocates the pieces of cake to agents. The second equality follows fromDi = D′i . And

the last inequality follows fromi ∈ X1\
∼

X1.
We claim that sinceX1 is the first bottleneck set with respect to the true preference,
it cannot be the case thatlen(X′l ) = len(A′i ) < len(Ai) = len(X1), whereX′l is the
bottleneck set thati belongs to in the instanceI ′. Suppose this is the case, then we have

12 The fact thatlen(Ai ∩ Di) = len(Ai) makes use of the free disposal property, i.e. the allocation
that the mechanism gives agenti is a subset of the pieces desired by agenti under truthful
reports.
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that len(X′1) ≤ len(X′l ) < len(X1).13 It is clear thatX′1 cannot contain an agent who
misreports inI ′, since a misreporting agent inX′1 only receives a piece of cake with
length len(X′1) < len(X1), which is strictly less than what he would’ve gotten had he
reported truthfully. Hence, every agent inX′1 must report his true preference inI ′. Since
X′1 is the first bottleneck set inI ′, we have that

len(X′1) =
len((∪ j∈X′1

D′j) ∩ [0, 1])

|X′1|
=

len((∪ j∈X′1
D j) ∩ [0, 1])

|X′1|

≥
len((∪ j∈X1D j) ∩ [0, 1])

|X1|
= len(X1),

where the first and third equalities follows from the way the algorithm makes
an allocation, the second equality follows from the fact that the agents inX′1 have
the same reports inI ′ as in I , and the inequality follows from the fact thatX1 ∈

arg minS⊆N
len((∪ j∈SD j∩[0,1]))

|S| . This contradicts the fact thatlen(X′1) < len(X1).

Lemma 3. It is the case that X1 =
∧

X1 =
∼

X1. In other words, no agent in X1 is strictly
better off when some subset of agents misreport their preference.

Since we have established thatX1 =
∼

X1, and
∧

X1 ⊆ X1, it suffices to show that
∼

X1 ⊆
∧

X1. Suppose not, then for alli ∈ X1, we have thatlen(A′i ∩ Di) ≥ len(Ai) and there
exists somej ∈ X1 such thatlen(A′i ∩ D j) > len(A j). Summing overi ∈ X1, we get that

len(∪i∈X1(A
′
i ∩ Di)) =

∑
i∈X1

len(A′i ∩ Di) >
∑
i∈X1

len(Ai) = len(∪i∈Xi Ai) = len(∪i∈Xi Di),

where the first two equalities follow from the fact that theAi ’s andA′i ∩ Di ’s are dis-
joint subsets and the third equality follows from the way thealgorithm allocates to the
agents in the smallest bottleneck set. But this set of inequalities contradict the fact that
∪i∈X1(A

′
i ∩ Di) ⊆ ∪i∈Xi Di , which implies thatlen(∪i∈X1(A

′
i ∩ Di)) ≤ len(∪i∈Xi Di). Hence,

it must be the case that for everyi ∈ X1, we have thatlen(A′i ∩ Di) = len(Ai), which

implies thati ∈
∧

X1.

Lemma 4. No agent in X1 appears in the coalition S and X1 is also the first bottleneck
set for I′.

By the previous lemma, no agent in
∧

X1 is strictly better off by misreporting his pref-
erence. Thus, any agent inX1 would potentially be inS if by misreporting, he makes
himself no worse off and simultaneously make some other agent inS strictly better off.
The only way that this can happen is by misreporting, the agents in X1 make their col-
lective claim over their desired pieces smaller, so that agents in later bottleneck set can
claim some of their desired pieces. On the other hand, the following inequality

len(∪i∈X1D
′
i ) ≥ len(∪i∈X1A

′
i ) ≥ len(∪i∈X1(A

′
i ∩ Di)) = len(∪i∈Xi Di)

13 It is shown in [12] that the length of allocation of agents weakly increases with respect to the
index of bottleneck sets.
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implies that if any subset of agents ofX1 wants to misreport so they are not worse
off, then collectively, they must over-report their preference to obtain allocations that
together is weakly larger in total than the allocations theywould get had they reported
truthfully. Thus, having a subset of agents inX1 misreport will not benefit the other
agents in the coalitionS. Hence, we may conclude that no agent inX1 appears in the
coalition S. Provided that every agent inX1 also reports truthfully inI ′, there is no
incentive for an agent that belongs to a subsequent bottleneck set in I to misreport
and preventX1 from being the first bottleneck set inI ′ since that would make the
misreporting agent strictly worse off, as in doing so, he needs to create a bottleneck
setX′ such thatlen(X′) < len(X) and he would consequently receive an allocation of
len(X′).

