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Abstract

We consider the fundamental mechanism design problem of approximate social welfare maximization

under general cardinal preferences on a finite number of alternatives and without money. The well-known
range voting scheme can be thought of as a non-truthful mechanism for exact social welfare maximization
in this setting. With m being the number of alternatives, we exhibit a randomized truthful-in-expectation
ordinal mechanism implementing an outcome whose expected social welfare is at least an Ω(m−3/4)
fraction of the social welfare of the socially optimal alternative. On the other hand, we show that for
sufficiently many agents and any truthful-in-expectation ordinal mechanism, there is a valuation profile
where the mechanism achieves at most an O(m−2/3) fraction of the optimal social welfare in expectation.
Furthermore, we prove that no truthful-in-expectation (not necessarily ordinal) mechanism can achieve
0.94-fraction of the optimal social welfare. We get tighter bounds for the natural special case of m = 3,
and in that case furthermore obtain separation results concerning the approximation ratios achievable by
natural restricted classes of truthful-in-expectation mechanisms. In particular, we show that for m = 3
and a sufficiently large number of agents, the best mechanism that is ordinal as well as mixed-unilateral

has an approximation ratio between 0.610 and 0.611, the best ordinal mechanism has an approximation
ratio between 0.616 and 0.641, while the best mixed-unilateral mechanism has an approximation ratio
bigger than 0.660. In particular, the best mixed-unilateral non-ordinal (i.e., cardinal) mechanism strictly
outperforms all ordinal ones, even the non-mixed-unilateral ordinal ones.

1 Introduction

We consider the fundamental mechanism design problem of approximate social welfare maximization under
general cardinal preferences and without money. In this setting, there is a finite set of agents (or voters)
N = {1, . . . , n} and a finite set of alternatives (or candidates) M = {1, . . . ,m}. Each voter i has a private
valuation function ui : M → R that can be arbitrary, except that we require1 that it is injective, i.e., we insist
that it induces a total order on candidates. Standardly, the function ui is considered well-defined only up to
positive affine transformations. That is, we consider x → aui(x) + b, for a > 0 and any b, to be a different
representation of ui. Given this, we fix the representative ui that maps the least preferred candidate of voter
i to 0 and the most preferred candidate to 1 as the canonical representation of ui and we shall assume that
all ui are thus canonically represented throughout this paper. In particular, we shall let Vm denote the set
of all such functions.

We shall be interested in direct revelation mechanisms without money that elicit the valuation profile u =
(u1, u2, . . . , un) from the voters and based on this elect a candidate J(u) ∈ M . We shall allow mechanisms
to be randomized and J(u) is therefore in general a random map. In fact, we shall define a mechanism

∗The authors acknowledge support from the Danish National Research Foundation and The National Science Foundation of
China (under the grant 61061130540) for the Sino-Danish Center for the Theory of Interactive Computation, within which this
work was performed. The authors also acknowledge support from the Center for Research in Foundations of Electronic Markets
(CFEM), supported by the Danish Strategic Research Council. Author’s addresses: Department of Computer Science, Aarhus
University, Aabogade 34, DK-8200 Aarhus N, Denmark.

1We make this requirement primarily for convenience; to avoid having to qualifiy in technically annoying ways a number of
definitions and statements of this paper as well as definitions and statements of previous ones.
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simply to be a random map J : Vm
n → M . We prefer mechanisms that are truthful-in-expectation, by

which we mean that the following condition is satisfied: For each voter i, and all u = (ui, u−i) ∈ Vm
n

and ũi ∈ Vm, we have E[ui(J(ui, u−i)] ≥ E[ui(J(ũi, u−i)]. That is, if voters are assumed to be expected
utility maximizers, the optimal behavior of each voter is always to reveal their true valuation function to
the mechanism. As truthfulness-in-expectation is the only notion of truthfulness of interest to us in this
paper, we shall use “truthful” as a synonym for “truthful-in-expectation” from now on. Furthermore, we are
interested in mechanisms for which the expected social welfare, i.e., E[

∑n
i=1 ui(J(u))], is as high as possible,

and we shall in particular be interested in the approximation ratio ratio(J) of the mechanism, defined by

ratio(J) = inf
u∈Vm

n

E[
∑n

i=1 ui(J(u))]

maxj∈M

∑n
i=1 ui(j)

,

trying to achieve mechanisms with as high an approximation ratio as possible. Note that for m = 2, the
problem is easy; a majority vote is a truthful mechanism that achieves optimal social welfare, i.e., it has
approximation ratio 1, so we only consider the problem for m ≥ 3.

A mechanism without money for general cardinal preferences can be naturally interpreted as a cardinal
voting scheme in which each voter provides a ballot giving each candidate j ∈ M a numerical score between
0 and 1. A winning candidate is then determined based on the set of ballots. With this interpretation,
the well-known range voting scheme is simply the determinstic mechanism that elects the socially optimal
candidate argmaxj∈M

∑n
i=1 ui(j), or, more precisely, elects this candidate if ballots are reflecting the true

valuation functions ui. In particular, range voting has by construction an approximation ratio of 1. However,
range voting is not a truthful mechanism.

Before stating our results, we mention for comparison the approximation ratio of some simple truthful
mechanisms. Let random-candidate be the mechanism that elects a candidate uniformly at random, without
looking at the ballots. Let random-favorite be the mechanism that picks a voter uniformly at random and
elects his favorite candidate; i.e., the (unique) candidate to which he assigns valuation 1. Let random-majority
be the mechanism that picks two candidates uniformly at random and elects one of them by a majority vote.
It is not difficult to see that as a function of m and assuming that n is sufficiently large, random-candidate
as well as random-favorite have approximation ratios Θ(m−1), so this is the trivial bound we want to beat.
Interestingly, random-majority performs even worse, with an approximation ratio of Θ(m−2).

As our first main result, we exhibit a randomized truthful mechanism with an approximation ratio of
0.37m−3/4. The mechanism is the following very simple one: With probability 3/4, pick a candidate uniformly
at random. With probability 1/4, pick a random voter, and pick a candidate uniformly at random from his
⌊m1/2⌋ most preferred candidates. Note that this mechanism is ordinal: Its behavior depends only on the
rankings of the candidates on the ballots, not on their numerical scores. We know no asymptotically better
truthful mechanism, even if we allow general (cardinal) mechanisms, i.e., mechanisms that can depend on the
numerical scores in other ways. We also show a negative result: For sufficiently many voters and any truthful
ordinal mechanism, there is a valuation profile where the mechanism achieves at most an O(m−2/3) fraction
of the optimal social welfare in expectation. The negative result also holds for non-ordinal mechanisms that
are mixed-unilateral, by which we mean mechanisms that elect a candidate based on the ballot of a single
randomly chosen voter.

We get tighter bounds for the natural case ofm = 3 candidates and for this case, we also obtain separation
results concerning the approximation ratios achievable by natural restricted classes of truthful mechanisms.
Again, we first state the performance of the simple mechanisms defined above for comparison: For the case
of m = 3, random-favorite and random-majority both have approximation ratios 1/2 + o(1) while random-
candidate has an approximation ratio of 1/3. We show that for m = 3 and large n, the best mechanism
that is ordinal as well as mixed-unilateral has an approximation ratio between 0.610 and 0.611. The best
ordinal mechanism has an approximation ratio between 0.616 and 0.641. Finally, the best mixed-unilateral
mechanism has an approximation ratio larger than 0.660. In particular, the best mixed-unilateral mechanism
strictly outperforms all ordinal ones, even the non-unilateral ordinal ones. The mixed-unilateral mechanism
that establishes this is a convex combination of quadratic-lottery, a mechanism of Feige and Tennenholtz [6]
and random-favorite, that was defined above.
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1.1 Background, related research and discussion

Characterizing strategy-proof social choice functions (a.k.a., truthful direct revelation mechanisms without
money) under general preferences is a classical topic of mechanism design and social choice theory. The
celebrated Gibbard-Satterthwaite theorem [9, 17] states that when the number m of candidates is at least 3,
any deterministic and onto truthful mechanism2 must be a dictatorship, i.e., it is a function of the ballot of a
single distinguished voter only, and outputs the favorite (i.e., top ranking) candidate of that voter. Gibbard
[10] extended the Gibbard-Satterthwaite theorem to the case of randomized ordinal mechanisms, and we
shall heavily use his theorem when proving our negative results on ordinal mechanisms:

Theorem 1. [10] The ordinal mechanisms without money that are truthful under general cardinal pref-
erences3 are exactly the convex combinations of truthful unilateral ordinal mechanisms and truthful duple
mechanisms.

Here, a unilateral mechanism is a randomized mechanism whose (random) output depends on the ballot
of a single distinguished voter i∗ only. Note that a unilateral truthful mechanism does not have to be a
dictatorship. For instance, the mechanism that elects with probability 1

2 each of the two top candidates
according to the ballot of voter i∗ is a unilateral truthful mechanism. A duple mechanism is an ordinal
mechanism for which there are two distinguished candidates so that all other candidates are elected with
probability 0, for all valuation profiles.

