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Abstract. A large fraction of online advertisement is sold via repeated
second price auctions. In these auctions, the reserve price is the main
tool for the auctioneer to boost revenues. In this work, we investigate
the following question: Can changing the reserve prices based on the
previous bids improve the revenue of the auction, taking into account
the long-term incentives and strategic behavior of the bidders? We show
that if the distribution of the valuations is known and satisfies the stan-
dard regularity assumptions, then the optimal mechanism has a constant
reserve. However, when there is uncertainty in the distribution of the
valuations, previous bids can be used to learn the distribution of the
valuations and to update the reserve price. We present a simple, ap-
proximately incentive-compatible, and asymptotically optimal dynamic
reserve mechanism that can significantly improve the revenue over the
best static reserve.

1 Introduction

Advertising is the main component of monetization strategies of most Internet
companies. A large fraction of online advertisements are sold via advertisement
exchanges platforms such as Google’s Doubleclick (Adx) and Yahoo!’s Right Me-
dia.1 Using these platforms, online publishers such as the New York Times and
the Wall Street Journal sell the advertisement space on their webpages to adver-
tisers. The advertisement space is allocated using auctions where advertisers bid
in real time for a chance to show their ads to the users. Every day, tens of billions
of online ads are sold via these exchanges [Muthukrishnan, 2009, McAfee, 2011,
Balseiro et al., 2011, Celis et al., 2014].

The second-price auction is the dominant mechanism used by the advertise-
ment exchanges. Among the reasons for such prevalence are the simplicity of
the second-price auction and the fact that it incentivizes the advertisers to be

? This paper appeared as a one page abstract in the proceedings of Web and Internet
Economics (WINE ), 2014, pp. 232–232. A subsequent paper by the same authors,
“Incentive-Compatible Learning of Reserve prices for Repeated Auctions,” to ap-
pear in Operations Research, features a different model (with bidders drawing i.i.d.
valuations across rounds) for a similar problem.

1 Other examples of major ad exchanges include Rubicon, AppNexus, and OpenX.
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truthful. The second price auction maximizes the social welfare (i.e., the value
created in the system) by allocating the item to the highest bidder.

In order to maximize the revenue in a second price auction, the auctioneer can
set a reserve price and not make any allocations when the bids are low. In fact,
under symmetry and regularity assumptions (see Section 2), the second-price
auction with an appropriately chosen reserve price is optimal and maximizes
the revenue among all selling mechanism [Myerson, 1981, Riley and Samuelson,
1981].

However, in order to set the reserve price effectively, the auctioneer requires
information about distribution of the valuations of the bidders. A natural idea,
which is widely used in practice, is to construct these distributions using the
history of the bids. This approach, though intuitive, raises a major concern with
regards to long-term (dynamic) incentives of the advertisers. Because the bid of
an advertiser may determine the price he or she pays in future auctions, this
approach may result in the advertisers shading their bids and ultimately in a
loss of revenue for the auctioneer.

To understand the effects of changing reserve prices based on the previous
bids, we study a setting where the auctioneer sells impressions (advertisements
space) via repeated second price auctions. We demonstrate that the long-term
incentives of advertisers plays an important role in the performance of these
repeated auctions by showing that under standard symmetry and regularity
assumptions (i.e., when the valuations of are drawn independently and identically
from a regular distribution), the optimal mechanism is running a second price
auction with a constant reserve and changing the reserve prices over time is
not beneficial. However, when there is uncertainty in the distribution of the
valuations, we show that there can be substantial benefit in learning the reserve
prices using the previous bids.

More precisely, we consider an auctioneer selling multiple copies of an item
sequentially. The item is either a high type or a low type. The type determines
the distribution of the valuations of the bidders. The type of the item is not
a-priori known to the auctioneer. Broadly, we show the following: when there is
competition between bidders and the valuation distributions for the two types
are sufficiently different from each other, there is a simple dynamic reserve mech-
anism that can effectively “learn” the type of the item, and thereafter choose the
optimal reserve for that type.2 As a consequence, the dynamic reserve mechanism
does much better than the best fixed reserve mechanism, and in fact, achieves
near optimal revenue, while retaining (approximate) incentive compatibility.3

To this end, we propose a simple mechanism called the threshold mechanism.
In each round, the mechanism implements a second price auction with reserve.
The reserve price starts at some value, and stays there until there is a bid
exceeding a pre-decided threshold, after which the reserve rises (permanently)
to a higher value.

