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Abstract. We examine strategy-proof elections to select a winner amongst
a set of agents, each of whom cares only about winning. This impartial se-
lection problem was introduced independently by Holzman and Moulin [5]
and Alon et al. [1]. Fisher and Klimm [4] showed that the permutation
mechanism is impartial and 1

2
-optimal, that is, it selects an agent who

gains, in expectation, at least half the number of votes of most popular
agent. Furthermore, they showed the mechanism is 7

12
-optimal if agents

cannot abstain in the election. We show that a better guarantee is possi-
ble, provided the most popular agent receives at least a large enough, but
constant, number of votes. Specifically, we prove that, for any ǫ > 0, there
is a constant Nǫ (independent of the number n of voters) such that, if the
maximum number of votes of the most popular agent is at least Nǫ then
the permutation mechanism is ( 3

4
− ǫ)-optimal. This result is tight.

Furthermore, in our main result, we prove that near-optimal impartial
mechanisms exist. In particular, there is an impartial mechanism that is
(1 − ǫ)-optimal, for any ǫ > 0, provided that the maximum number of
votes of the most popular agent is at least a constant Mǫ.

1 Introduction

Imagine an election where the voters are the candidates and each voter is al-
lowed to vote for as many of the other candidates as she wishes. Now suppose
each voter cares only about winning. The goal of the mechanism is to elect the
candidate with the maximum support. To achieve this, we desire that the elec-
tion mechanism be strategy-proof. Thus, we want an impartial mechanism, where
voting truthfully cannot affect an agent’s own chances of election.

This problem, called the impartial selection problem, was introduced indepen-
dently by Holzman and Moulin [5] and Alon et al. [1]. In addition to elections,
they were motivated by nomination mechanisms for prestigious prizes and
committees, hyperlink formations, and reputation systems in social networks.
Fisher and Klimm [4] also proposed the use of such mechanisms for peer review
evaluation processes.

The impartial selection problem can be formalized via a directed graph G =
(V,A). There is a vertex v ∈ V for each voter (candidate) v, and there is an arc
(u, v) ∈ A if u votes for v. The aim is to maximize the in-degree of the selected
vertex, and we say that an impartial mechanism is α-optimal, for α ≤ 1, if the
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in-degree of the vertex it selects is always at least α times the in-degree of the
most popular vertex.

Unfortunately, Moulin [5] and Alon et al. [1] observed that a deterministic
impartial mechanisms must have an arbitrarily poor approximation guarantee
α. Specifically, a deterministic mechanism may have to select a vertex with zero
in-degree even when other vertices receive votes; it may even be forced to select
a vertex with in-degree one whilst another vertex receives n−1 votes! This neg-
ative result motivated Alon et al. [1] to study randomized impartial mechanisms.
In particular, they examined a simple mechanism dubbed the 2-partition mecha-
nism. This mechanism independently assigns each vertex to one of two groups
{V1, V2}. Then, only the arcs from vertices in V1 to vertices in V2 are counted as
votes. The vertex with the maximum number of counted votes in V2 is selected
(breaking ties arbitrarily). It is straight-forward to verify that this mechanism
is impartial and is 1

4 -optimal. They further conjectured the existence of an 1
2 -

optimal impartial randomized mechanism.

This conjecture was recently proven by Fisher and Klimm [4]. Specifically,
they proved that the permutation mechanism is impartial and 1

2 -optimal. This
election mechanism examines the vertices in a random order, and can only
count the votes of a vertex that go to vertices behind it in the ordering. (See
Section 3 for a detailed description of the mechanism and a short proof of
Fisher and Klimm’s result.) Interestingly, the factor 1

2 -approximation guarantee
is tight. Consider an n-vertex graph containing only a single arc (u, v). Then,
unless u is before v in the random permutation the mechanism will select a ver-
tex with in-degree zero. Thus the expected in-degree of the victor is at most one
half.

Observe that this tight example is rather unsatisfactory. It is extremely un-
natural and relies on the fact that every vertex bar one abstains from voting. In-
deed, Fisher and Klimm [4] showed that without abstentions the permutation
mechanism is at least 7

12 -optimal. They leave open the possibility that the per-
mutation mechanism actually proffers a better approximation guarantee than
7
12 . They do prove, however, that without abstentions the permutation mecha-
nism can be no better than 2

3 -optimal. Moreover, Fisher and Klimm [4] provide
an even stronger inapproximation bound: no impartial mechanism can be bet-
ter than 3

4 -optimal, even without abstentions.

This appears to severely limit the potential for progress. But, again, the
lower bounds are somewhat unsatisfactory. The issue now is not low out-degrees
(that is, abstentions) but rather low in-degrees. The lower bounds are all based
on instances with extremely small maximum in-degree ∆−. Specifically, the fac-
tor 1

2 optimal example [1] for the permutation mechanism with abstentions has
∆− = 1; the factor 2

3 optimal example [4] for the permutation mechanism with-
out abstentions has ∆− = 3; the factor 3

4 optimal example [4] for any random-
ized mechanism without abstentions has ∆− = 2. Of course, in applications
with a large number n of voters, we would anticipate that the most popular
agent receives a moderate number of votes. Do these inapproximability bounds
still apply for these more realistic settings? Interestingly, the answer is no, even



for cases where the most popular agent receives only a (large enough) constant
number of votes. Specifically, we first prove that the the permutation mecha-
nism is nearly 3

4 -optimal in such instances.