An optimistic interpretation of Gibbard’s 1977 result as opposed to his 1973 result that was suggested,
e.g., by Barbera [2], is that the class of randomized truthful mechanisms is quite rich and contains many
arguably “reasonable” mechanisms–in contrast to dictatorships, which are clearly “unreasonable”. However,
we are not aware of any suggestions in the social choice literature of any well-defined quality measures that
would enable us to rigorously compare these mechanisms and in particular find the best. Fortunately, one of
the main conceptual contributions from computer science to mechanism design in general is the suggestion of
one such measure, namely the notion of worst case approximation ratio relative to some objective function.
Indeed, a large part of the computer science literature on mechanism design (with or without money) is the
construction and analysis of approximation mechanisms, following the agenda set by the seminal papers by
Nisan and Ronen [14] for the case of mechanisms with money and Procaccia and Tennenholz [16] for the
case of mechanisms without money (i.e., social choice functions). Following this research program, and using
Gibbard’s characterization, Procaccia [15] gave in a paper conceptually very closely related to the present
one, upper and lower bounds on the approximation ratio achievable by ordinal mechanisms for various
objective functions under general preferences. However, he only considered objective functions that can be
defined ordinally (such as, e.g., Borda count), and did in particular not consider approximating the optimal
social welfare, as we do in the present paper.

The (approximate) optimization of social welfare (i.e. sum of valuations) is indeed a very standard objec-
tive in mechanism design. In particular, in the setting of mechanisms withmoney and agents with quasi-linear
utilities, the celebrated class of Vickrey-Clarke-Groves (VCG) mechanisms exactly optimize social welfare,
while classical negative results such as Roberts’ theorem, state that under general cardinal preferences (and
subject to some qualifications), weighted social welfare is the only objective one can maximize exactly truth-
fully, even with money (see Nisan [13] for an exposition of all these results). It therefore seems to us extremely
natural to try to understand how well one can approximate this objective truthfully without money under
general cardinal preferences. One possible reason that the problem was not considered previously to this
paper (to the best of our knowledge) is that, arguably, social welfare is a somewhat less natural objective
function without the assumption of quasi-linearity of utilities made in the setting of mechanisms with money.
Indeed, assuming quasi-linearity essentially means forcing the valuations of all agents to be in the unit of
dollars, making it natural to subsequently add them up. On the other hand, in the setting of social choice
theory, the valuation functions are to be interpreted as von Neumann-Morgenstern utilities (i.e, they are

2Even though the theorem is usually stated for ordinal mechanisms, it is easy to see that it holds even without assuming
that the mechanism is ordinal.

3without ties, i.e., valuation functions must be injective, as we require throughout this paper, except in Theorem 6. If ties
were allowed, the characterization would be much more complicated.
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meant to encode orderings on lotteries), and in particular are only well-defined up to affine transformations.
In this setting, the social welfare has to be defined as above, as the result of adding up the valuations of all
players, after these are normalized by scaling to, say, the interval [0,1]. While this is arguably ad hoc, we
note again that optimizing social welfare in this sense is in fact the intended (hoping for truthful ballots)
outcome of the well known range voting scheme ( http://en.wikipedia.org/wiki/Range_voting) which
is a good piece of evidence for its naturalness.4

As already noted, social welfare is a cardinal objective, i.e., it depends on the actual numerical valuations
of the voters; not just their rankings of the candidates. While it makes perfect sense to measure how well
ordinal mechanisms can approximate a cardinal objective, such as social welfare, it certainly also makes sense
to see if improvements to the approximation of the optimal social welfare can be made by mechanisms that
actually look at the numerical scores on the ballots and not just the rankings, i.e., cardinal mechanisms. The
limitations of ordinal mechanisms were considered recently by Boutilier et al. [5] in a very interesting paper
closely related to the present one, but crucially, their work did not consider incentives, i.e., they did not
require truthfulness of the mechanisms in their investigations. On the other hand, truthfulness is the pivotal
property in our approach. The characterization of truthful mechanisms of Theorem 1 does not apply to
cardinal mechanisms. But noting that the definition of “unilateral” is not restricted to ordinal mechanisms,
one might naturally suspect that a similar characterization would also apply to cardinal mechanisms. In a
followup paper, Gibbard [11], indeed proved a theorem along those lines, but interestingly, his result does
not apply to truthful direct revelation mechanisms (i.e., strategy-proof social choice functions), which is
the topic of the present paper, but only to indirect revelation mechanisms with finite strategy space. Also,
the restriction to finite strategy space (which is in direct contradiction to direct revelation) is crucial for
the proof. Somewhat surprisingly, to this date, a characterization for the cardinal case is still an open
problem! For a discussion of this situation and for interesting counterexamples to tempting characterization
attempts similar to the characterization for the ordinal case of Gibbard [10], see [4, 3], the bottomline being
that we at the moment do not have a good understanding of what can be done with cardinal truthful
mechanisms for general preferences. Concrete examples of cardinal mechanisms for general preferences were
given in a number of a papers in the economics and social choice literature [20, 8, 4] and the computer
science literature [6]. It is interesting that while the social choice literature gives examples suggesting that
the space of cardinal mechanisms is rich and even examples of instances where a cardinal mechanism for
voting can yield a (Pareto) better result than all ordinal mechanisms [8], there was apparently no systematic
investigation into constructing “good” cardinal mechanisms for unrestricted preferences. Here, as in the
ordinal case, we suggest that the notion of approximation ratio provides a meaningful measure of quality
that makes such investigations possible, and indeed, our present paper is meant to start such investigations.
Our investigations are very much helped by the work of Feige and Tennenholtz [6] who considered and
characterized the strongly truthful, continuous, unilateral cardinal mechanisms. While their agenda was
mechanisms for which the objective is information elicitation itself rather than mechanisms for approximate
optimization of an objective function, the mechanisms they suggest still turn out to be useful for social
welfare optimization. In particular, our construction establishing the gap between the approximation ratios
for cardinal and ordinal mechanisms for three candidates is based on their quadratic lottery.

1.2 Organization of paper

In Section 2 we give formal definitions of the concepts informally discussed above, and state and prove some
useful lemmas. In Section 3, we present our results for an arbitrary number of candidates m. In Section 4,
we present our results for m = 3. We conclude with a discussion of open problems in Section 5.

4It was pointed out to us that it is not completely clear that it is part of the range voting scheme that voters are asked to
calibrate their scores so that 0 is the score of their least preferred candidate and 1 is the score of their most preferred candidate.
However, without some calibration instructions, the statement ”Score the candidates on a scale from 0 to 1” simply does not
make sense and we believe that the present calibration instructions are the most natural ones imaginable.
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2 Preliminaries

We let Vm denote the set of canonically represented valuation functions on M = {1, 2, . . . ,m}. That is, Vm

is the set of injective functions u : M → [0, 1] with the property that 0 as well as 1 are contained in the
image of u.

We let Mechm,n denote the set of truthful mechanisms for n voters and m candidates. That is, Mechm,n

is the set of random maps J : Vm
n → M with the property that for voter i ∈ {1, . . . , n}, and all u =

(ui, u−i) ∈ Vm
n and ũi ∈ Vm, we have E[ui(J(ui, u−i)] ≥ E[ui(J(ũi, u−i)]. Alternatively, instead of viewing

a mechanism as a random map, we can view it as a map from Vm
n to ∆m, the set of probability density

functions on {1, . . . ,m}. With this interpretation, note that Mechm,n is a convex subset of the vector space
of all maps from Vm

n to R
m.

We shall be interested in certain special classes of mechanisms. In the following definitions, we throughout
view a mechanism J as a map from Vm

n to ∆m.
An ordinal mechanism J is a mechanism with the following property: J(ui, u−i) = J(u′

i, u−i), for any
voter i, any preference profile u = (ui, u−i), and any valuation function u′

i with the property that for all pairs
of candidates j, j′, it is the case that ui(j) < ui(j

′) if and only if u′
i(j) < u′

i(j
′). Informally, the behavior

of an ordinal mechanism only depends on the ranking of candidates on each ballot; not on the numerical
valuations. We let MechO

m,n denote those mechanisms in Mechm,n that are ordinal.
Following Barbera [2], we define an anonymous mechanism J as one that does not depend on the names

of voters. Formally, given any permutation π on N , and any u ∈ (Vm)n, we have J(u) = J(π · u), where
π · u denotes the vector (uπ(i))

n
i=1.

Similarly following Barbera [2], we define a neutral mechanism J as one that does not depend on the
names of candidates. Formally, given any permutation σ on M , any u ∈ (Vm)n, and any candidate j, we
have J(u)σ(j) = J(u1 ◦ σ, u2 ◦ σ, . . . , un ◦ σ)j .