Since no agent inX1 appears in the coalitionS andX1 is also the first bottleneck set
for I ′, we can removeX1 from N and∪i∈X1 Ai from [0, 1] and do induction on the set of
remaining agentsN\X1 and the remaining piece of cake [0, 1]\ ∪i∈X1 Ai to be allocated
and the proof is complete by invoking the inductive hypothesis with X2 being the first
bottleneck set in the new instance. ⊓⊔

Proof of Proposition 6

Proof. Consider the following math program

max
n∏

j=1

u j

s.t. u j =

k∑
i=1

vi j xi j ∀ j = 1, . . . , n

n∑
j=1

xi j ≤ l i ∀i = 1, . . . , k

xi j ≥ 0 ∀i, j.

wherel i = len(Ji),

Notice that the feasible region of the math program containsall feasible allocations.
An optimal solution given by the LP is not Pareto dominated byany other feasible
allocation because that would contradict the optimality ofthe solution. Hence, it is
Pareto efficient.

To see that the optimal solution of the math program is also anenvy free allocation,
if we instead viewxi j as the fractional amount ofJi that is allocated to agentj, then
scaling thevi j ’s appropriately (i.e. settingv′i j = vi j l i), then solving the math program
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stated in the proposition is equivalent to solving the following math program.

max
n∏

j=1

u j

s.t. u j =

k∑
i=1

v′i j xi j ∀ j = 1, . . . , n

n∑
j=1

xi j ≤ 1 ∀i = 1, . . . , k

xi j ≥ 0 ∀i, j.

which in turn equivalent to solving

max
n∑

j=1

logu j

s.t. u j =

k∑
i=1

v′i j xi j ∀ j = 1, . . . , n

n∑
j=1

xi j ≤ 1 ∀i = 1, . . . , k

xi j ≥ 0 ∀i, j.

Notice that the above math program is a convex program since we are maximizing
a concave function (or equivalently minimizing a convex function) subject to linear
constraints.

In (pp 105-107, [32]), Vazirani invites us to consider a market setting of buyers
(agents) and divisible goods (intervals). Each good is assumed to be desired by at least
one buyer (i.e. for every goodi, vi j > 0 for some buyerj). There is a unit of each good
and each buyer is given the same amount of money say 1 dollar, for which he uses to
purchases the good(s) that maximizes his utility subject toa set of given prices. The
task is to find a set of equilibrium prices such that the marketclears (meaning all the
demands are met and no part of any item is leftover) when the buyers seek purchase
good(s) to maximize their utility given the equilibrium prices.

Using duality theory, one can interpret the dual variablepi associated with the
constraints

∑n
j=1 xi j ≤ 1 as the price of consuming a unit of goodi. By invoking the

KKT conditions, Vazirani [32] shows the prices given by the optimal dual solution is a
unique set of equilibrium prices. Moreover, the primal optimal solution for each buyer
j is precisely the quantity of good(s) that the buyer ends up purchasing that maximizes
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his utility given the equilibrium prices.

Now we can argue as to why the optimal primal solution is an envy free allocation.
Because given the equilibrium prices, if a buyer desires another buyer’s allocation, since
he has the same purchasing power as any other buyer, he would instead use his money
to obtain the allocation of the buyer that he envies. This would result in some surplus
and deficit of goods, contradicting the fact that the given prices are equilibrium prices.