Theorem 1. For any ǫ > 0, there is a constant Nǫ such that if ∆− ≥ Nǫ then the
permutation mechanism is (34 − ǫ)-optimal.

This result is tight. We show that the permutation mechanism cannot produce
a guarantee better than 3

4 regardless of the magnitude of ∆−.
This result suggests that it may be possible to find a mechanism that beats

the 3
4 -inapproximability bound of [4], even for constant maximum in-degree.

This is indeed the case and spectacularly so. There is an impartial mechanism,
which we call the slicing mechanism, that produces a near optimal approxima-
tion guarantee.

Theorem 2. For any ǫ > 0, there is a constant Mǫ such that if ∆− ≥ Mǫ then the
slicing mechanism is (1− ǫ)-optimal.

The slicing mechanism differs from previous mechanisms in that it adds an ini-
tial sampling phase. In this first phase, it samples a small fraction of the vertices.
It then uses the votes of these vertices to build a non-random ordering of the
other vertices. This specific ordering is exploited in the second phase to elect a
vertex with very high expected in-degree.

These results, as in previous works [1,4,5], relate to single-winner elections.
Some of the motivating applications, however, involve multiple-winner elec-
tions. We remark that our main result can be generalized to multiple-winner
elections via small modifications to the mechanism.

2 The Model

We begin by formalizing the impartial selection problem and introducing some
necessary notation. An election is represented via a directed graph G = (V,A).
The number of vertices of G is denoted by n, and each vertex represents an
agent (voter/candidate). An agent can make multiple votes, but cannot vote
for herself nor vote more than once for any other agent. Thus, the graph G is
loopless and contains no multiple arcs.

A vertex u is an in-neighbor of v if there is an arc uv ∈ A. In this case, we
say that u votes for v. Given a subset Y ⊆ V and v ∈ V , the in-degree of v in Y ,
denoted by d−Y (v), is the number of in-neighbors of v in Y . For simplicity, we
denote d−V (v), the in-degree of v, by d−(v). The maximum in-degree of any vertex
in G is denoted in by ∆−(G), or simply by ∆ when there is no ambiguity.

A mechanism is impartial if, for every vertex v, the probability of selecting
v is not modified when the out-neighborhood of v is modified. That is, if v
changes its votes then this does not affect the probability of v being elected.
More formally, take any pair of graphs G and G′ on the same vertex set V . Let
v be a vertex. Then we require that the probability that v is elected in G is equal



to the probability that v is elected in G′, whenever N+
G (u) = N+

G′(u) for every
u 6= v.

Given 1 ≥ α ≥ 0, an impartial mechanism is α-optimal if for any graph G,
the expected degree of the winner differs from the maximum degree by a factor
of at most α, that is,

∑

v∈V d−(v) · Pr(v is the winner)

∆
≥ α

Finally, given an integer k, the set {1, 2, . . . , k} is denoted by [k].

3 The Permutation Mechanism

In this section, we analyze the permutation mechanism of Fisher and Klimm [4].
This election mechanism examines the vertices in a random order {π1, π2, . . . , πn}.
At time t, the mechanism selects a provisional leader yt from the amongst the set
Πt = {π1, . . . πt}. At time t + 1 the mechanism then examines πt+1. If πt+1

receives at least as many votes as yt from Πt \ yt then πt+1 is declared the pro-
visional leader yt+1. Otherwise yt+1 := yt. The winner of the election is yn. A
formal description of the permutation mechanism is given in Procedure 1.

Procedure 1 The Permutation Mechanism

Input: A directed graph G = (V,A).
Let π be a random permutation of V = [n].
y1 ← π1;
for i = 1 to n− 1 do

if d−
Πi\{yi}

(πi+1) ≥ d−
Πi\{yi}

(yi) then
yi+1 ← πi+1

else
yi+1 ← yi

end if
end for
output yn

Observe that the permutation mechanism is impartial because it has the fol-
lowing property: the votes of a vertex are only considered after it has been
eliminated. Specifically, the votes of πt are considered at time τ > t only if πt is
not the provisional leader at time τ − 1. But, if πt is not the provisional leader
at time τ > t then it cannot be elected. This ensures that eliminated agents have
no interest to lie, i.e. the mechanism is impartial. Fisher and Klimm [4] proved
this mechanism is 1

2 -optimal using an intricate analysis based upon viewing
the permutation mechanism as a generalization of the 2-partition mechanism.
First, we present a simpler proof of their result.

Theorem 3. [4] The permutation mechanism is 1
2 -optimal.



Proof. Let v be a vertex with maximum in-degree ∆. Now suppose exactly j of
its neighbors appear before v in the random ordering π. In this case, at the time
v is considered it has received at least j − 1 valid votes (one of the j votes may
not be counted if it comes from the provisional leader).

Suppose v is now declared the provisional leader. Then all j of these votes
become valid. (Indeed, if one of the in-neighbors of v was the provisional leader,
this is no longer the case.) On the other-hand, suppose v is now declared a
loser. Then, because ties are broken in favor of newly examined vertices, the
provisional leader must already be receiving at least j valid votes. Thus in either
case, the final winner yn must also receive at least j valid votes (the in-degree
of the provisional leader is non-decreasing).