Following [10, 4], a unilateral mechanism is a mechanism for which there exists a single voter i∗ so that
for all valuation profiles (ui∗ , u−i∗) and any alternative valuation profile u′

−i∗ for the voters except i∗, we
have J(ui∗ , u−i∗) = J(ui∗ , u

′
−i∗). Note that i∗ is not allowed to be chosen at random in the definition

of a unilateral mechanism. In this paper, we shall say that a mechanism is mixed-unilateral if it is a
convex combination of unilateral truthful mechanisms. Mixed-unilateral mechanisms are quite attractive seen
through the “computer science lens”: They are mechanisms of low query complexity; consulting only a single
randomly chosen voter, and therefore deserve special attention in their own right. We let MechU

m,n denote
those mechanisms in Mechm,n that are mixed-unilateral. Also, we let MechOU

m,n denote those mechanisms in
Mechm,n that are ordinal as well as mixed-unilateral.

Following Gibbard [10], a duple mechanism J is an ordinal5 mechanism for which there exist two candi-
dates j∗1 and j∗2 so that for all valuation profiles, J elects all other candidates with probability 0.

We next give names to some specific important mechanisms. We let U q
m,n ∈ MechOU

m,n be the mechanism
for m candidates and n voters that picks a voter uniformly at random, and elects uniformly at random
a candidate among his q most preferred candidates. We let random-favorite be a nickname for U1

m,n and
random-candidate be a nickname for Um

m,n. We let Dq
m,n ∈ MechO

m,n, for ⌊n/2⌋ + 1 ≤ q ≤ n + 1, be the
mechanism for m candidates and n voters that picks two candidates uniformly at random and eliminates
all other candidates. It then checks for each voter which of the two candidates he prefers and gives that
candidate a “vote”. If a candidate gets at least q votes, she is elected. Otherwise, a coin is flipped to decide

which of the two candidates is elected. We let random-majority be a nickname for D
⌊n/2⌋+1
m,n . Note also that

Dn+1
m,n is just another name for random-candidate. Finally, we shall be interested in the following mechanism

Qn for three candidates shown to be in MechU

3,n by Feige and Tennenholtz [6]: Select a voter uniformly at
random, and let α be the valuation of his second most preferred candidate. Elect his most preferred candidate
with probability (4 − α2)/6, his second most preferred candidate with probability (1 + 2α)/6 and his least
preferred candidate with probability (1− 2α+ α2)/6. We let quadratic-lottery be a nickname for Qn. Note
that quadratic-lottery is not ordinal. Feige and Tennenholtz [6] in fact presented several explicitly given non-

5Barbera et al. [4] gave a much more general definition of duple mechanism; their duple mechanisms are not restricted to
be ordinal. In this paper, “duple” refers exclusively to Gibbard’s original notion.
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ordinal one-voter truthful mechanisms, but quadratic-lottery is particularly amenable to an approximation
ratio analysis due to the fact that the election probabilities are quadratic polynomials.

We let ratio(J) denote the approximation ratio of a mechanism J ∈ Mechm,n, when the objective is social
welfare. That is,

ratio(J) = inf
u∈Vm

n

E[
∑n

i=1 ui(J(u))]

maxj∈M

∑n
i=1 ui(j)

.

We let rm,n denote the best possible approximation ratio when there are n voters and m candidates.
That is, rm,n = supJ∈Mechm,n

ratio(J). Similarly, we let rC

m,n = sup
J∈MechC

m,n
ratio(J), for C being either

O, U or OU. We let rm denote the asymptotically best possible approximation ratio when the number of
voters approaches infinity. That is, rm = lim infn→∞ rm,n, and we also extend this notation to the restricted
classes of mechanisms with the obvious notation rO

m, rU

m and rOU

m .
The importance of neutral and anonymous mechanisms is apparent from the following simple lemma:

Lemma 1. For all J ∈ Mechm,n, there is a J ′ ∈ Mechm,n so that J ′ is anonymous and neutral and so that
ratio(J ′) ≥ ratio(J). Similarly, for all J ∈ MechC

m,n, there is J ′ ∈ MechC

m,n so that J ′ is anonymous and
neutral and so that ratio(J ′) ≥ ratio(J), for C being either O, U or OU.

Proof. Given any mechanism J , we can “anonymize” and “neutralize” J by applying a uniformly chosen
random permutation to the set of candidates and an independent uniformly chosen random permutation to
the set of voters before applying J . This yields an anonymous and neutral mechanism J ′ with at least a
good an approximation ratio as J . Also, if J is ordinal and/or mixed-unilateral, then so is J ′.

Lemma 1 makes the characterizations of the following theorem very useful.

Theorem 2. The set of anonymous and neutral mechanisms in MechOU

m,n is equal to the set of convex com-
binations of the mechanisms U q

m,n, for q ∈ {1, . . . ,m}. Also, the set of anonymous and neutral mechanisms
in Mechm,n that can be obtained as convex combinations of duple mechanisms is equal to the set of convex
combinations of the mechanisms Dq

m,n, for q ∈ {⌊n/2⌋+ 1, ⌊n/2⌋+ 2, . . . , n, n+ 1}.

Proof. A very closely related statement was shown by Barbera [1]. We sketch how to derive the theorem
from that statement.

Barbera (in [1], as summarized in the proof of Theorem 1 in [2]) showed that the anonymous, neutral
mechanisms in MechOU

m,n are exactly the point voting schemes and that the anonymous, neutral mechanism
that are convex combinations of duple mechanism are exactly supporting size schemes. A point voting scheme
is given by m real numbers (aj)

m
j=1 summing to 1, with a1 ≥ a2 ≥ · · · ≥ am ≥ 0. It picks a voter uniformly

at random, and elects the candidate he ranks kth with probability ak, for k = 1, . . . ,m. It is easy to see that
the point voting schemes are exactly the convex combinations of U q

m,n, for q ∈ {1, . . . ,m}. A supporting size
scheme is given by n+ 1 real numbers (bi)

n
i=0 with bn ≥ bn−1 · · · ≥ b0 ≥ 0, and bi + bn−i = 1 for i ≤ n/2. It

picks two different candidates j1, j2 uniformly at random and elects candidate jk, k = 1, 2 with probability
bsk where sk is the number of voters than rank jk higher than j3−k. It is easy to see that the supporting
size schemes are exactly the convex combinations of Dq

m,n, for q ∈ {⌊n/2⌋+ 1, ⌊n/2⌋+ 2, . . . , n+ 1}.

The following corollary is immediate from Theorem 1 and Theorem 2.

Corollary 1. The ordinal, anonymous and neutral mechanisms in Mechm,n are exactly the convex combi-
nations of the mechanisms U q

m,n, for q ∈ {1, . . . ,m} and Dq
m,n, for q ∈ {⌊n/2⌋+ 1, ⌊n/2⌋+ 2, . . . , n}.

We next present some lemmas that allow us to understand the asymptotic behavior of rm,n and rC

m,n for
fixed m and large n, for C being either O, U or OU.

Lemma 2. For any positive integers n,m, k, we have rm,kn ≤ rm,n and rC

m,kn ≤ rC

m,n, for C being either
O, U or OU.
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Proof. Suppose we are given any mechanism J in Mechm,kn with approximation ratio α. We will convert it
to a mechanism J ′ in Mechm,n with the same approximation ratio, hence proving rm,kn ≤ rm,n. The natural
idea is to let J ′ simulate J on the profile where we simply make k copies of each of the n ballots. More
specifically, let u′ = (u′

1, . . . , u
′
n) be a valuation profile with n voters and u = (u1, . . . , ukn) be a valuation

profile with kn voters, such that uik+1 = uik+2 = . . . = u(i+1)k = u′
i+1, for i = 0, . . . , n − 1, where “=”

denotes component-wise equality. Then let J ′(u′) = J(u). To complete the proof, we need to prove that if
J is truthful, J ′ is truthful as well.

Let u = (u1, . . . , ukn) be the profile defined above for kn agents and let u′ be the corresponding n agent
profile. We will consider deviations of agents with the same valuation functions to the same misreported val-
uation vector û; without loss of generality, we can assume that these are agents 1, . . . , k. For ease of notation,
let ui+1 = (uik+1 = uik+2 = . . . = u(i+1)k) be a block of valuation functions, for i = 0, . . . , n−1 and note that
given this notation, we can write u = (u1,u2, . . . ,un) = (u1, . . . , uk,u2, . . . ,un). Let v

∗ = E[ui(J(u))]. Now
consider the profile (û, u2, . . . , uk,u2, . . . ,un). By truthfulness, it holds that agent 1’s expected utility in the
new profile (and with respect to u1) is at most v∗. Next, consider the profile (û, û, u3, . . . , uk,u2, . . . ,un) and
observe that agent 2’s utility from misreporting should be at most her utility before misreporting, which is at
most v∗. Continuing like this, we obtain the valuation profile (û, û, . . . , û,u2, . . . ,un) in which the expected
utility of agents 1, . . . , k is at most v∗ and hence no deviating agent gains from misreporting. Now observe
that the new profile (û, û, . . . , û,u2, . . . ,un) corresponds to an n-agent profile (ûi

′,u′
−i
) = (û′

1, u
′
2, . . . , u

′
n)

which is obtained from u′ by a single miresport of agent 1. By the discussion above and the way J ′ was
constructed, agent 1 does not benefit from this misreport and since the misreported valuation function was
arbitrary, J ′ is truthful.