⊓⊔

Proof of Proposition 7

Proof. For piecewise uniform valuations, it is known that CCEA is equivalent to mech-
anism 1 in [12], which we will refer to asSimpleCCEA. The remainder of the proof
will focus on showing the equivalence between SimpleCCEA and the convex program
for piecewise uniform valuations. To do so, given an allocation of SimpleCCEA, which
is a feasible solution of the convex program, we will find a setof prices corresponding
to the allocation and show that the prices are in fact the equilibrium prices defined by
Vazirani on pages 105-107 of [32]. Moreover, this allocation would be an allocation
that maximizes the agents’ utility given the equilibrium prices.

Using the same notations as those in [12], given a valuation profile, let B be the set
of buyers/agents andG be the set of goods or intervals. LetSi be thei-th bottleneck set
computed by SimpleCCEA, i.e.Si = Smin ∈ arg minS′⊆S avg(S′,Xi) in the i-th iteration
of the subroutine of SimpleCCEA.

LetGi be the set of goods that are distributed amongst the buyers inSi . In the convex
program, since each buyer is endowed with 1 dollar and every buyer in Si receives
avg(Si,Xi) units of good(s), it is natural to define the price of a unit ofeach goodk ∈ Gi

to be

pk =
1

avg(Si,Xi)
=

|Si |

len(D(Si,Xi))
.

Notice that the prices for each good is well defined (i.e. eachgood has exactly one
nonnegative price). This follows from the following observations:

(i) ∪Gi = G (or every good has at least one price). This follows from the assumption
that every good is desired by at least one agent, which means that SimpleCCEA
will allocate all of the goods.

(ii ) Gi ∩ G j = ∅ for all i , j (or every good has at most one price). This follows
from the fact that no fractional parts of any good is allocated to agents from two
or more bottleneck sets, which another algorithmic property of SimpleCCEA.

To show that thepk’s form a set of equilibrium prices, we will show that given the
pk’s, the buyers in everySi will choose to purchaseonly goods fromGi to maximize
their utility function. We will do induction on the number ofbottleneck sets. Consider
the first bottleneck setS1, we will show that

Lemma 5. G1 are the only items that are desirable by buyers in S1.
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Proof. SimpleCCEA findsS1 by solving a parametrized max flow problem on a bipar-
tite network. The network has a node for every buyer and a nodefor every good. There
is a directed edge from a buyeri to a goodj with infinite capacity if goodj is desired
by buyeri. In addition, there is a sources and a sinkt. There is a directed edge froms
to each buyeri with capacityλ and a directed edge from edge goodj to t with capacity
equaling the quantity of goodj. λ is set to 0 initially so that the unique min cut in the
network forλ = 0 is {s, B∪G∪ t}. λ is gradually raised until{s, B∪G∪ t} is no longer
the unique min cut, at which pointS1 andG1 are found by looking for another min cut
of the form{s∪ S1 ∪G1, B\S1 ∪G\G1 ∪ t}. Since{s∪ S1 ∪G1, B\S1 ∪G\G1 ∪ t} is a
min cut, it must be the case thatG1 = nbr(S1) in the network, which proves the lemma.
(If nbr(S1)\G1 , ∅, then there will be an infinite capacity edge crossing the cut. On the
other hand, ifG1\nbr(S1) , ∅, then replacingG1 with nbr(S1) on thes side of the cut
would give a cut with a smaller capacity.) ⊓⊔

Since the agents have piecewise uniform valuation, in the setting of the convex
program, each buyer inS1 has the same utility for the items that he desire inG1.
Moreover, given that the prices of goods are identical inG1, each buyer is indifferent
between choosing among his desirable items for the best itemin terms of bang per
buck. Hence, for all buyers inS1, the allocation given by SimpleCCEA maximizes
buyer’s utility given the pricespk’s. Moreover, notice that the money of buyers inS1

and goods inG1 are exhausted by the allocation given by SimpleCCEA.

After the goods inG1 are allocated to the buyers inS1 we repeat the same argument
for the remaining buyers and goods and the inductive hypothesis allows to conclude
that for everyi and for all buyers inSi , the allocation given by SimpleCCEA maximizes
buyer’s utility given the pricespk’s. Moreover, the money of buyers inSi and goods in
Gi are exhausted by the allocation given by SimpleCCEA. There is a slight difference
between the inductive step and the base case, as it is possible that some buyerb in B\Si

also desires certain goods inG j for some j < i. However, Chen et al. [12] state that
avg(Si,Xi) is a weakly increasing function ofi, which means thatpi = 1/avg(Si,Xi)
is a weakly decreasing function ofi. Since we are dealing with piecewise uniform
valuations, the utility of a buyer over his desirable goods are identical, this means that
for any buyer inSi , the goods that maximize his bang for buck are inGi .