2 On the other hand, when the valuation distributions for the two types are close to
each other, the improvement from changing the reserve is insignificant.

3 Approximate incentive compatibility implies that the agent behave truthfully if the
gain from deviation is small; see Section 2.
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We compare the revenue of our mechanism with two benchmarks. Our base-
line is the static second price auction with the optimal constant reserve. Our
upper-bound benchmark is the optimal mechanism that knows the type of the
impressions (e.g., high or low) in advance. These two benchmarks are typically
well separated. We show that the threshold mechanism is near optimal and
obtains revenue close to the upper-bound benchmark. In addition, we present
numerical illustrations of our results that show up to 23% increase in revenue
by our mechanism compared with the static second price auctions. These exam-
ples demonstrate the effectiveness of dynamic reserve prices under fairly broad
assumptions.

1.1 Related Work

In this section, we briefly discuss the closest work to ours in the literature along
different dimensions starting with the application in online advertising.

Ostrovsky and Schwarz [2009] conducted a large-scale field experiment at
Yahoo! and showed that choosing reserve prices, guided by the theory of optimal
auctions, can significantly increase the revenue of sponsored search auctions. To
mitigate the aforementioned incentive concerns, they dropped the highest bid
from each auction when estimating the distribution of the valuations. However,
they do not formally discuss the consequence of this approach.

Another common solution offered to mitigate the incentive constraints is to
bundle different types of impressions (or keywords) together so that the bid of
each advertiser would have small impact on the aggregate distribution learned
from the history of bids. However, this approach may lead to significant estima-
tion errors and setting a sub-optimal reserve.

To the extent of our knowledge, ours is the first work that rigorously studies
the long-term and dynamic incentive issues in repeated auctions with dynamic
reserves.

Iyer et al. [2011] and Balseiro et al. [2013] demonstrate the importance of
setting reserve prices in dynamic setting in environments where agents are un-
certain about their own valuations, and respectively, are budget-constrained. We
discuss the methodology of these papers in more details at the end of Section 4.
McAfee et al. [1989], McAfee and Vincent [1992] determine reserve prices in
common value settings.

Our work is closely related to the literature on behavior-based pricing strate-
gies where the seller changes the prices for a buyer (or a segment of the buyers)
based on her previous behavior; for instance, increasing the price after a purchase
or reducing the price in the case of no-purchase; see Fudenberg and Villas-Boas
[2007], Esteves [2009] for surveys.

The common insight from the literature is that the optimal pricing strategy is
to commit to a single price over the length of the horizon [Stokey, 1979, Salant,
1989, Hart and Tirole, 1988]. In fact, when customers anticipate reduction in
the future prices, dynamic pricing may hurt the seller’s revenue [Taylor, 2004,
Villas-Boas, 2004]. Similar insights are obtained in environments where the goal
is to sell a fixed initial inventory of products to unit-demand buyers who arrive
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over time [Aviv and Pazgal, 2008, Dasu and Tong, 2010, Aviv et al., 2013, Correa
et al., 2013].

There has been renewed interest in behavior-based pricing strategies, mainly
motivated by the development in e-commerce technologies that enables online
retailers and other Internet companies to determine the price for the buyer based
on her previous purchases. Acquisti and Varian [2005] show that when a sufficient
proportion of customers are myopic or when the valuations of customers increases
(by providing enhanced services) dynamic pricing may increase the revenue.
Another setting where dynamic pricing could boost the revenue is when the seller
is more patient than the buyer and discounts his utility over time at a lower rate
than the buyer [Bikhchandani and McCardle, 2012, Amin et al., 2013]. See Taylor
[2004], Conitzer et al. [2012] for privacy issues and anonymization approaches in
this context.
In contrast with these works, our focus is on auction environments and we study
the role of competition among strategic bidders.

The problem of learning the distribution of the valuation and optimal pricing
also have been studied in the context of revenue management and pricing for
markets where each (infinitesimal) buyer does not have an effect on the future
prices and demand curve can be learned with optimal regret [Besbes and Zeevi,
2009, 2012, Harrison et al., 2012, den Boer and Zwart, 2014, Segal, 2003]. In this
work, we consider a setting where the goal is to learn the optimal reserve price
with strategic and forward looking buyers, with multi-unit demand, where the
action of each buyer can change the prices in the future.