The same proof works for rC

m,kn ≤ rC

m,n, for C being either O, U or OU.

Lemma 3. For any n,m and k < n, we have rm,n ≥ rm,n−k − km
n . Also, rC

m,n ≥ rC

m,n−k − km
n , for C being

either O, U, or OU.

Proof. We construct a mechanism J ′ in Mechm,n from a mechanism J in Mechm,n−k. The mechanism J ′

simply simulates J after removing k voters, chosen uniformly at random and randomly mapping the remaining
voters to {1, . . . , n}. In particular, if J is ordinal (or mixed-unilateral, or both) then so is J ′. Suppose J has
approximation ratio α. Consider running J ′ on any profile where the socially optimal candidate has social
welfare w∗. Note that w∗ ≥ n/m, since each voter assigns valuation 1 to some candidate. Ignoring k voters
reduces the social welfare of any candidate by at most k, so J ′ is guaranteed to return a candidate with
expected social welfare at least α(w∗ − k). This is at least a α(1 − k/w∗) ≥ α − km

n fraction of w∗. Since
the profile was arbitrary, we are done.

Lemma 4. For any m,n ≥ 2, ǫ > 0 and all n′ ≥ (n− 1)m/ǫ, we have rm,n′ ≤ rm,n+ ǫ and rC

m,n′ ≤ rC

m,n+ ǫ,
for C being either O, U, or OU.

Proof. If n divides n′, the statement follows from Lemma 2. Otherwise, let n∗ be the smallest number larger
than n′ divisible by m; we have n∗ < n′ + n. By Lemma 2, we have rm,n∗ = rm,n. By Lemma 3, we have

rm,n∗ ≥ rm,n′ − (n−1)m
n∗ . Therefore, rm,n′ ≤ rm,n + (n−1)m

n∗ ≤ rm,n + (n−1)m
n′ . The same arguments work for

proving rC

m,n′ ≤ rC

m,n + ǫ, for C being either O, U, or OU.

In particular, Lemma 4 implies that rm,n converges to a limit as n → ∞.

2.1 Quasi-combinatorial valuation profiles

It will sometimes be useful to restrict the set of valuation functions to a certain finite domain Rm,k for an
integer parameter k ≥ m. Specifically, we define:

Rm,k =

{

u ∈ Vm|ℑ(u) ⊆ {0, 1
k
,
2

k
, . . . ,

k − 1

k
, 1}

}
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where ℑ(u) denotes the image of u. Given a valuation function u ∈ Rm,k, we define its alternation number
a(u) as

a(u) = #{j ∈ {0, . . . , k − 1}|[ j
k
∈ ℑ(u)]⊕ [

j + 1

k
∈ ℑ(u)]},

where ⊕ denotes exclusive-or. That is, the alternation number of u is the number of indices j for which
exactly one of j/k and (j + 1)/k is in the image of u. Since k ≥ m and {0, 1} ⊆ ℑ(u), we have that the
alternation number of u is at least 2. We shall be interested in the class of valuation functions Cm,k with
minimal alternation number. Specifically, we define:

Cm,k = {u ∈ Rm,k|a(u) = 2}

and shall refer to such valuation functions as quasi-combinatorial valuation functions. Informally, the quasi-
combinatorial valuation functions have all valuations as close to 0 or 1 as possible.

The following lemma will be very useful in later sections. It states that in order to analyse the ap-
proximation ratio of an ordinal and neutral mechanism, it is sufficient to understand its performance on
quasi-combinatorial valuation profiles.

Lemma 5. Let J ∈ Mechm,n be ordinal and neutral. Then

ratio(J) = lim inf
k→∞

min
u∈(Cm,k)n

E[
∑n

i=1 ui(J(u))]
∑n

i=1 ui(1)
.

Proof. For a valuation profile u = (ui), define g(u) =
E[

∑n
i=1

ui(J(u))]∑
n
i=1

ui(1)
. We show the following equations:

ratio(J) = inf
u∈V n

m

E[
∑n

i=1 ui(J(u))]

maxj∈M

∑n
i=1 ui(j)

(1)

= inf
u∈V n

m

g(u) (2)

= lim inf
k→∞

min
u∈(Rm,k)n

g(u) (3)

= lim inf
k→∞

min
u∈(Cm,k)n

g(u) (4)

Equation (2) follows from the fact that since J is neutral, it is invariant over permutations of the set of
candidates, so there is a worst case instance (with respect to approximation ratio) where the socially optimal
candidate is candidate 1. Equation (3) follows from the facts that (a) each u ∈ (Vm)n can be written as
u = limk→∞ vk where (vk) is a sequence so that vk ∈ (Rm,k)

n and where the limit is with respect to the usual
Euclidean topology (with the set of valuation functions being considered as a subset of a finite-dimensional
Euclidean space), and (b) the map g is continuous in this topology (to see this, observe that the denominator
in the formula for g is bounded away from 0). Finally, equation (4) follows from the following claim:

∀u ∈ (Rm,k)
n ∃u′ ∈ (Cm,k)

n : g(u′) ≤ g(u).

With u = (u1, . . . , un), we shall prove this claim by induction in
∑

i a(ui) (recall that a(ui) is the alternation
number of ui).

For the induction basis, the smallest possible value of
∑

i a(ui) is 2n, corresponding to all ui being
quasi-combinatorial. For this case, we let u′ = u.

For the induction step, consider a valuation profile u with
∑

i a(ui) > 2n. Then, there must be an i so
that the alternation number a(ui) of ui is strictly larger than 2 (and therefore at least 4, since alternation
numbers are easily seen to be even numbers). Then, there must be r, s ∈ {2, 3, . . . , k − 2}, so that r ≤ s,
r−1
k 6∈ ℑ(ui), { r

k ,
r+1
k , . . . , s−1

k , s
k} ⊆ ℑ(ui) and s+1

k 6∈ ℑ(ui). Let r̃ be the largest number strictly smaller

than r for which r̃
k ∈ ℑ(ui); this number exists since 0 ∈ ℑ(ui). Similarly, let s̃ be the smallest number

strictly larger than s for which s̃
k ∈ ℑ(ui); this number exists since 1 ∈ ℑ(ui). We now define a valuation
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7
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1

∈ ℑ(ui)

/∈ ℑ(ui)

Figure 1: Example of the induction step of the proof of Lemma 5 for m = 7 and k = 10. Here, r = 4,
s = 7, r̃ = 2 and s̃ = 10 and hence x ∈ [−1, 2]. The bottom figure depicts the induced profile when h(x) is
monotonely decreasing in [−1, 2].

function ux ∈ Vm for any x ∈ [r̃ − r + 1; s̃ − s − 1], as follows: ux agrees with ui on all candidates j not
in u−1

i ({ r
k ,

r+1
k , . . . , s−1

k , s
k}), while for candidates j ∈ u−1

i ({ r
k ,

r+1
k , . . . , s−1

k , s
k}) , we let ux(j) = ui(j) +

x
k .

Now consider the function h : x → g((ux, u−i)), where (ux, u−i) denotes the result of replacing ui with ux

in the profile u. Since J is ordinal, we see by inspection of the definition of the function g, that h on the
domain [r̃ − r + 1; s̃ − s − 1] is a fractional linear function x → (ax + b)/(cx + d) for some a, b, c, d ∈ R.
As h is defined on the entire interval [r̃ − r + 1; s̃ − s − 1], we therefore have that h is either monotonely
decreasing or monotonely increasing in this interval, or possibly constant. If h is monotonely increasing,
we let ũ = (ur̃−r+1, u−i), and apply the induction hypothesis on ũ. If h is monotonely decreasing, we let
ũ = (us̃−s−1, u−i), and apply the induction hypothesis on ũ. If h is constant on the interval, either choice
works. This completes the proof.

3 Mechanisms and negative results for the case of many candi-

dates

We can now analyze the approximation ratio of the mechanism J ∈ MechOU

m,n that with probability 3/4
elects a uniformly random candidate and with probability 1/4 uniformly at random picks a voter and elects
a candidate uniformly at random from the set of his ⌊m1/2⌋ most preferred candidates.