Putting everything together and we have shown thatpk’s constitute the set of equi-
librium prices and SimpleCCEA gives an equilibrium allocation, which is an optimal
solution to the convex program. ⊓⊔

Proof of Proposition 8

Consider the following profile of two agents.
Profile 1:

v1(x) = 1 if x ∈ [0, 0.2], v1(x) = 0 if x ∈ (0.2, 1].
v2(x) = 0 if x ∈ [0, 0.6], v2(x) = 1 if x ∈ (0.6, 1].

The uniform allocation rule gives us the allocation:
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Y1 : { 12[0, 0.2], 1
2(0.6, 1]}.

Y2 : { 12[0, 0.2], 1
2(0.6, 1]}.

Let A ⊂ (0.6, 1] be the allocation that agent 2 receives in this case.

Now consider profile 2:

v1(x) = 1 if x ∈ [0, 0.2], v1(x) = 0 if x ∈ (0.2, 1].
v2(x) = 0 if x ∈ [0, 0.1]\A, v2(x) = 1 if x ∈ A.

The uniform allocation rule gives us the allocation:

Y1 : { 12[0, 0.2], 1
2A}.

Y2 : { 12[0, 0.2], 1
2A}.

Hence, agent 2 in profile 2 would misreport so that the reported profile is profile 1.

Proof of Proposition 9

Proof. We first prove that CSD is well-defined and results in a feasible allocation in
which each agent gets 1/n size of the cake. LetJ ′ = {J1, . . . , Jℓ} be a partitioning of
the interval [0, 1] induced by the discontinuities in agent valuations and the cake cuts in
then! cake allocations. We make a couple of claims aboutJ ′ that following from the
wayJ ′ is constructed.

Claim. An agent is completely indifferent over each subinterval inJ ′.

Claim. Let Xπi denote a maximum preference cake piece of size 1/n chosen by agenti
in the serial orderπ. For eachJ ∈ J ′ eitherXπi containsJ completely or it does not
contain any part ofJ.

Now consider a matrix of dimensionn! × ℓ: B = (bi j ) such thatbi j = 1 if J j ⊂ Xπi
andbi j = 0 if J j 1 Xπi . Since for eachπ ∈ ΠN, each agenti ∈ N gets 1/n of the cake in
Xπi , then it follows that

∑n!
i=1
∑ℓ

j=1 bi j len(J j) = n!/n. Hence,

ℓ∑
j=1

n!∑
i=1

bi j len(J j)/n! = 1/n.

Also consider a matrix of dimensionn × ℓ: M = (mi j ) such thatmi j denotes the
fraction of J j that agenti gets inYi . From the algorithm CSD, we know thatmi j =
count(i,J j )

n! J wherecount(i, J j) is the number of permutations in whichi gets J j . It is
immediately seen that each column sums up to 1. Hence eachJ j is complete allocated
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to the agents. We now prove that each agent gets a total cake piece of size 1/n. We do
so by showing that

∑ℓ
j=1 mi j len(J j) = 1/n.

1/n =
ℓ∑

j=1

n!∑
i=1

bi j len(J j)/n! =
ℓ∑

j=1

(
n!∑
i=1

bi j )len(J j)/n! =
ℓ∑

j=1

(count(i, J j))len(J j)/n!

=

ℓ∑
j=1

(
count(i, J j)

n!
)len(J j) =

ℓ∑
j=1

mi j len(J j).

HenceY = (Y1, . . . ,Yn) the allocation returned by CSD is a proper allocation of the
cake in which each agent gets a total cake piece of size 1/n. ⊓⊔

Proof of Proposition 10

Proof. We first argue for proportionality of CSD. In the case where all agents have the
same valuations as the valuation ofi, i is guaranteed 1/n of the value of the whole cake
because of anonymity of CSD. First note that for eachπ ∈ ΠN and preferencesV−i of
all agents other thani, Vi(CSDπ(Vi ,V−i)) ≥ Vi(CSDπ(Vi , (Vi, . . . ,Vi))).