Now with probability 1
∆+1 , exactly j of its neighbors appear before v, for any

0 ≤ j ≤ ∆. Thus, in expectation, the winner receives at least 1
∆+1 ·

∑∆
j=0 j =

1
2∆

votes. ⊓⊔

As discussed in the introduction, the factor 1
2 -approximation guarantee in The-

orem 3 is tight. This tightness is slightly misleading, though. Recall that the
tight example was a graph with just a single arc. In general the permutation
mechanism is 3

4 -optimal. Specifically,

Theorem 1. For any ǫ > 0, there is a constant Nǫ such that if ∆− ≥ Nǫ then the
permutation mechanism is (34 − ǫ)-optimal.

The 3
4 bound in Theorem 1 is tight in a very strong sense. There are tight

examples for any choice of ∆, no matter how large; see Theorem 4. The proof
of Theorem 1 has two basic components. The first is the basic observation, used
above in the proof of Theorem 3, that the mechanism will perform well if the
vertex v of highest in-degree has many neighbors before it in the random per-
mutation. The second is the observation that if the mechanism does well when
v does not participate then it will do at least as well when v does participate. In
order to be able to apply these two observations simultaneously, however, we
must show random permutations are "well-behaved". Specifically, we say that
a permutation π of [n] is (∆, ǫ)-balanced if, for every 0 ≤ k ≤ n,

|[∆] ∩Πk| ≥
(

k

n
− ǫ

)

·∆

and we want to show that a random permutation is typically balanced.
To do this, we need the following result, which provides a large deviation

bound for the size of intersection of two sets of fixed cardinalities.

Lemma 1. For every ǫ1 > 0, there exists N1 such that for all positive integers N1 <
∆ ≤ n and k ≤ n the following holds. If X ⊆ [n] are chosen uniformly at random
subject to |X | = ∆, then

Pr

[∣

∣

∣

∣

|X ∩ [k]| − k∆

n

∣

∣

∣

∣

≥ ǫ1 ·∆
]

< ǫ1 (1)



Proof. See Appendix. ⊓⊔

Lemma 2. For every 0 < ǫ2 < 1, there exists N2 such that, for all n ≥ ∆ > N2, at
least (1− ǫ2) · n! permutations of [n] are (∆, ǫ2)-balanced.

Proof. Let N1 be chosen to satisfy Lemma 1 with ǫ1 :=
ǫ22
4 . We choose N2 ≥

max(N1,
12
ǫ2
). Let k1, k2, . . . , kl ∈ [n] be a collection of integers such that for every

k ∈ [n] there exists i ∈ [l] satisfying 0 ≤ k− ki ≤ ǫ2 · n
3 . Clearly such a collection

can be chosen with l ≤ n
⌊ǫ2·n/3⌋ ≤ 4

ǫ2
, where the last inequality holds as n ≥ 12

ǫ2
.

Let π be a permutation of [n] chosen uniformly at random. By Lemma 1 and the
choice of N2 we have

Pr

[

|[∆] ∩Πki
| ≤

(

ki
n

− ǫ1

)

·∆
]

< ǫ1 (2)

for every 1 ≤ i ≤ l.
We claim that if |[∆] ∩ Πki

| ≥
(

ki

n − ǫ1
)

· ∆ for every 0 ≤ i ≤ l then |[∆] ∩
Πk| ≥

(

k
n − ǫ2

)

· ∆ for every 0 ≤ k ≤ n. Indeed, given k let i ∈ [l] satisfy
0 ≤ k − ki ≤ ǫ2 · n

3 . Then

|[∆] ∩Πk| ≥ |[∆] ∩Πki
|

≥
(

ki
n

− ǫ1

)

·∆

≥
(

k

n
− ǫ2

3
− ǫ1

)

·∆

=

(

k

n
− ǫ2

3
− ǫ22

4

)

·∆

≥
(

k

n
− ǫ2

)

·∆

as claimed. By the union bound applied to (2) we have

Pr

[

∀i : i ≤ l : |[∆] ∩Πki
| ≥

(

ki
n

− ǫ1

)

·∆
]

≥ 1− l · ǫ1

≥ 1− 4

ǫ2
· ǫ

2
2

4

= 1− ǫ2 (3)

The lemma immediately follows from (3) and the claim above. ⊓⊔

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let N2 be chosen to satisfy Lemma 2 with ǫ2 := ǫ
3 . We show

that Nǫ := max(N2, ⌈ 6
ǫ2
⌉) satisfies the theorem. Let v be a vertex of G with in-

degree ∆ := ∆−(G). We assume that V (G) = [n], where v is vertex n, and [∆] is
the set of neighbors of v. For a permutation π, let d(π) denote the in-degree of
the winner determined by the mechanism.