Theorem 3. Let n ≥ 2,m ≥ 3. Let J = 3
4U

m
m,n + 1

4U
⌊m1/2⌋
m,n . Then, ratio(J) ≥ 0.37m−3/4.

Proof. For a valuation profile u = (ui), we define g(u) =
E[

∑n
i=1

ui(J(u))]∑n
i=1

ui(1)
. By Lemma 5, since J is ordinal,

it is enough to bound from below g(u) for all u ∈ (Cm,k)
n with k ≥ 1000(nm)2. Let ǫ = 1/k. Let δ = mǫ.

9



Note that all functions of u map each alternative either to a valuation smaller than δ or a valuation larger
than 1− δ.

Since each voter assigns valuation 1 to at least one candidate, and since J with probability 3/4 picks
a candidate uniformly at random from the set of all candidates, we have E[

∑n
i=1 ui(J(u))] ≥ 3n/(4m).

Suppose
∑n

i=1 ui(1) ≤ 2m−1/4n. Then g(u) ≥ 3
8m

−3/4, and we are done. So we shall assume from now on
that

n
∑

i=1

ui(1) > 2m−1/4n. (5)

Obviously,
∑n

i=1 ui(1) ≤ n. Since J with probability 3/4 picks a candidate uniformly at random from
the set of all candidates, we have that E[

∑n
i=1 ui(J(u))] ≥ 3

4m

∑

i,j ui(j). So if
∑

i,j ui(j) ≥ 1
2nm

1/4, we

have g(u) ≥ 3
8m

−3/4, and we are done. So we shall assume from now on that

∑

i,j

ui(j) <
1

2
nm1/4. (6)

Still looking at the fixed quasi-combinatorial u, let a voter i be called generous if his ⌊m1/2⌋ + 1 most
preferred candidates are all assigned valuation greater than 1− δ. Also, let a voter i be called friendly if he
has candidate 1 among his ⌊m1/2⌋ most preferred candidates. Note that if a voter is neither generous nor
friendly, he assigns to candidate 1 valuation at most δ. This means that the total contribution to

∑n
i=1 ui(1)

from such voters is less than nδ < 0.001/m. Therefore, by equation (5), the union of friendly and generous
voters must be a set of size at least 1.99m−1/4n.

If we let g denote the number of generous voters, we have
∑

i,j ui(j) ≥ gm1/2(1 − δ) ≥ 0.999gm1/2, so

by equation (6), we have that 0.999gm1/2 < 1
2nm

1/4. In particular g < 0.51m−1/4n. So since the union of

friendly and generous voters must be a set of size at least a 1.99m−1/4n voters, we conclude that there are at
least 1.48m−1/4n friendly voters, i.e. the friendly voters is at least a 1.48m−1/4 fraction of the set of all voters.

But this ensures that U
⌊m1/2⌋
m,n elects candidate 1 with probability at least 1.48m−1/4/m1/2 ≥ 1.48m−3/4.

Then, J elects candidate 1 with probability at least 0.37m−3/4 which means that g(u) ≥ 0.37m−3/4, as
desired. This completes the proof.

We next show our negative result. We show that any convex combination of (not necessarily ordinal)
unilateral and duple mechanisms performs poorly.

Theorem 4. Let m ≥ 20 and let n = m− 1 + g where g = ⌊m2/3⌋. For any mechanism J that is a convex
combination of unilateral and duple mechanisms in Mechm,n, we have ratio(J) ≤ 5m−2/3.

Proof. Let k = ⌊m1/3⌋. By applying the same proof technique as in the proof of Lemma 1, we can assume
that J can be decomposed into a convex combination of mechanisms Jℓ, with each Jℓ being anonymous as
well as neutral, and each Jℓ either being a mechanism of the form Dq

m,n for some q (by Theorem 2), or a
mechanism that applies a truthful one-voter neutral mechanism U to a voter chosen unformly at random.

We now describe a single profile for which any such mechanism Jℓ performs badly. Let M1, ..,Mg be a
partition of {1, . . . , kg} with k candidates in each set. The bad profile has the following voters:

• For each i ∈ {1, . . . ,m − 1} a voter that assigns 1 to candidate i, 0 to candidate m and valuations
smaller than 1/m2 to the rest.

• For each j ∈ {1, . . . , g} a vote that assigns valuations strictly bigger than 1− 1/m2 to members of Mj ,
valuation 1− 1/m2 to m, and valuations smaller than 1/m2 to the rest.

Note that the social welfare of candidate m is (1− 1/m2)g while the social welfares of the other candidates
are all smaller than 2+ 1/m. Thus, the conditional expected approximation ratio given that the mechanism
does not elect m is at most (2 + 1/m)/(1 − 1/m2)g ≤ 3m−2/3. We therefore only need to estimate the
probability that candidate m is elected. For a mechanism of the form Dq

m,n, candidate m is chosen with
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probability at most 2/m, since such a mechanism first eliminates all candidates but two and these two are
chosen uniformly at random.

For a mechanism that picks a voter uniformly at random and applies a truthful one-agent neutral mech-
anism U to the ballot of this voter, we make the following claim: Conditioned on a particular voter i∗

being picked, the conditional probability that m is chosen is at most 1/(r + 1), where r is the number
of candidates that outranks m on the ballot of voter i. Indeed, if candidate m were chosen with condi-
tional probability strictly bigger than 1/(r + 1), she would be chosen with strictly higher probability than
some other candidate j∗ who outranks m on the ballot of voter i∗. But if so, since U is neutral, voter
i would increase his utility by switching j∗ and m on his ballot, as this would switch the election prob-
abilities of j∗ and m while leaving all other election probabilities the same. This contradicts that U is
truthful. Therefore, our claim is correct. This means that candidate m is chosen with probability at most
1/m+ (g/m) · (1/k) ≤ 1/m+m2/3/(m(m1/3 − 1)) ≤ 2m−2/3, since m ≥ 20.

We conclude that on the bad profile, the expected approximation ratio of any mechanism Jℓ in the
decomposition is at most 3m−2/3 +2m−2/3 = 5m−2/3. Therefore, the expected approximation ratio of J on
the bad profile is also at most 5m−2/3.

Corollary 2. For all m, and all sufficiently large n compared to m, any mechanism J in MechO

m,n∪MechU

m,n

has approximation ratio O(m−2/3).

Proof. Combine Theorem 1, Lemma 4 and Theorem 4.

As followup work to the present paper, in a working manuscript, Lee [12] states a lower bound of Ω(m−2/3)
that closes the gap between our upper and lower bounds. The mechanism achieving this bound is a convex
combination of random-favorite and the mixed unilateral mechanism that uniformly at random elects one
of the m1/3 most preferred candidates of a uniformly chosen voter. The main question that we would like
to answer is how well one can do with (general) cardinal mechanisms. The next theorem provides a weak
upper bound.

Theorem 5. All mechanisms J ∈ Mechm,n for m,n ≥ 3 have ratio(J) < 0.94.

Proof. We will prove the theorem for mechanisms in Mech3,3. By simply adding alternatives for which every
agent has valuation almost 0 and then applying Lemma 4, the theorem holds for any m,n ≥ 3.

Assume for contradiction that there exists a mechanism J ∈ Mech3,3, with ratio(J) ≥ 0.94. Consider the
valuation profile u with three voters {1, 2, 3}, three candidates {A,B,C}, and valuations u1(B) = u2(B) =
u3(C) = 1, u1(C) = u2(C) = u3(B) = 0, u1(A) = 0.7 and u2(A) = u3(A) = 0.8. The social optimum on
profile u is candidate A, with social welfare wA = 2.3, while wB = 2 and wC = 1. Since J ’s expected social
welfare is at least a 0.94 fraction of wA, i.e. 2.162, the probability of A being elected is at least 0.54, as
otherwise the expected social welfare would be smaller than 0.54 ·2.3+0.46 ·2 = 2.162 . The expected utility
ũ of voter 1 in that case is at most 0.54 · 0.7 + 0.46 · 1 = 0.838.

Next, consider the profile u′ identical to u except that u′
1(A) = 0.0001. Let pA, pB, pC be the probabilities

of candidates A,B and C being elected on this profile, respectively. The social optimum is B with social
welfare 2. It must be that 0.7pA + pB ≤ ũ, otherwise on profile u, voter 1 would have an incentive to
misreport u1(A) as 0.0001. Also, since J has an approximation ratio of at least 0.94, it must be the case
that 1.6001 ·pA+2 ·pB+pC ≥ 1.88. By those two inequalities, we have: 0.9001pA+pB+pC ≥ 1.8800− ũ⇒
0.9001(pA+ pB + pC) + 0.0999pB +0.0999pC ≥ 1.8800− ũ ⇒ 0.0999(pB + pC) ≥ 0.10419 ⇒ pB + pC ≥ 1.42
which is not possible. Hence, it cannot be that ratio(J) ≥ 0.94.