The reason is that when valuations are not identical, predecessors ofi in π
leave weakly better cake fori as when their valuations are same as agenti. Hence,
Vi(CSD(Vi ,V−i)) ≥ Vi(CSD(Vi , (Vi, . . . ,Vi))) = Vi([0, 1])/n.

Finally, note that when an agent selects his best possible cake piece in each permu-
tation, the exact height of the valuation function is not relevant and only the relative
height matters. Hence, CSD in fact satisfies robust proportionality. Symmetry for CSD
follows directly from symmetry for RSD. ⊓⊔

Proof of Remark 2

CSD would not be strategyproof if the fraction of each subinterval ofJ ′ is allocated
deterministically and the allocation is made public information before the agents submit
their valuation function. To see this, consider the following example of two agents.

Profile 1:

v1(x) = 1 if x ∈ [0, 0.5], v1(x) = 0 if x ∈ (0.5, 1].
v2(x) = 1 if x ∈ [0, 0.5], v2(x) = 0 if x ∈ (0.5, 1].

Running CSD gives us the allocation:

Y1 : { 12[0, 0.5], 1
2(0.5, 1]}.

Y2 : { 12[0, 0.5], 1
2(0.5, 1]}.

Profile 2:

v1(x) = 1 if x ∈ [0, 0.5], v1(x) = 0 if x ∈ (0.5, 1].
v2(x) = 0 if x ∈ [0, 0.25], v2(x) = 1 if x ∈ (0.25, 0.75], v2(x) = 0 if x ∈ (0.75, 1].
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Running CSD gives us the allocation:

Y1 = {[0, 0.25], 1
2(0.25, 0.5], 12(0.75, 1]}.

Y2 = {
1
2[0.25, 0.5], (0.5,0.75], 12(0.75, 1]}.

Now it is possible that the CSD mechanism decides to gives [0, 0.25] ∪ (0.75, 1]
to agent 1 and [0.25, 0.75] to agent 2 in profile 1. Consequently, know-
ing this, agent 2 in profile 2 would misreport his valuation function to be
v2(x) = 1 if x ∈ [0, 0.5], v2(x) = 0 if x ∈ (0.5, 1] in order to receive the alloca-
tion given in profile 1 and gain utility in doing so.

Proof of Proposition 11

Consider the profilesP andPi , whereP is a profile where every agent reports truthfully
andPi is a profile where agenti misreports while fixing every other agent’s report to be
the same as that inP. Letσ denote a permutation of [n] = {1, . . . , n} and letS denote
the set of all permutations of [n]. Let J1, . . . , Jk denote the intervals whose fractional
allocations are specified to each agent by CSD in profileP and J′1, . . . , J

′
k′ denote the

intervals whose fractional allocations are specified to each agent by CSD in profilePi .
Let Vi(J) denote agenti’s total utility derived from receiving the intervalJ andVi(A(σ))
andVi(A′(σ)) denote the agenti’s total utility derived from his allocated pieces when
the serial ordering of the agents isσ in profile P and Pi respectively. Letpi j denote
the probability that intervalJ j is assigned to agenti. Since random serial dictatorship is
strategyproof in expectation, we have that

k∑
j=1

pi j Vi(J j) =
∑
σ∈S

1
n!

Vi(A(σ)) ≥
∑
σ∈S

1
n!

Vi(A
′(σ)) =

k′∑
j=1

pi j Vi(J
′
j)

Now CSD viewspi j as allocating api j fraction of intervalJ j to agenti. In order for a
deviating agent to properly evaluate the utility derived from his allocation in the deviat-
ing profilePi , we have to come up with an allocation rule that actuallyattainsthe utility∑k′

j=1 pi j Vi(J′j) for agenti (either deterministically or in expectation) when the profile
of reports isPi . In particular, say if we want to allocate a subinterval ofJi with length
pi j times that ofJi to agenti at random, then this random allocation rule must satisfy
the property that

∑k′
j=1 E[Vi(Ai j )] = pi j Vi(J′j), whereAi j ⊂ J′j such that|Ai j | = pi j |Ai j |.