Organization The remaining of the paper is organized as follows. In Section 2, we
formally present the model followed by the description of the threshold mecha-
nisms in Section 3. We show that the mechanism is dynamic incentive compatible
in Section 4. In Sections 5, we present an extension of the threshold mechanism.

2 Model and Preliminaries

A seller auctions off T > 1 items to n ≥ 1 agents in T rounds of second price
auctions, numbered t = 1, 2, . . . , T . The items are of type high or low denoted
by s ∈ {L,H}, where informally we think of an item of type H as being more
valuable than an item of type L. The items are all of the same type. The type is
s with probability ps.

The valuation of agent i ∈ {1, . . . , n} for an item of type s, denoted by vi,
is drawn independently and identically from distribution Fs, i.e., the valuations
are i.i.d. conditioned on s. Note that agents’ valuations are identical in each
round (if they participate, see below). In Section 6 we consider an extension of
our model where the valuations of the agents may change over time.

Each agent participates in each auction with probability αi exogenously and
independently across rounds and agents. One can think of αi’s as throttling
probabilities 4 or matching probabilities to a specific user demographic [Celis

4 Due to budget and bandwidth constraints or other considerations, online advertising
platforms often randomly select a subset of bidders, from all eligible advertisers, to
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et al., 2014]. Let Xit be the indicator random variable corresponding to the
participation of agent i in auction at time t. Note that αi = E[Xit]. We denote
the realization of Xit by xit. Agent i learns xit at the beginning of round t. In
particular, our (incentive compatibility) results hold in the special case when
all the agents participate in all the auctions, i.e., αi = 1 for all i. Participation
probabilities allow us to model environments where a small number of bidders
participate in auctions (cf. Celis et al. [2014]).

Information Structure We assume T , pL, and pH to be common knowledge. We
also assume that the type of the item s is common knowledge among the agents
but unknown to the auctioneer, who only knows ps. This assumption is moti-
vated in part by the application where sometimes advertisers may have more
information about the value of a user or an impression than the publisher. Also,
it corresponds to a stronger requirement for the incentive compatibility of the
mechanism; hence, our results remain valid if the agents have the same infor-
mation as the seller about the type of the item. Similarly, we assume that αi’s
are common knowledge among the agents and the auctioneer. Our mechanism
remains incentive compatible, as defined below, if the agents have incomplete
information about the αi’s. At the beginning, each agent i knows his own valu-
ation, vi, but not the other agents’ valuations (but agents may make inferences
about the valuations of the other agents over time).

Let us now consider the seller’s problem. The seller aims to maximize her
expected revenue via a repeated second price auction.

A “generic” dynamic second price mechanism At time 0, the auctioneer
announces the reserve price function Ω : H → R+ that maps the history observed
by the mechanism to a reserve price. The history observed by the mechanism up
to time τ , denoted by HΩ,τ ∈ H, consists of, for each round t < τ , the reserve
price, the agents participating in round t and their bids, and the allocation and
payments at that round. More precisely,

HΩ,τ = 〈(r1, x1, b1, q1, p1), · · · , (rτ−1, xτ−1, bτ−1, qτ−1, pτ−1)〉

where

– rt is the reserve price at time t.
– xt = 〈x1t, · · · , xnt〉. Recall that xit is equal to 1 if agent i participates in

the auction for item t.
– bt = 〈b1t, · · · , bnt〉 where bit denotes the bid of agent i at time t. We assign
bit = φ if xit = 0, i.e., if agent i does not participate in round t.

– qt corresponds to the allocation vector. Since the items are allocated via the
second price auction with reserve rt, if all the bids are smaller than rt, the
item is not allocated. Otherwise, the item is allocated uniformly at random
to an agent i? ∈ arg maxi{bit} and we have qi? = 1. For all the agents that
did not receive the item, qit is equal to 0.

participate in the auction. This process is referred to as throttling [Goel et al., 2010,
Charles et al., 2013].
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– pt is the vector of payments. If qit = 0, then pit = 0 and if qit = 1, then
pit = max {maxj 6=i {bjt} , rt}.

Note that in our notation, Ω includes a reserve price function for each t =
1, 2, . . . , T . The length of the history H implicitly specifies the round for which
the reserve is to be computed.

An important special case is a static mechanism where the reserve is not a
function of the previous bids and allocations.