Let π′ be a fixed (∆, ǫ2)-balanced permutation of [n− 1]. We claim that

E[d(π) | π|[n−1] = π′] ≥
(

3

4
− ǫ/2

)

·∆ (4)

Note that the theorem follows from (4), as the probability that π|[n−1] is not
(∆, ǫ2)-balanced is at most ǫ2 by the choice of Nǫ, and thus

E[d(π)] ≥ (1− ǫ2) ·
(

3

4
− ǫ/2

)

·∆ ≥
(

3

4
− ǫ

)

·∆

It remains to prove (4). Let w be the winner when the permutation mechanism
is applied to G \ v and π′, and let x be the number of votes w receives from its
left (i.e. from vertices before it in the permutation). Let π be a permutation of
[n] such that π|[n−1] = π′. It is not hard to check that if at least x + 1 neighbors
of v precede v in π then v wins the election. Moreover, whilst the addition of
vertex v can change the winner (and, indeed, produce a less popular winner),
it cannot decrease the “left” degree of any vertex. Thus, the (new) winner has
still in-degree at least x after the addition of v. So, as π′ is (∆, ǫ2)-balanced, we
have |[∆] ∩ Πcn| ≥ c∆ − ǫ2∆ ≥ x + 1, whenever c ≥ x+1

∆ + ǫ2. Furthermore,
Pr[π(x) > cn] ≥ 1 − c. Thus the probability that v wins the election is at least
1− (x+ 1)/∆− ǫ2. It follows that

E[d(π) | π|[n−1] = π′] ≥
(

x+ 1

∆
+ ǫ2

)

· x+

(

1− x+ 1

∆
− ǫ2

)

·∆

≥ ∆2 − (x+ 1)∆+ (x+ 1)x

∆
− ǫ2∆

≥
(

3

4
− ǫ2 −

1

∆

)

·∆+
(x−∆/2)2

∆

≥
(

3

4
− ǫ

2

)

·∆ ⊓⊔

The 3
4 bound provided in Theorem 1 is tight for any ∆.

Theorem 4. For every 0 < ǫ < 1/4 and every N > 0, there exists a directed graph G
such that ∆−(G) ≥ N and the expected degree of the winner selected by the permuta-
tion mechanism is at most (34 + ǫ)∆−(G).

Proof. Without loss of generality we assume that N ≥ 1/ǫ. Let G′ be a directed
graph such that n := |V (G′)| ≥ (N + 1)(N2 + N + 1) · log 1

ǫ , and d−(v) =
d+(v) = N for every v ∈ V (G′). Let G be obtained from G′ by adding a new
vertex v0 and 2N−1 directed edges from arbitrary vertices in V (G′) to v0. Thus
∆ := ∆− (G) = d−(v0) = 2N − 1.

Now, in G′ one can greedily construct a set Z of at least n/(N2 + N + 1)
vertices, such that no two vertices of Z have common in-neighbors and no two
vertices of Z are joined by an edge. After a vertex z ∈ Z is chosen, simply
remove z, the in-neighbors and out-neighbors of z, and the out-neighbors of z’s



in-neighbors (the inequality is satisfied since the in-neighbors have a common
out-neighbor). Then recurse. Let π be a permutation of V (G) chosen uniformly
at random. Let Xv denote the event that a vertex v ∈ V (G′) is preceded by all
of its neighbors in π. Clearly Pr[Xv] =

1
N+1 for every v ∈ V (G′), and moreover,

by construction of Z , the events {Xv}v∈Z are mutually independent. Hence

Pr[∪v∈V (G′)Xv] ≥ 1−
(

1− 1

N + 1

)
n

N2+N

≥ 1−
(

1− 1

N + 1

)(N+1)·log 1
ǫ

≥ 1− ǫ.

Note that if the event ∪v∈V (G′)Xv occurs then one of the vertices of G′ receives
N votes in the permutation mechanism. By symmetry the probability that v0
is preceded by at most N − 1 of its neighbors in π is equal to 1/2. Thus v0 is
not selected as a winner with probability at least 1/2 − ǫ. We deduce that the
expected in-degree of the winner is at most

(

1

2
− ǫ

)

· ∆+ 1

2
+

(

1

2
+ ǫ

)

·∆ =

(

3

4
+ ǫ

)

·∆− ǫN +
1

4

≤
(

3

4
+ ǫ

)

·∆. ⊓⊔

4 The Slicing Mechanism

In this section, we present the slicing mechanism and prove that it outputs a
vertex whose expected in-degree is near optimal.

Theorem 2. For any ǫ > 0, there is a constant Mǫ such that if ∆− ≥ Mǫ then the
slicing mechanism is (1− ǫ)-optimal.

The constant Mǫ is independent of the number of vertices and is a a polyno-
mial function of 1

ǫ . We remark that we have made no attempt to optimize this
constant.

The slicing mechanism is formalized in Procedure 2.
This mechanism consists of three parts which we now informally discuss.

In the first part, the sampling phase, we independently at random collect a sam-
ple X of the vertices. We use arcs incident to X to estimate the in-degree of
every other vertex in the graph. In the second part, the slicing phase, we par-
tition the unsampled vertices into slices, where each slice consists of vertices
with roughly the same estimated-degree. The third part, the election phase, selects
the winning vertex. It does this by considering each slice in increasing order
(of estimated-degrees). After the i-th slice is examined the mechanism selects
as provisional leader, yi, the vertex that has the largest number of in-neighbors
amongst the set of vertices R that have currently been eliminated. The winning
vertex is the provisional leader after the final slice has been examined.



Procedure 2 The Slicing Mechanism

SAMPLING PHASE
[Sample] Draw a random sample X , where each vertex is sampled with probability ǫ.

for all v ∈ V \ X do
[Estimated-Degree.] de(v)←

1

ǫ
· d−X (v)

end for

SLICING PHASE
[Slices] Create τ = ⌈ 1

ǫ2
⌉ sets {S1, . . . , Sτ} initialized to empty sets.