Recall that in the definition of valuation functions ui, we required ui to be injective, i.e. ties are not
allowed in the image of the function. If we actually allow ui to map the same real number to different
candidates (with 0 and 1 still in the image of the function), we can prove a much stronger upper bound on
the approximation ratio of any truthful mechanism. The proof is based on a bound proven by Filos-Ratsikas
et al. [7] for the one-sided matching problem. There are some interesting technical difficulties in adapting
their proof to work for thel setting without ties. As we do not want to declare either the “ties” or the “no
ties” model the “right one”, we want all positive results (mechanisms) to be proven for the setting with
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ties and all negative ones (upper bounds on approximation ratio) to be proven for the setting without ties.
The proof of the following theorem is the only one of the paper which isn’t easily modified to work for both
settings.

Theorem 6. Let J ′ be any voting mechanism for n agents and m alternatives, with m ≥ n⌊√n⌋+2, in the
setting with ties. The approximation ratio of J ′ is O(log logm/ logm).

Proof. Filos-Ratsikas et. al [7] proved a related upper bound for the one-sided matching problem.6 The
bound corresponds to an upper bound on the approximation ratio of any truthful mecahnism J in the
general setting with ties. This is because there is a reduction from the general setting with ties to the setting
of the one-sided matching problem.

In the one-sided matching problem, there is a set of n agents and a set of k items and each agent i has
a valuation function vi : [k] → [0, 1] mapping items to real values in the unit interval. Similarly to our
definitions, these functions are injective and both 0 and 1 are in their image. A mechanism J on input a
valuation profile v = (v1, ..., vn) outputs a matching J(v), i.e. an allocation of items to agents such that
each agent receives at most one item. Let J(v)i be the item allocated to agent i. For convenience, we will
refer to this problem as the matching setting and to our problem as the general setting.

The reduction works as follows. Let v = (v1, ..., vn) be a valuation profile of the matching setting. We
will construct a valuation profile u = (u1, ..., un) of the general setting that will correspond to v. Let each
outcome of the matching setting correspond to a candidate in the general setting. For every agent i and every
item j let ui(A) = vi(j) for each candidate A ∈ M that corresponds to a matching in which item j is allocated
to agent i. Note that the number of candidates is nk and a bound for the matching setting implies a bound
for the general setting. Specifically, the O(1/

√
n) bound proved in [7] translates to a O(log logm/ logm)

upper bound.

4 Mechanisms and negative results for the case of three candidates

In this section, we consider the special case of three candidates m = 3. To improve readability, we shall
denote the three candidates by A,B and C, rather than by 1,2 and 3.

When the number of candidates m as well as the number of voters n are small constants, the exact values
of rO

m,n and rOU

m,n can be determined. We first give a clean example, and then describe a general method.

Proposition 1. For all J ∈ MechO

3,3, we have ratio(J) ≤ 2/3.

Proof. By Lemma 1, we can assume that J is anonymous and neutral. Let A >i B denote the fact that
voter i ranks candidate A higher than B in his ballot. Let a Condorcet profile be any valuation profile with
A >1 B >1 C, B >2 C >2 A and C >3 A >3 B. Since J is neutral and anonymous, by symmetry, J
elects each candidate with probability 1/3. Now, for some small ǫ > 0, consider the Condorcet profile where
u1(B) = ǫ, u2(C) = ǫ and u3(A) = 1− ǫ. The socially optimal choice is candidate A with social welfare 2− ǫ,
while the other candidates have social welfare 1 + ǫ. Since each candidate elected with probability 1/3, the
expected social welfare is (4 + ǫ)/3. By making ǫ suffciently small, the approximation ratio on the profile is
arbitrarily close to 2/3.

With a case analysis and some pain, it can be proved by hand that random-majority achieves an approxi-
mation ratio of at least 2/3 on any profile with three voters and three candidates. Together with Proposition
1, this implies that rO

3,3 = 2
3 . Rather than presenting the case analysis, we describe a general method for

how to exactly and mechanically compute rO

m,n and rOU

m,n and the associated optimal mechanisms for small
values of m and n. The key is to apply Yao’s principle [19] and view the construction of a randomized
mechanism as devising a strategy for Player I in a two-player zero-sum game G played between Player I,
the mechanism designer, who picks a mechanism J and Player II, the adversary, who picks an input profile
u for the mechanism, i.e., an element of (Vm)n. The payoff to Player I is the approximation ratio of J on

6Their proof is actually for the setting of n agents and n items but it can be easily adapted to work when the number of
items is ⌊√n⌋+ 2.
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u. Then, the value of G is exactly the approximation ratio of the best possible randomized mechanism. In
order to apply the principle, the computation of the value of G has to be tractable. In our case, Theorem 2
allows us to reduce the strategy set of Player I to be finite while Lemma 5 allows us to reduce the strategy
set of Player II to be finite. This makes the game into a matrix game, which can be solved to optimality
using linear programming. The details follow.

For fixed m,n and k > 2m, recall that the set of quasi-combinatorial valuation functions Cm,k is the set of

valuation functions u for which there is a j so that ℑ(u) = {0, 1
k ,

2
k , . . . ,

m−j−1
k }∪{k−j+1

k , k−j+2
k , . . . , k−1

k , 1}.
Note that a quasi-combinatorial valuation function u is fully described by the value of k, together with a
partition of M into two sets M0 and M1, with M0 being those candidates close to 0 and M1 being those sets
close to 1 together with a ranking of the candidates (i.e., a total ordering < on M), so that all elements of M1

are greater than all elements of M0 in this ordering. Let the type of a quasi-combinatorial valuation function
be the partition and the total ordering (M0,M1, <). Then, a quasi-combinatorial valuation function is given
by its type and the value of k. For instance, if m = 3, one possible type is ({B}, {A,C}, {B < A < C}),
and the quasi-combinatorial valuation function u corresponding to this type for k = 1000 is u(A) = 0.999,
u(B) = 0, u(C) = 1. We see that for any fixed value of m, there is a finite set Tm of possible types. In
particular, we have |T3| = 12. Let η : Tm × N → Cm,k be the map that maps a type and an integer k into
the corresponding quasi-combinatorial valuation function.

For fixed m,n, consider the following matrices G and H . The matrix G has a row for each of the
mechanisms U q

m,n for q = 1, . . . ,m, while the matrix H has a row for each of the mechanisms U q
m,n for

q = 1, . . . ,m as well as for each of the mechanisms Dq
m,n, for q = ⌊n/2⌋+1, ⌊n/2⌋+2, . . . , n. Both matrices

have a column for each element of (Tm)n. The entries of the matrices are as follows: Each entry is indexed
by a mechanism J ∈ Mechm,n (the row index) and by a type profile t ∈ (Tm)n (the column index). We let
that entry be

cJ,t = lim
k→∞

E[
∑n

i=1 ui(J(u
k))]

maxj∈M

∑n
i=1 u

k
i (j)

,

where uk
i = η(ti, k). Informally, we let the entry be the approximation ratio of the mechanism on the

quasi-combinatorial profile of the type profile indicated in the column and with 1/k being “infinitisimally
small”. Note that for the mechanisms at hand, despite the fact that the entries are defined as a limit, it is
straightforward to compute the entries symbolically, and they are rational numbers.

We now have

Lemma 6. The value of G, viewed as a matrix game with the row player being the maximizer, is equal to
rOU

m,n. The value of H is equal to rO

m,n. Also, the optimal strategies for the row players in the two matrices,
viewed as convex combinations of the mechanisms corresponding to the rows, achieve those ratios.

Proof. We only show the statement for rO

m,n, the other proof being analogous. For fixed k, consider the

matrix Hk defined similarly to H , but with entries cJ,t =
E[

∑n
i=1

ui(J(u
k))]

maxj∈M

∑
n
i=1

uk
i (j)

, where uk
i = η(ti, k). Viewing

Hk as a matrix game, a mixed strategy of the row player can be interpreted as a convex combination
of the mechanisms corresponding to the rows, and the expected payoff when the column player responds
with a particular column t is equal to the approximation ratio of J on the valuation profile (η(ti, k))i.
Therefore, the value of the game is the worst case approximation ratio of the best convex combination, among
profiles of the form (η(ti, k))i for a type profile t. By Lemma 1, rO

m,n is determined by the best available
anonymous and neutral ordinal mechanism. By Corollary 1, the anonymous and neutral ordinal mechanisms
are exactly the convex combinations of the U q

m,n and theDq
m,n mechanisms for various q. Given any particular

convex combination yielding a mechanism K, by Lemma 5, its worst case approximation ratio is given by

lim infk→∞ minu∈(Cm,k)n
E[

∑n
i=1

ui(K(u))]
∑n

i=1
ui(A) which is equal to lim infk→∞ minu∈(Cm,k)n

E[
∑n

i=1
ui(K(uk))]

maxj∈M

∑n
i=1

uk
i (j)

, since

K is neutral. This means that no mechanism can have an approximation ratio better than the limit of the
values of the games Hk as k approaches infinity. By continuity of the value of a matrix game as a function
of its entries, this is equal to the value of H . Therefore, rO

m,n is at most the value of H . Now consider the
mechanism J defined by the optimal strategy for the row player in the matrix game H . As the entries of
Hk converge to the entries of H as k → ∞, we have that for any ǫ > 0, and sufficiently large k, the strategy
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Table 1: Approximation ratios for n voters.

n/Approximation ratio rO

3,n rOU

3,n

2 2/3 2/3
3 2/3 105/171
4 2/3 5/8
5 6407/9899 34/55

Table 2: Mixed-unilateral ordinal mechanisms for n voters.

n/Mechanism U1
3,n U2

3,n U3
3,n

2 1/3 2/3 0
3 9/19 10/19 0
4 1/2 1/2 0
5 5/11 6/11 0

is also an ǫ-optimal strategy for Hk. Since ǫ is arbitrary, we have that ratio(J) is at least the value of H ,
completing the proof.