We can now define the seller problem more formally. The seller chooses a
reserve price function Ω that maximizes the expected revenue, which is equal

to E
[∑T

t=1

∑n
i=1 pit

]
, when the buyers play an equilibrium with respect to the

choice of Ω. In order to define the utility of the agents, let Hik denote the history
observed by agent i up to time t including the allocation and payments of (only)
agent i. Namely,

Hik = 〈(r1, xi,1, bi,1, qi,1, pi,1), · · · , (rt−1, xi,t−1, bi,t−1, qi,t−1, pi,t−1)〉.

Next, we state precise definitions of a bidding strategy and a best response.

Definition 1 (Bidding Strategy). Bidding strategy Bi : R × Hi × R → R
of agent i maps the valuation of the agent vi, history Hit, and the reserve rt
at time t to a bid bit = Bi(vi, Hit, rt). Here Hi is the set of possible histories
observed by agent i.

Definition 2 (Best-Response). Given strategy profile < B1, B2, · · · , Bn >,
Bi is a best-response strategy to the strategy of other agents B−i, if, for all s
and vi in the support of Fs, it maximizes the expected utility of agent i,

Ui(vi, s, Bi, B−i) = E

[
T∑
t=1

viqit − pit

]
,

where the expectation is over the valuations of other agents, the participation
variables xjt’s, and any randomization in bidding strategies. Strategy Bi is an
ε-best-response if, for all vi in the support,

Ui(vi, s, Bi, B−i) ≥ Ui(vi, s,BR(vi, s, B−i), B−i) + Tαiε ,

where BR denotes a best response.

A mechanism is incentive compatible if, for each agent i, the truthful strategy
is a best-response to the other agents being truthful. In this paper, we consider
the notion of approximate incentive compatibility that implies that an agent does
not deviate from the truthful strategy when the benefit from such deviation
is insignificant. This notion is appealing when characterizing, or computing,
the best response strategy is challenging and has been studied for static games
(cf. Daskalakis et al. [2009], Chien and Sinclair [2011], Kearns and Mansour
[2002], Feder et al. [2007], Hémon et al. [2008]) as well as dynamic games, such
as ours, where finding the best response strategy of an agent corresponds to
solving a complicated (stochastic) dynamic program [Iyer et al., 2011, Balseiro
et al., 2013, Gummadi et al., 2013, Nazerzadeh et al., 2013].
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Definition 3 (Approximate Incentive Compatibility). A mechanism is ε-
incentive compatible if the truthful strategy of agent i is an ε-best-response to
the truthful strategy of other agents for all s and all vi in the support of Fs.

Note that αiT is the expected number of rounds in which agent i partic-
ipates. Therefore, under an ε-incentive compatible mechanism, on average the
agent loses at most ε in utility, relative to playing a best response, per-round of
participation.

We now define a stronger notion of incentive compatibility. In Section 4, we
provide conditions under which our proposed mechanism satisfies these stronger
notion. By a realization, denoted by (vi, x

T
i )ni=1, we refer to a valuation vector

(v1, v2, . . . , vn) along with a participation vector (xT1 , x
T
2 , . . . , x

T
n ).

Definition 4 (Dynamic Incentive Compatibility). We call a realization
ε-good with respect to a mechanism, if truthfulness, for each agent i and in
each round t ∈ {1, 2, . . . , T}, remains an (additive) εαi(T − t)-best-response to
the truthful strategy of the other agents. We say that a mechanism is (δ, ε)-
dynamic-incentive-compatible if the probability of the realization being ε-good
with respect to the mechanism is at least 1− δ.

Thus, in a (δ, ε)-dynamic-incentive-compatible mechanism, assuming truthful
bidding, with probability at least 1−δ the realization satisfies the following prop-
erty: for each bidder and each round that the bidder participates, the average
cost of truthful bidding is at most ε for each future round that he may partic-
ipate in, relative to a best response. The above definition extends the notion
of (exact) interim dynamic incentive compatibility [Bergemann and Välimäki,
2010] which implies that the agents will not deviate from the truthful strategy
even as they obtain more information over time.

Benchmarks

In the next section, we propose a simple approximately incentive compatible
mechanism for the setting described above. We compare our proposed mechanism
with two benchmarks that provide a lower-bound and an upper-bound on the
revenue of the best dynamic second price mechanism.

The lower-bound mechanism, which we refer to as the static mechanism, at
each step, implements a second price auction with a constant reserve r0. The
reserve is chosen at time 0 before the mechanism observes any of the bids and
does not change over time.5

For the upper-bound, we consider the optimal T -round mechanism that
knows the type of the items.