∆e ← maxv∈V \X (de(v))
for all v ∈ V \ X do

for i = 1 to τ do
if (i− 1)ǫ2 ·∆e ≤ de(v) ≤ iǫ2 ·∆e then

Si ← Si ∪ {v}
end if

end for
end for

ELECTION PHASE
[Revealed Set] R← X
[Provisional Winner] y0 ← argmax

u∈V \R
(d−R(u)) [Break ties arbitrarily.]

for i = 1 to τ do
for all v ∈ Si \ {yi−1} do
R ← R∪ {v} with probability (1− ǫ).

end for
y′
i ← argmax

u∈V \R
(d−R(u)) [Break ties arbitrarily.]

R ← (R∪ Si ∪ {yi−1}) \ {y
′
i}

[Provisional Winner] yi ← argmax
u∈V \R

(d−R(u)) [Break ties arbitrarily.]

R ← (R∪ {y′
i}) \ {yi}

end for
The elected vertex is yτ .

We emphasize, again, that the impartiality of the mechanisms follows from
the fact that the votes of a vertex are only revealed when it has been eliminated,
that is, added to R. Observe that at any stage we have one provisional leader;
if this leader changes when we examine a slice then the votes of the previous
leader are revealed if its slice has already been examined.

4.1 Analysis of the Sampling Phase

Observe that the sampling phase is used to estimate the in-degree of each un-
sampled vertex v. Since each in-neighbor of v is sampled in X with probability
ǫ, we anticipate that an ǫ-fraction of the in-neighbors of v are sampled. Thus,
we have an estimated in-degree de(v) :=

1
ǫ · d−X (v), for each vertex v ∈ V \ X . It



will be important to know how often these estimates are (roughly) accurate. In
particular, we say that a vertex u is ǫ̂-well-estimated if |de(u)− d(u)| ≤ ǫ̂d(u).

We will be interested in the case where ǫ̂ ≪ ǫ. (In particular, we will later

select ǫ̂ = ǫ2

4 .) Before analyzing the probability that a vertex is ǫ̂-well-estimated,
recall the classical Chernoff bound.

Theorem 5. [Chernoff bound]
Let (Xi)i≤n be n independent Bernouilli variables each having probability p. Then

Pr[|
∑

Xi − pn| ≥ δpn] ≤ e−
δ2pn

3 .

Corollary 1. For any vertex v of in-degree at least ∆0 = max(3000, 9ǫ
2

ǫ̂4 ), the proba-
bility that v is not ǫ̂-well-estimated is at most 1

d(v)6 .

Proof. The proof is an application of Theorem 5. For every in-neighbor ui of v,
the vertex ui is sampled with probability ǫ. Denote by Xi the Bernouilli variable
corresponding to “ui is in X” which has value 1 if ui ∈ X and 0 otherwise. The
variables Xi are obviously independent and identically distributed. Note that
∑

Xi = ǫ · de(u) and its expectation is ǫ · d(u).

Pr
(

|de(u)− d(u)| ≥ ǫ̂

ǫ
· d(u)

)

= Pr
(

|ǫ · de(u)− ǫ · d(u)| ≥ ǫ̂ · d(u)
)

≤ e−
ǫ̂2d(u)

3ǫ

≤ e−
ǫ̂2
√

∆0
3ǫ ·

√
d(u)

≤ e−
√

d(u)

≤ 1

d(u)6

Here the first inequality is an application of Theorem 5 with δ = ǫ̂
ǫ . The second

inequality holds because d(u) ≥ ∆0. The third inequality follows as ∆0 = 9ǫ2

ǫ̂4 .

Finally, the fourth inequality holds since
√

d(u) ≥ 6 log(d(u)) when d(u) ≥
∆0 ≥ 3000. ⊓⊔

Let ǫ̂ := ǫ2

4 . We will be interested in the probability that every vertex of
high degree in a local region is ǫ̂-well-estimated. Specifically, let x be a ver-
tex of maximum in-degree ∆. Denote by N−k(x) the set of vertices which can
reach x with an oriented path of length at most k. For instance, N−1(x) is the
in-neighborhood of x plus x. Applying the union bound with Corollary 1, we
obtain:

Corollary 2. Let x be a vertex of in-degree ∆. If ∆ ≥ ∆1 = max(∆0

ǫ2 ,
3
ǫ5 ) then, with

probability (1−ǫ), any vertex of N−3(x) of in-degree at least ǫ2 ·∆ is ǫ̂-well-estimated.

Proof. Since ǫ2 ·∆ ≥ ∆0, Corollary 1 ensures that a vertex of in-degree at least
ǫ2 ·∆ is not ǫ̂-well-estimated with probability at most 1

(ǫ2∆)6 . There are at most



1+∆+∆2+∆3 ≤ 3·∆3 vertices in N−3(x) since ∆ ≥ 2. The union bound implies
that every vertex in N−3(x) with in-degree at least ǫ2∆ is ǫ̂-well-estimated with

probability at least (1− 3∆3

ǫ12∆6 ). As ∆ ≥ 3
ǫ5 , the conclusion holds. ⊓⊔

It the rest of this section we will make a set of assumptions. Given these as-
sumptions, we will prove that the mechanism outputs a vertex of high expected
in-degree. We will say that the mechanism “fails" if these assumptions do not
hold. We will then show that the probability that the mechanism fails is very
small. The two assumptions we make are:

(A1) Vertex x is not sampled. This assumption fails with probability ǫ.