In order to do so, we will show that the randomized allocationrule for CSD satisfy the
property that every agenti and intervalJ j , we have thatE[Vi(Ai j )] = pi j Vi(J′j) for all
valuation functionsVi , whereAi j ⊂ J′j such that|Ai j | = pi j |Ai j |.

Notice thatmod(U j +
∑i−1

k=1 pn j(b j − a j)) is uniformly distributed on [a j , b j] andAi j

has lengthpi j (b j − a j). The fact thatE[Vi(Ai j )] = pi j Vi(J′j) follows from the following
lemma.
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Lemma 6. Let U be uniformly distributed on the interval[a, b] and let0 ≤ α ≤ 1. Let
A = [U,U + α(b− a)] if U + α(b− a) ≤ b and A= [a,U − (1− α)(b− a)] ∪ [U, b] if
U + α(b− a) > b, then we have that EU [Vi(A)] = αVi([a, b]), where Vi(X) =

∫
X

vi(x)dx
for any integrable function vi .

Proof. Definev̄i = vi for a ≤ x ≤ b andv̄i(x) = v̄i(x+ (b− a)) for x outside [a, b]. Since
v̄i is periodic, then it suffices to show that

EU [Vi(A)] =
∫ b

a

∫ x+α(b−a)

x
v̄i(y)dy

1
b− a

dx= α
∫ b

a
v̄i(x)dx= αVi([a, b]).

By drawing a picture of the region that we evaluate the integral over and due to the fact
thatv̄i is periodic, we have that

1
b− a

∫ b

a

∫ x+α(b−a)

x
v̄i(y)dydx=

1
b− a

∫ b

a
v̄i(y)
∫ y

y−α(b−a)
dxdy= α

∫ b

a
v̄i(x)dx,

which proves the lemma. ⊓⊔

Proof of Proposition 12

Proof. Let a = [0, 0.25], b = (0.25, 0.5], c = (0.5, 0.75], d = (0.75, 1]. Consider the
following two profiles of valuations.
Profile 1:

v1(x) = 4 if x ∈ a, v1(x) = 3 if x ∈ b, v1(x) = 2 if x ∈ c, v1(x) = 1 if x ∈ d.
v2(x) = 3 if x ∈ a, v2(x) = 4 if x ∈ b, v2(x) = 1 if x ∈ c, v2(x) = 2 if x ∈ d.

Running CSD gives us the allocation:

Y1 = {
1
2a, 1

2b, 1
2c, 1

2d}.

Y2 = {
1
2a, 1

2b, 1
2c, 1

2d}.

Profile 2:

v1(x) = 4 if x ∈ a, v1(x) = 2 if x ∈ b, v1(x) = 3 if x ∈ c, v1(x) = 1 if x ∈ d.
v2(x) = 2 if x ∈ a, v2(x) = 4 if x ∈ b, v2(x) = 1 if x ∈ c, v2(x) = 3 if x ∈ d.

Running CSD gives us the allocation:

Y1 = {a, c}.

Y2 = {b, d}.

Hence, agents with true valuation in profile 1 would misreport together to profile 2,
which means that CSD is not group strategyproof for 2 agents. ⊓⊔
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Proof of Proposition 13

Proof. There are three agents, each with piecewise uniform valuation function.
v1(x) = 1.5 for x ∈ [0, 2/3] and 0 otherwise.
v2(x) = 1.5 for x ∈ [0, 1/3]∪ (2/3, 1] and 0 otherwise.
v3(x) = 1.5 for x ∈ (1/3, 1] and 0 otherwise.

Let a = [0, 1/3], b = (1/3, 2/3], c = (2/3, 1].
We adopt the following implementation of CSD: when it is agent i’s turn to pick,

out of the pieces of the remaining cake that he likes, he takesthe left-mostsuch piece
with length 1/n, where n is the number of agents.

If the priority ordering were 1, 2, 3, then a feasible assignment that respects the
preferences is 1← a, 2← c, 3← b.

If the priority ordering were 1,3,2, then a feasible assignment that respects the pref-
erences is 1← a, 3← b, 2← c.