5 Since the valuations of the agents are correlated through the type of the items,
finding the optimal static auction is challenging and could be computationally in-
tractable [Papadimitriou and Pierrakos, 2011]. Cremer and McLean [1988] proposed
a mechanism that can extract the whole surplus if the valuations are correlated, how-
ever, their mechanism is not practical and does not satisfies the desirable ex-post
individual rationality property; also see Section 6.
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Lemma 1 (Upper-bound). Let Ms
T be the optimal T -round mechanism that

knows the type of the item, s. Similarly, Ms
1 corresponds to the optimal (static)

mechanism when T = 1. Then, the revenue of Ms
T , denoted by Revenue(Ms

T ),
is bounded by T × Revenue(Ms

1). Furthermore, if mechanism Ms
1 is ex-post

incentive compatible, then,Ms
T can be implemented by repeating mechanismMs

1

at each step t = 1, · · · , T .

We prove the first claim in the appendix using a reduction argument that
reduces a mechanism in a T -round setting to a mechanism in a single-round. If
mechanismMs

1 is ex-post incentive compatible, the leakage of information from
one round to another does not change the strategy of the bidders. Recall that for
private value settings, ex-post incentive compatibility implies that truthfulness is
a (weakly) dominant strategy for each agent for any realizations of other agents’
valuations — the second price auction with reserve satisfies this property.

Through out this paper, we make the following standard regularity assump-
tion (cf. Myerson [1981]).

Assumption 1 (Regularity) Distribution Fs, s ∈ {L,H}, with density fs, is

regular, i.e., c.d.f. Fs(v) and
(
v − 1−Fs(v)

fs(v)

)
are strictly increasing in v over the

support of Fs.

Examples of regular distributions include many common distributions such as
the uniform, Gaussian, log-normal, etc.

If s is known and Fs is regular, thenMs
1, the optimal mechanism for T = 1,

is the second price auction with reserve price r?s that is the unique solution of

r − 1− Fs(r)
fs(r)

= 0 . (1)

Therefore, by Lemma 1, we obtain the following.

Theorem 1 (No “dynamic” improvement with single type). If the val-
uations are drawn i.i.d. from a regular distribution (e.g., s is known and Fs is
regular), the optimal mechanism is the second price auction with a constant re-
serve that is the solution of Eq. (1) and there is no benefit from having dynamic
reserve prices.

The theorem above is similar to the previous results in the literature for
settings with a single buyer [Stokey, 1979, Salant, 1989, Hart and Tirole, 1988,
Acquisti and Varian, 2005] and generalizes their insights to auction environments
with multiple buyers.

In the next section, we preset a simple mechanism that exploits correlations
between valuations (via types s) and the competition among bidders to extract
higher revenue than the static mechanism and in fact, for a broad class of dis-
tributions of valuations, obtains revenue close to the upper-bound benchmark.
Further, the mechanism is approximately incentive compatible.
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3 The Threshold Mechanism

In this section, we present the class of threshold mechanisms.

A threshold mechanism is defined by three parameters and is denoted by
M(ρ, rL, rH) where rL is the initial reserve price. The reserve stays rL until any
of the agents bid above ρ, then for all subsequent rounds, the reserve price will
increase to rH . If there are no bids above ρ, the reserve stays rL until the end.

As we demonstrate in the following, this class of mechanisms (and a gen-
eralization of it, presented in Section 5, include good candidates for boosting
revenue if the modes of FL and FH are sufficiently well separated. The idea
is to choose ρ such that the valuation of an agent is unlikely to be above ρ if
s = L, whereas, a valuation exceeding ρ is quite likely if s = H. Moreover, as
we establish, truthful bidding forms an approximate equilibrium in this case, so
for almost all realizations, the mechanism does correctly infer s.

To convey the intuition behind our incentive compatiblity results, we start
with the following (warm up) proposition.

Proposition 1. Suppose that FL is supported on [0, L̄) and FH is supported on
[H,∞) for L̄ < H and αi = 1 for at least 2 agents. Consider any rL < rH .
Then, M(ρ, rL, rH), for any ρ ∈ (L̄,H), is incentive compatible.

Proof: Consider agent i and round t where i participates (i.e., xit = 1). First
observe that since bidding truthfully is a (weakly) dominant strategy in the
second-price auction, truthfulness is a myopic best-response in our setting.