(A2) Every vertex in N−2(x) with in-degree at least ǫ2 ·∆ is regionally well-
estimated. Here, we say a vertex is regionally well-estimated if its degree is ǫ̂-
well-estimated and all its in-neighbors of in-degree at least ǫ2∆ are also ǫ̂-well-
estimated. Corollary 2 ensures that all the vertices of N−2(x) of degree at least
ǫ2 ·∆ are regionally well-estimated with probability (1− ǫ). Thus, this assump-
tion also fails with probability at most ǫ.

4.2 Analysis of the Slicing Phase

Now we consider the slicing phase. In this phase we partition the unsampled
vertices into groups (slices) according to their estimated degrees. The width of
a slice is the difference between the upper and lower estimated-degree require-
ments for vertices in that group. We will need the following bounds on the
width of a slice.

Lemma 3. The width of any slice is at least (1 − ǫ̂)ǫ2 ·∆ and at most ǫ ·∆.

Proof. By assumption, the vertex x of maximum degree is ǫ̂-well-estimated.
Thus, ∆e ≥ (1− ǫ̂) ·∆. Therefore the width of any slice is at least (1− ǫ̂)ǫ2 ·∆.

On the other-hand, take any vertex u. At at most ∆ of u’s in-neighbors can
be sampled because it has degree at most ∆. It follows that de(u) ≤ ∆

ǫ . Thus,

∆e ≤ ∆
ǫ , and the width of any slice is at most ǫ ·∆. ⊓⊔

4.3 Analysis of the Election Phase

We are now ready to analyze the election phase. Initially we reveal every vertex
in the sample X . The vertex y0 with largest estimated-degree is then the provi-
sional winner. We then treat the slices in increasing order of estimated-degree.
When we consider slice Si, we will reveal every vertex in Si except one (if it is
the provisional winner yi). For technical reasons, we will denote by S0 the set
X . Observe that the set R is the set of already revealed (eliminated) vertices.

Now let S≤ℓ = ∪ℓ
j=0Sj , and denote by dℓ(u) = |{u ∈ S≤ℓ : vu ∈ A} the

number of in-neighbors of v that are in Sj , for j ≤ ℓ. Then we begin by proving
two lemmas. The first, Lemma 4, states that if a vertex u ∈ Sℓ has a large dℓ−1(u)



then the elected vertex has large in-degree. The second, Lemma 5, guarantees
that the elected vertex has a large in-degree (with high probability) if there are
many regionally well-estimated vertices in Sℓ with large dℓ(u). These lemmas
will be applied to a vertex x of in-degree ∆: either many in-neighbors of x are
in slices before x and Lemma 4 will apply, or many in-neighbors of x are in its
slice and we will apply Lemma 5 to this set of in-neighbors.

Lemma 4. Take u ∈ Sℓ+1. If dℓ(u) = d, the elected vertex has in-degree at least d− 1.

Proof. When we select the provisional winner yℓ all vertices of S≤ℓ = ∪ℓ
j=0Sj

(but at most one, y′ℓ, if it is in this set) have been revealed. Now u ∈ Sℓ+1 is an
eligible candidate for yℓ. Thus, at that time, d−R(yℓ) ≥ d−R(u) ≥ dℓ(u)− 1 = d− 1.
Since the in-degrees of the provisional winners can only increase, the elected
vertex yτ has is in-degree at least d−1. Note that the minus one comes from the
fact that y′ℓ can be an in-neighbor of u. ⊓⊔

Lemma 5. Let ∆ ≥ ∆1 = 122

ǫ̂4 . If there exists an integer ℓ and a set Z ⊆ Sℓ of size
at least ǫ∆ of regionally well-estimated vertices with dℓ(z) ≥ (1 − 3ǫ)∆+ 1 for every
z ∈ Z , then with probability at least (1 − ǫ) we have d(y′ℓ) ≥ (1− 5ǫ)∆.

Proof. First, by selecting a subset of Z if necessary, we may assume that Z =
⌈ǫ∆⌉. Now we define a collection of bad events and show that d(yℓ) ≥ (1−5ǫ)∆
if none of these events arise. We then show the probability that any of these bad
events occurs is small.

Let B0 be the event that every vertex in Z is placed in R when we sample
the vertices of slice ℓ. We may assume the provisional leader yℓ−1 is not in Z .
Thus, since |Z| ≥ ǫ∆, the probability of event B0 is at most

(1 − ǫ)ǫ∆ = eǫ∆·log(1−ǫ) ≤ e−ǫ2∆ ≤ ǫ

2

Here the first inequality holds since log(1 − ǫ) ≤ −ǫ. The second inequality

holds as ∆ ≥ 2
ǫ4 ≥ 122

ǫ̂4 .

Now take any z ∈ Z and let Uz be the set of in-neighbors of z in S≤ℓ\{yℓ−1}.
We have |Uz| ≥ (1−3ǫ) ·∆. Let Bz be the event that less than (1−5ǫ) ·∆ vertices
of |Uz| are in R at the time we sample the vertices of slice ℓ.