When applying Lemma 6 for concrete values of m,n, one can take advantage of the fact that all mecha-
nisms corresponding to rows are anonymous and neutral. This means that two different columns will have
identical entries if they correspond to two type profiles that can be obtained from one another by permuting
voters and/or candidates. This makes it possible to reduce the number of columns drastically. After such
reduction, we have applied the theorem to m = 3 and n = 2, 3, 4 and 5, computing the corresponding optimal
approximation ratios and optimal mechanisms. The ratios are given in Table 1.The mechanisms achieving
the ratios are shown in Table 3 and Table 2. These mechanisms are in general not unique. Note in particular
that a different approximation-optimal mechanism than random-majority was found in MechO

3,3.
We now turn our attention to the case of three candidates and arbitrarily many voters. In particular,

we shall be interested in rO

3 = lim infn→∞ rO

3,n and rOU

3 = lim infn→∞ rOU

3,n. By Lemma 4, we in fact have
rO

3 = limn→∞ rO

3,n and rOU

3 = limn→∞ rOU

3,n .
We present a family of ordinal and mixed-unilateral mechanisms Jn with ratio(Jn) > 0.610. In particular,

rOU

3 > 0.610. The coefficents c1 and c2 were found by trial-and-error; we present more information about
how later.

Theorem 7. Let c1 = 77066611
157737759 ≈ 0.489 and c2 = 80671148

157737759 ≈ 0.511. Let Jn = c1 · U1
m,n + c2 · U2

m,n. For all
n, we have ratio(Jn) > 0.610.

Proof. By Lemma 5, we have that ratio(Jn) = lim infk→∞ minu∈(C3,k)n
E[

∑n
i=1

ui(Jn(u))]∑n
i=1

ui(A) . Recall the definition

of the set of types T3 of quasi-combinatorial valuation functions on three candidates and the definintion of η

Table 3: Ordinal mechanisms for n voters.

n/Mechanism U1
3,n U2

3,n U3
3,n D

⌊n/2⌋+1
n,3 D

⌊n/2⌋+2
n,3 D

⌊n/2⌋+3
n,3

2 4/100 8/100 0 88/100 — —
3 47/100 0 0 53/100 0 —
4 0 0 0 1 0 —
5 3035/9899 0 0 3552/9899 3312/9899 0
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preceding the proof of Lemma 6. From that discussion, we have lim infk→∞ minu∈(Cm,k)n
E[

∑n
i=1

ui(Jn(u))]∑
n
i=1

ui(A) =

mint∈(T3)n lim infk→∞
E[

∑n
i=1

ui(Jn(u))]∑n
i=1

ui(A) , where ui = η(ti, k). Also recall that |T3| = 12. Since Jn is anony-

mous, to determine the approximation ratio of Jn on u ∈ (Cm,k)
n, we observe that we only need to

know the value of k and the fraction of voters of each of the possible 12 types. In particular, fixing a
type profile t ∈ (Cm,k)

n, for each type k ∈ T3, let xk be the fraction of voters in u of type k. For
convenience of notation, we identify T3 with {1, 2, . . . , 12} using the scheme depicted in Table 4. Let
wj = limk→∞

∑n
i=1 ui(i), where ui = η(ti, k), and let pj = limk→∞ Pr[Ej ], where Ej is the event that

candidate j is elected by Jn in an election with valuation profile u where ui = η(ti, k). We then have

lim infk→∞
E[

∑n
i=1

ui(Jn(u))]∑n
i=1

ui(A) = (pA · wA + pB · wB + pC · wC)/wA. Also, from Table 4 and the definition of

Jn, we see:

wA = n(x1 + x2 + x3 + x4 + x5 + x9)

wB = n(x1 + x5 + x6 + x7 + x8 + x11)

wC = n(x4 + x7 + x9 + x10 + x11 + x12)

pA = (c1 + c2/2)(x1 + x2 + x3 + x4) + (c2/2)(x5 + x6 + x9 + x10)

pB = (c1 + c2/2)(x5 + x6 + x7 + x8) + (c2/2)(x1 + x2 + x11 + x12)

pC = (c1 + c2/2)(x9 + x10 + x11 + x12) + (c2/2)(x3 + x4 + x7 + x8)

Thus we can establish that ratio(Jn) > 0.610 for all n, by showing that the quadratic program “Minimize
(pA · wA + pB · wB + pC · wC) − 0.610wA subject to x1 + x2 + · · · + x12 = 1, x1, x2, . . . , x12 ≥ 0”, where
wA, wB, wC , pA, pB, pC have been replaced with the above formulae using the variables xi, has a strictly
positive minimum (note that the parameter n appears as a multiplicative constant in the objective function
and can be removed, so there is only one program, not one for each n). This was established rigorously by
solving the program symbolically in Maple by a facet enumeration approach (the program being non-convex),
which is easily feasible for quadratic programs of this relatively small size.

We next present a family of ordinal mechanisms J ′
n with ratio(J ′

n) > 0.616. In particular, rO

3 > 0.616.
The coefficents defining the mechanism c1 and c2 were again found by trial-and-error; we present more
information about how later.

Theorem 8. Let c′1 = 0.476, c′2 = 0.467 and d = 0.057 and let Jn = c′1 · U1
3,n + c′2U

2
3,n + d ·D⌊n/2⌋+1

m,n . Then
ratio(Jn) > 0.616 for all n.

Proof. The proof idea is the same as in the proof of Theorem 7. In particular, we want to reduce proving

the theorem to solving quadratic programs. The fact that we have to deal with the D
⌊n/2⌋+1
m,n , i.e., random-

majority, makes this task slightly more involved. In particular, we have to solve many programs rather than
just one. We only provide a sketch, showing how to modify the proof of Theorem 7.

As in the proof of Theorem 7, we let wj = limk→∞
∑n

i=1 ui(i), where ui = η(ti, k). The expressions for
wA as functions of the variables xi remain the same as in that proof. Also, we let pj = limk→∞ Pr[Ej ], where
Ej is the event that candidate j is elected by J ′

n in an election with valuation profile u where ui = η(ti, k).
We then have

pA = (c′1 + c′2/2)(x1 + x2 + x3 + x4) + (c′2/2)(x5 + x6 + x9 + x10) + d · qA(t)
pB = (c′1 + c′2/2)(x5 + x6 + x7 + x8) + (c′2/2)(x1 + x2 + x11 + x12) + d · qB(t)
pC = (c′1 + c′1/2)(x9 + x10 + x11 + x12) + (c′2/2)(x3 + x4 + x7 + x8) + d · qC(t)

where qj(t) is the probability that random-majority elects candidate j when the type profile is t. Unfortu-
nately, this quantity is not a linear combination of the xi variables, so we do not immediately arrive at a
quadratic program.

However, we can observe that the values of qj(t), j = A,B,C depend only on the outcome of the three
pairwise majority votes between A,B and C, where the majority vote between, say, A and B has three
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Table 4: Variables for types of quasi-combinatorial valuation functions with ǫ denoting 1/k
Candidate/Variable x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

A 1 1 1 1 1− ǫ ǫ 0 0 1− ǫ ǫ 0 0
B 1− ǫ ǫ 0 0 1 1 1 1 0 0 1− ǫ ǫ
C 0 0 ǫ 1− ǫ 0 0 1− ǫ ǫ 1 1 1 1

possible outcomes: A wins, B wins, or there is a tie. In particular, there are 27 possible outcomes of the three

pairwise majority votes. To show that mint∈(T3)n lim infk→∞
E[

∑n
i=1

ui(J
′

n(u))]∑n
i=1

ui(A) > 0.616, where ui = η(ti, k),

we partition (T3)
n into 27 sets according to the outcomes of the three majority votes of an election with

type profile t and show that the inequality holds on all 27 sets in the partition. We claim that on each
of the 27 sets, the inequality is equivalent to a quadratic program. Indeed, each qA(t) is now a constant,
and the constraint that the outcome is as specified can be expressed as a linear constraint in the xi’s and
added to the program. For instance, the condition that A beats B in a majority vote can be expressed as
x1 + x2 + x3 + x4 + x9 + x10 > 1/2 while A ties C can be expressed as x1 + x2 + x3 + x4 + x5 + x6 = 1/2.
Except for the fact that these constraints are added, the program is now constructed exactly as in the proof
of Theorem 7. Solving7 the programs confirms the statement of the theorem.