If s = L, then bidding truthfully will not increase the reserve in the future
rounds and truthfulness is a (weakly) dominant strategy. Now suppose s = H.
If r = rH in round t, then again truthful bidding is a best response, since the
reserve will continue to be rH for the remaining rounds. On the other hand, if
r = rL (and s = H), at least one other agent will participate in the auction
at time t. At the equilibrium, the other agent will bid truthfully, hence above
ρ, and the reserve will be rH for the remaining rounds in any case. So bidding
truthfully is a best response, since it is myopically a best response. �

We now show that the threshold mechanism is approximately incentive com-
patible when the support of the distributions overlap and the distribution of the
low type is bounded. We also provide an example that shows a significant boost
in the revenue.

Theorem 2. Let FL be supported on [0, L̄], L̄ < ∞. Let r?s be the solution of

r− 1−Fs(r)
fs(r)

= 0. Consider any positive ε < r?H − r?L. Let α = mini αi > 0. Define

n0 ≡ 1 +
1.59 log(2(r?H − r?L)/ε)

(1− FH(ρ))
<∞ ,

T0 ≡
2(r?H − r?L)

ε

⌈
n0 − 1

(n− 1)α

⌉
.

Consider ρ ≥ L̄ such that (1 − FH(ρ)) > 0. Then, Mechanism M(ρ, r?L, r
?
H)

is ε-incentive-compatible for all n ≥ n0 and T ≥ T0. In addition, the expected
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revenue for each s ∈ {L,H} is at least (Revenue(Ms
1)− ε)T , where Ms

1 is the
optimal single-round mechanism that knows s in advance and can be obtained
using a constant reserve of r?s .

Thus, using mechanism M(ρ, r?L, r
?
H) in this setting, truthful bidding is an ap-

proximate equilibrium and the revenue is very close to the benchmark.
Defining δ = ε/(r?H−r?L), an appealing feature of Theorem 2 is that the lower

bound on number of bidders, n0, grows only as O(log(1/δ)). On the other hand,
the lower bound on number of rounds T0 grows as O(log(1/δ)/δ) for nα = Ω(1).
This is somewhat larger than n0 for small ε but this is not a major concern since
the number of identical (or very similar) impressions is often large in online
advertising settings. The below example demonstrates a numerical illustration
of Theorem 2.

Fig. 1. Illustration of distributions in Example 1. FL is the normal distribution, with
mean 1 and standard deviation 0.4, truncated to interval [0, 3], and FH = N (3, 0.82),
i.e., normal with mean 3 and standard deviation 0.8. We use ρ = 3.

Example 1. Suppose FL is the normal distribution, with mean 1 and standard
deviation 0.4, truncated to interval [0, 3], and FH = N (3, 0.82), i.e., normal with
mean 3 and standard deviation 0.8. These distributions are shown in Figure
3. Also, let nα = 1, αi = α for all i. Note that each agent participates in
αT = T/n rounds on average, making it non-trivial to have dynamic reserves
without losing incentive compatibility if T/n is much larger than 1. We have
r?L ≈ 0.796 and r?H ≈ 2.318. Using ρ = 3 gives n0 ≈ 19.52. Using n = 20, we
obtain T0 ≈ 6800 for ε = 0.009 so we consider T = T0 = 6800 in our simulations.
The (optimal) static second price auction obtains average-revenue per-round
equal to 0.755 using (constant) reserve price 1.05. MechanismM(ρ, r?L, r

?
H) yields

per-round revenue of 0.935 (Theorem 2 guarantees that the loss relative to the
optimal revenue is ε = .009 at most per round) improving more than 23% over
the static mechanism. The per-round revenue of the optimal mechanism that
knows the type of the impressions is equal to 0.938. The 95% confidence error
in estimating the revenues is less than 0.007. The average welfare of a buyer
per round of participation, averaged over s and vi is found to be 0.335 (with
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95% confidence error 0.002). Note that given this implies that the threshold
mechanism is ε = 0.009-incentive compatible.

4 Dynamic Incentive Compatibility

In this section, we show that, with high probability, no agent has a large incen-
tive to deviate from the truthful strategy in later rounds after acquiring new
information. We also relax the requirement that FL needs to have bounded sup-
port.