To analyze the probability of this event consider any ui ∈ Uz . Now, if ui ∈ Sj

for j < ℓ then ui is already in R. Otherwise, if ui ∈ Sℓ then it is now added to
R with probability (1 − ǫ). So consider a random variable Yi which has value
1 if ui ∈ R after this sampling and 0 otherwise. Note the Yi are not identically
distributed. So let Xi be variables which are independent and identically dis-
tributed and such that Xi = Yi if ui ∈ Sℓ and Xi has value 1 with probability



(1− ǫ) otherwise. We have

Pr[
∑

i

Yi ≤ (1− ǫ− ǫ̂) · |Uz|] ≤ Pr[
∑

i

Xi ≤ (1− ǫ − ǫ̂) · |Uz|]

≤ e−ǫ̂2(1−ǫ)·|Uz|/3

≤ e−
1
3 ǫ̂

2(1−ǫ)(1−3ǫ)∆

≤ e−2
√
∆

≤ 1

3∆

Here the first inequality follows from Theorem 5. The second inequality holds

as |Uz| ≥ (1 − 3ǫ)∆. The third inequality holds by the choice
√
∆ ≥ 12

ǫ̂2 ≥
6

ǫ̂2(1−ǫ)(1−3ǫ) . The fourth one is satisfied since ∆ ≥ 100.

We now apply the union bound to the events B0∪
⋃

z∈Z Bz . Since Z = ⌈ǫ∆⌉,

none of these events occur with probability at least 1− ǫ∆+1
3∆ − ǫ

2 ≥ 1− ǫ. Thus,
with probability at least 1− ǫ, after the sampling of the slice Sℓ, there is a vertex
z ∈ Z that is not in R but that has at least (1 − 5ǫ) · ∆ in-neighbors in R. The
new provisional leader y′ℓ must then satisfy d−R(y′ℓ) ≥ d−R(z) ≥ (1 − 5ǫ)∆, as
required, since (1− 5ǫ) ·∆ ≤ (1− ǫ− ǫ̂) · |Uz|. ⊓⊔

Proof of Theorem 2. We may now prove that the slicing mechanism is nearly opti-
mal. We assume that ∆ ≥ Mǫ = max(∆1, ∆2) and that ǫ ≤ 1

8 . Let x be a vertex of
in-degree ∆. We assume that x is not selected in X during the sampling phase
and that all the vertices of N−2(x) with in-degree at least ǫ2∆ are regionally
well-evaluated. We need the following claim, where k denotes the integer such
that the vertex x of maximum in-degree is in Sk.

Claim. Let u be a vertex in N−3(x) that is not in S≤k. Then u ∈ Sk+1.

Proof. Take a vertex u ∈ N−3(x). If d−(u) ≤ ǫ2∆, then its estimated degree is
at most ǫ∆ ≤ de(x). Thus now we can assume that d−(u) ≥ ǫ2∆ and then u
is ǫ̂-well-estimated by assumption on x. First observe that the set of possible
estimated degrees of u intersects at most two slices. To see this note that the
range of de(u) is less than 2ǫ̂ ·∆ as u is ǫ̂-well-estimated. On the other-hand, by

Lemma 3, the width of a slice is at least (1 − ǫ̂)ǫ2 ·∆. Since ǫ̂ = ǫ2

4 we have

2ǫ̂∆ ≤ 1

2
ǫ2∆ < (1− ǫ̂)ǫ2∆

Since the range is less than the width, the observation follows.
The vertex x of maximum degree is ǫ̂-well-estimated and is in the slice k.

Therefore, because u is ǫ̂-well-estimated (and necessarily d(u) ≤ d(x)), there
must be a slice smaller than or equal to k in its range of u. Thus u cannot be in
a slice with index exceeding k + 1. ⊓⊔

Assume first that there exists a set Z1 of at least ǫ∆ vertices of N−2(x) such
that Z1 ∩ Si = ∅ for i ≤ k. The claim ensures that Z1 ⊆ Sk+1. By considering a



subset of Z1, we may assume that |Z1| = ǫ∆. (We assume that ǫ∆ is an integer,
for simplicity.) Then, for any z ∈ Z1, we have de(z) ≥ de(x) since z is in the slice
after x. Moreover, as x and z are ǫ̂-well-estimated, the facts that |de(z)− d(z)| ≤
ǫ̂∆ and |de(x)− d(x)| ≤ ǫ̂∆ imply that

d(z) ≥ (1− 2ǫ̂)∆ ≥ (1 − ǫ)∆

Furthermore, by the above claim, we must have that dk+1(z) = d(z). Conse-
quently, we may apply Lemma 5 to the set Z1. This ensures that the in-degree
of the elected vertex is at least (1 − 5ǫ)∆ with probability at least (1− 1

ǫ ).
On the other hand, assume that now less than ǫ∆ vertices of N−2(x) are in

Sk+1. In particular, we have dk(x) ≥ (1− ǫ)∆. If dk−1(x) ≥ (1− 4ǫ) ·∆+ 1 then
the elected vertex has degree at least (1− 4ǫ)∆ by Lemma 4.

So, assume that dk−1(x) ≤ (1 − 4ǫ)∆. Then at least 3ǫ∆ in-neighbors of x
are in Sk. Denote by Z2 a set of ǫ∆ in-neighbors of x in Sk. Every vertex z ∈ Z2

has in-degree at least (1 − ǫ − 2ǫ̂)∆ ≥ (1 − 2ǫ)∆ + 1; this follows because both
x and z are ǫ̂-well-estimated and because the width of a slice is at most ǫ∆
(Lemma 3). For any z ∈ Z2, since at most ǫ∆ of the in-neighbors of z are in
Sk+1, we have dk(z) ≥ (1 − 3ǫ)∆+ 1. Moreover, by assumption all the vertices
of Z2 are regionally well-estimated. Hence, by Lemma 5, with probability at
least (1 − ǫ), the degree of the elected vertex is at least (1− 5ǫ)∆, as desired.