We next show that rOU

3 ≤ 0.611 and rO

4 ≤ 0.641. By Lemma 4, it is enough to show that rOU

3,n∗ ≤ 0.611
and rO

3,n∗ ≤ 0.641 for some fixed n∗. Therefore, the statements follow from the following theorem.

Theorem 9. rOU

3,23000 ≤ 32093343
52579253 < 0.611 and rO

3,23000 ≤ 41
64 < 0.641.

Proof. Lemma 6 states that the two upper bounds can be proven by showing that the values of two certain
matrix games G and H are smaller than the stated figures. While the two games have a reasonable number
of rows, the number of columns is astronomical, so we cannot solve the games exactly. However, we can
prove upper bounds on the values of the games by restricting the strategy space of the column player. Note
that this corresponds to selecting a number of bad type profiles. We have constructed a catalogue of just
5 type profiles, each with 23000 voters. Using the “fraction encoding” of profiles suggested in the proof of
Theorem 7, the profiles are:

• x2 = 14398/23000, x5 = 2185/23000, x11 = 6417/23000.

• x2 = 6000/23000, x5 = 8000/23000, x12 = 9000/23000.

• x1 = 11500/23000, x11 = 11500/23000.

• x2 = 9200/23000, x5 = 4600/23000, x12 = 9200/23000.

• x2 = 13800/23000, x12 = 9200/23000.

Solving the corresponding matrix games yields the stated upper bound.

While the catalogue of bad type profiles of the proof of Theorem 9 suffices to prove Theorem 9, we should
discuss how we arrived at this particular “magic” catalogue. This discussion also explains how we arrived
at the “magic” coefficients in Theorems 7 and 8. In fact, we arrived at the catalogue and the coefficients
iteratively in a joint local search process (or “co-evolution” process). To get an initial catalogue, we used the
fact that we had already solved the matrix games yielding the values of rOU

3,n and rO

3,n, for n = 2, 3, 5. By the
theorem of Shapley and Snow [18], these matrix games have optimal strategies for the column player with
support size at most the number of rows of the matrices. One can think of these supports as a small set of
bad type profiles for 2, 3 and 5 voters. Utilizing that 2, 3 and 5 all divide 1000, we scaled all these up to 1000

7To make the program amenable to standard facet enumeration methods of quadratic programming, we changed the sharp
inequalities > expresssed the majority vote constraints into weak inequalities ≥. Note that this cannot decrease the cost of the
optimal solution.
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voters. Also, we had solved the quadratic programs of the proofs of Theorem 7 and Theorem 8, but with
inferior coefficients and resulting bounds to the ones stated in this paper. The quadratic programs obtained
their minima at certain type profiles. We added these entries to the catalogue, and scaled all profiles to
their least common multiple, i.e. 23000. Solving the linear programs of the proof of Theorem 9 now gave
not only an upper bound on the approximation ratio, but the optimal strategy of Player I in the games also
suggested reasonable mixtures of the U q

3,n (in the unilateral case) and of the U q
3,n and random-majority (all

Dq
3,n mechanisms except random-majority were assigned zero weight) to use for large n, making us update

the coefficients and bounds of Theorem 7 and 8, with new bad type profiles being a side product. We also
added by hand some bad type profiles along the way, and iterated the procedure until no further improvement
was found. In the end we pruned the catalogue into a set of five, giving the same upper bound as we had
already obtained.

We finally show that rU

3 is between 0.660 and 0.750. The upper bound follows from the following
proposition and Lemma 4.

Proposition 2. rU

3,2 ≤ 0.75.

Proof. Suppose J ∈ MechU

3,2 has ratio(J) > 0.75. By Lemma 1, we can assume J is neutral. For some ǫ > 0,
consider the valuation profile with u1(A) = u2(A) = 1− ǫ, u1(B) = u2(C) = 0, and u1(C) = u2(B) = 1. As
in the proof of Theorem 4, by neutrality, we must have that the probability of A being elected is at most 1

2 .
The statement follows by considering a sufficiently small ǫ.

The lower bound follows from an analysis of the quadratic-lottery of Feige and Tennenholtz [6]. The main
reason that we focus on this particular cardinal mechanism is given by the following lemma.

Lemma 7. Let J ∈ Mech3,n be a convex combination of Qn and any ordinal and neutral mechanism. Then

ratio(J) = lim inf
k→∞

min
u∈(Cm,k)n

E[
∑n

i=1 ui(J(u))]
∑n

i=1 ui(1)
.

Proof. The proof is a simple modification of the proof of Lemma 5. As in that proof, for a valuation profile

u = (ui), define g(u) =
E[

∑n
i=1

ui(J(u))]∑
n
i=1

ui(1)
. We show the following equations:

ratio(J) = inf
u∈V n

3

E[
∑n

i=1 ui(J(u))]

maxj∈M

∑n
i=1 ui(j)

(7)

= inf
u∈V n

3

g(u) (8)

= lim inf
k→∞

min
u∈(R3,k)n

g(u) (9)

= lim inf
k→∞

min
u∈(C3,k)n

g(u) (10)

Equation (8), (9) follows as in the proof of Lemma 5. Equation (10) follows from the following argument.
For a profile u = (ui) ∈ (R3,k)

n, let cu denote the number of pairs (i, j) with i being a voter and j a
candidate, for which ui(j) − 1/k and ui(j) + 1/k are both in [0, 1] and both not in the image of ui. Then,
C3,k consists of exactly those u in R3,k for which cu = 0. To establish equation (10), we merely have to
show that for any u ∈ R3,k for which cu > 0, there is a u′ ∈ R3,k for which g(u′) ≤ g(u) and cu′ < cu. We
will now construct such u′. Since cu > 0, there is a pair (i, j) so that ui(j) − 1/k and ui(j) + 1/k are both
in [0, 1] and both not in the image of ui. Let ℓ− be the smallest integer value so that ui(j) − ℓ/k is not in
the image of ui, for any integer ℓ ∈ {ℓ−, . . . , j − 1}. Let ℓ+ be the largest integer value so that ui(j) + ℓ/k
is not in the image of ui, for any integer ℓ ∈ {j + 1, . . . , ℓ+}. We can define a valuation function ux ∈ Vm

for any x ∈ [−ℓ−/k; ℓ+/k] as follows: ux agrees with ui except on j, where we let ux(j) = ui(j) + x. Let
ux = (ux, u−i). Now consider the function h : x → g(ux). Since J is a convex combination of quadratic-
lottery and a neutral ordinal mechanism, we see by inspection of the definition of the function g, that h
on the domain [−ℓ−/k; ℓ+/k] is the quotient of two quadratic polynomials where the numerator has second

17



derivative being a negative constant and the denominator is postive throughout the interval. This means
that h attains its minimum at either ℓ−/k or at ℓ+/k. In the first case, we let u′ = uℓ−/k and in the second,
we let u′ = uℓ+/k. This completes the proof.

Theorem 10. The limit of the approximation ratio of Qn as n approaches infinity, is exactly the golden
ratio, i.e., (

√
5− 1)/2 ≈ 0.618. Also, let Jn be the mechanism for n voters that selects random-favorite with

probability 29/100 and quadratic-lottery with probability 71/100. Then, ratio(Jn) >
33
50 = 0.660.

Proof. (sketch) Lemma 7 allows us to proceed completely as in the proof of Theorem 7, by constructing
and solving appropriate quadratic programs. As the proof is a straightforward adaptation, we leave out the
details.

Mechanism Jn of Theorem 10 achieves an approximation ratio strictly better than 0.64. In other words,
the best truthful cardinal mechanism for three candidates strictly outperforms all ordinal ones.

5 Conclusion

By the statement of Lee [12], mixed-unilateral mechanisms are asymptotically no better than ordinal mech-
anisms. Can a cardinal mechanism which is not mixed-unilateral beat this approximation barrier? Getting
upper bounds on the performance of general cardinal mechanisms is impaired by the lack of a characterization
of cardinal mechanisms a la Gibbard’s. Can we adapt the proof of Theorem 6 to work in the general setting
without ties? For the case of m = 3, can we close the gaps for ordinal mechanisms and for mixed-unilateral
mechanisms? How well can cardinal mechanisms do for m = 3? Theorem 5 holds for m = 3 as well, but
perhaps we could prove a tighter upper bound for cardinal mechanisms in this case.
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