If the priority ordering were 2, 1, 3, then a feasible assignment that respects the
preferences is 2← a, 1← b, 3← c.

If the priority ordering were 2, 3, 1, then a feasible assignment that respects the
preferences is 2← a, 3← b, 1← c.

If the priority ordering were 3, 1, 2, then a feasible assignment that respects the
preferences is 3← b, 1← a, 2← c.

If the priority ordering were 3, 2, 1, then a feasible assignment that respects the
preferences is 3← b, 2← a, 1← c. Then, the CSD allocation is as follows.

Y1 = {
1
2

[0, 1/3],
1
6

(1/3, 2/3],
1
3

(2/3, 1]}

Y2 = {
1
2

[0, 1/3],
1
2

(2/3, 1]}

Y3 = {
5
6

(1/3, 2/3],
1
6

(2/3, 1]}

Clearly, agent 1 envies agent 3 in this case. ⊓⊔

Proof of Proposition 15

Proof (Sketch).Consider a fractional assignmentp returned by the CC algorithm. With-
out private endowments CC is equivalent to the EPS algorithmof Katta and Sethuraman
[18]. Assignmentp satisfies justified envy-freeness in presence of variable eating rates:
ui(pi) ≥ (ci/c j)ui(p j) for all utilities u consistent with preferences ofi over the houses.
The informal intuition is that at any point during the running of CC, an agenti with a
higher eating rate thanj will be ‘eating’ his most favoured object(s) faster thanj even
if j is also has the eating the same object(s). Hence, for allv′i ∈ V̂i , it is the case that for
j , i,

∫
Xi

v′i (x)dx≥ (ci/c j)
∫

X j
v′i (x)dx. ⊓⊔
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Proof of Proposition 16

Proof (Sketch).Given a variable claim instanceI of n agents where agenti has claim
rateci for i = 1, . . . , n. We may assume without lost of generality that the claim rates are
integral. If they are not, then we can simply multiple each claim rateci by a common
denominator to make eachci integral. Doing so will not change the allocation given by
the algorithm since only relative claim rates matter to the algorithm.
Now consider a cake cutting instanceI ′ of

∑n
i=1 ci agents, where the agents have piece-

wise uniform utility function and there are no private endowments or variable claims.
Moreover, for everyi = 1, . . . , n, there areci agents inI ′ each of whom has the same
utility function as that of agenti in I . It is not difficult to see that if one aggregates the
allocation that theci agents inI ′ who share agenti’s valuation inI , then one would get
an equivalent allocation (in terms of utility) to agenti’s allocation.
Suppose for the sake of contradiction that CCEA is not GSP forthe case of variable
claims, then in some instanceI , there exists some coalitionS of the agents that weakly
gains in utility by misreporting their preference. Now consider the equivalent instance
I ′ with no variable claims under the aforementioned transformation, then there exists
some coalitionS′ of the agents inI ′ that weakly gains in utility by misreporting their
preference, which implies that CCEA is not group-strategyproof for the no variable
claims case, contradicting the result of Proposition 4. ⊓⊔

Proof of Proposition 17

Proof. The allocation can be obtained by solving the following convex program.

min −

n∑
j=1

c j log(u j)

s.t. u j =

k∑
i=1

vi j xi j ∀ j = 1, . . . , n

n∑
j=1

xi j ≤ l i ∀i = 1, . . . , k

xi j ≥ 0 ∀i, j.

The proof of the desired properties is similar to the case wherec j = 1. ⊓⊔

Proof of Proposition 18

Proof (Sketch).Consider a fractional assignmentp returned by the CC algorithm.We
know thatp satisfies justified envy-freeness for the random/fractional assignment prob-
lem (Prop. 4, [1]). Ifpi %

S D
i p j , then∀v′i ∈ V̂i :

∫
Xi

v′i (x)dx≥
∫

X j
v′i (x)dx. If ¬(pi %

S D
j ej),

then∃v′j ∈ v̂ j :
∫

Xi
v′j(x)dx <

∫
ω( j)

v′j(x)dx. HenceX satisfies justified envy-freeness for
private endowments. ⊓⊔
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