Consequently, the slicing mechanism typically outputs a near-optimal ver-
tex. So what is the probability that assumptions made during the proof fail to
hold? Recall that Assumptions (A1) and (A2) fail to hold with probability at
most 2ǫ. Given these two assumptions, Lemma 5 fails to output a provisional
leader with in-degree at least (1 − 5ǫ) · ∆ with probability at most ǫ. Thus the
total failure probability is at most 3ǫ. Consequently, the expected in-degree of
the elected vertex is at least (1 − 3ǫ)(1 − 5ǫ) ·∆ ≥ (1 − 8ǫ)∆, which concludes
the proof of Theorem 2. ⊓⊔

We conclude with some remarks. Here Mǫ = O( 1
ǫ8 ); the degree of this poly-

nomial can certainly be improved as we did not attempt to optimize it.
The slicing mechanism can be adapted to select a fixed number c of winners

rather than one. Let us briefly explain how. Instead of selecting only one provi-
sional winner y during each iteration of the election phase, we can select a set
of size c containing unrevealed vertices maximizing d−R.
Let x1, . . . , xc be the c vertices of highest in-degree. With high probability all the
vertices of N−2(xi) are regionally well-estimated for every i ≤ c and with high
probability none of them are selected during the sampling phase. Now consider
two cases: either N−2(x1) contains many vertices of degree almost ∆, and then
an adaptation of Lemma 5 ensures that with high probability c vertices are not
sampled during the sampling of the election phase and the c elected vertices
have large degree. Or N−2(x1) has few vertices of degree almost ∆ and then
when the slice of x1 is considered, if x1 is not selected, then all the selected ver-
tices have degree almost ∆ by Lemma 4. A similar argument can be repeated
for every vertex xi.
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Appendix

In this appendix, we include the proof omitted from the main text due to space
constraints.

Lemma 1. For every ǫ1 > 0 there exists N1 such that for all positive integers N1 <
∆ ≤ n and k ≤ n the following holds. If X ⊆ [n] are chosen uniformly at random
subject to |X | = ∆, then Pr

[
∣

∣|X ∩ [k]| − k∆
n

∣

∣ ≥ ǫ1∆
]

< ǫ1.

Proof. Let k ≤ n. Clearly, the lemma holds for ∆ = n, and so we assume ∆ < n.
Let p = ∆/n, and let Y be a random subset of [n] obtained by choosing every
element of [n] independently with probability p. Our first goal is to lower bound
Pr[|Y | = ∆]. We start by deriving the following estimate:

n!

(n−∆)!
(n−∆)n−∆ ≥ nne−∆ (5)

which holds for all non-negative integers ∆. We prove (5) by induction on ∆.
The base case ∆ = 0 is trivial for any non-negative n. For the induction step,
we have

n!

(n−∆)!
(n−∆)n−∆ = n

(n− 1)!

(n−∆)!
(n−∆)n−∆

≥ n(n− 1)n−1e−(∆−1)

≥ n(n− 1)n−1

(

1 +
1

n− 1

)n−1

e−∆

= nne−∆



Here the first inequality follows by induction, the second inequality follows
from the fact that (1 + 1

n )
n ≤ e for every n. Thus (5) holds for all ∆. We then

have

Pr[|Y | = ∆] =

(

n

∆

)

p∆(1 − p)n−∆

=
n!

(n−∆)!∆!

(

∆

n

)∆ (

1− ∆

n

)n−∆

=
∆∆

∆!

(

n!

(n−∆)!

(n−∆)n−∆

nn

)

≥ ∆∆

∆!
e−∆

≥ e−∆ ∆∆

3
√
∆(∆/e)∆

=
1

3
√
∆

Here the first inequality follows by (5). The second inequality applies when ∆
is sufficiently large. Indeed Stirling’s formula ensures that n! ∼ 1√

2πn
(ne )

n; thus,

since
√
2π ≤ 3, we have ∆! ≤ 3

√
∆(∆e )

∆. Therefore

Pr

[∣

∣

∣

∣

|X ∩ [k]| − k∆

n

∣

∣

∣

∣

≥ ǫ1∆

]

≤ 3
√
∆ · Pr

[∣

∣

∣

∣

|Y ∩ [k]| − k∆

n

∣

∣

∣

∣

≥ ǫ1∆

]

(6)

By Theorem 5, applied with δ = ǫ1 and ∆ = pn, we have

Pr

[
∣

∣

∣

∣

|Y ∩ [k]| − k∆

n

∣

∣

∣

∣

≥ ǫ1∆

]

≤ e−
ǫ21∆

3 (7)

Combining (6) and (7), we deduce that

Pr

[∣

∣

∣

∣

|X ∩ [k]| − k∆

n

∣

∣

∣

∣

≥ ǫ1∆

]

≤ 3
√
∆e−

ǫ21∆

3 (8)

Clearly, for ∆ sufficiently large with respect to ǫ1 we have 3
√
∆e−

ǫ21∆

3 ≤ ǫ1. It
follows that (8) gives the lemma for such ∆, as desired. ⊓⊔
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