Theorem 3. Recall (1). Let λ = 1 − FL(ρ). Consider any ε < r?H − r?L and
let δ = ε/(r?H − r?L). Then, Mechanism M(ρ, r?L, r

?
H) is (δ, ε)-dynamic incentive

compatible for all n ∈ [n1, n2] and T ≥ T1 where

n1 ≡ 1 +
3.18 log(2/δ)

(1− FH(ρ))
<∞ ,

n2 ≡ δ/λ ,

T1 ≡
4

δ

⌈
n1 − 1

(n− 1)α

⌉
.

Further, the expected revenue of the mechanism is additively within εT of the
benchmark revenue under truthful bidding.

Note that this theorem requires an n to be not too large. The assumed upper
bound on n can be eliminated in two different ways: In the (immediate) corollary
below, we assume a bounded support for FL leading to λ = 0⇒ n2 =∞. Later in
Section 5, we introduce a generalized threshold mechanism, which then facilitates
a result similar to Theorem 3 while allowing n to be arbitrarily large (Theorem
4).

Corollary 1 (Bounded Support). Recall (1). Let FL be supported on [0, L̄],
L̄ < ∞. Consider any ε < r?H − r?L and let δ = ε/(r?H − r?L). Then, Mechanism
M(ρ, r?L, r

?
H) is (δ, ε)-dynamic incentive compatible for all n ≥ n1 and T ≥ T1

where

n1 ≡ 1 +
3.18 log(2/δ)

(1− FH(ρ))
<∞ ,

T1 ≡
4

δ

⌈
n1 − 1

(n− 1)α

⌉
.

Further, the expected revenue of the mechanism is additively within εT of the
benchmark revenue under truthful bidding.

Comparing with Theorem 2, we see that the cost of the stronger notion of
equilibrium here is only a factor 2 loss in n1 and a further factor 2 loss in T1.

We prove Theorem 3 in the appendix. We state below the main lemma leading
to a proof of dynamic incentive compatibility s = H.
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Let Qt be the event that the reserve in round t+ 1 is r?H assuming truthful
bidding (thus Qt, here, is the event that a bidder with valuation exceeding ρ
participates in one of the first t rounds). Let Q∼it be the event that the reserve
in round t + 1 would have been r?H assuming truthful bidding even if the bids
of agent i are removed (thus Q∼it , here, is the event that a bidder j 6= i with
valuation exceeding ρ participates in one of the first t rounds). Let

tδ = min{t : ∃i s.t. Pr
(
Q∼it

∣∣s = H
)
≥ 1− δ} (2)

(It turns out that tδ ≤ d n1−1
(n−1)αe.) By definition, Qt ⊇ Q∼it for all i and all

t. It follows that Pr(Qtδ |s = H) ≥ 1 − δ, so, in establishing (δ, ε)-dynamic
incentive compatibility, we can ignore the trajectories under which Qtδ does
not occur (these trajectories have combined probability bounded above by δ).
Under Qtδ , the reserve in round tδ + 1 (and all later rounds) is already r?H ,
making truthful bidding an exact best response in those rounds. Also, for agents
whose valuation is less than ρ, truthful bidding is always a best response. For
an agent i with valuation exceeding ρ, on the equilibrium path, the only time
that i may potentially benefit from not being truthful is the first time that i
participates (and if the reserve is still r?L); once i has bid truthfully once, future
bids of i have no impact on the reserve and truthful bidding is a best response.6

Hence, it suffices to show that under s = H for t ≤ tδ, if an agent i participates
for the first time in round t, truthful bidding is (additively) α(T − tδ)ε-optimal,
assuming that others bid truthfully, even if the reserve is still r?L in round t.

Lemma 2. Assume that s = H, n ≥ n1 , ε < (r?H − r?L). Let tδ be defined as in
Eq. (2). For any agent with valuation exceeding ρ who participates for the first
time in a round t ≤ tδ, and sees a reserve r?L, truthful bidding is (additively)
α(T − tδ)ε-optimal, assuming that others bid truthfully. Further, we have tδ ≤
τ =

⌈
(n1−1)
(n−1)α

⌉
and Pr(Qtδ |s = H) ≥ 1− δ.

5 The Generalized Threshold Mechanism

We now present a generalization of the threshold mechanism that allows us
to significantly weaken the required bound on the right tail of the low type
distribution of Theorem 3.

The generalized threshold mechanism is defined by four parameters and is
denoted by M(ρ, rL, rH , k) where rL is the initial reserve price. The reserve
stays rL until k distinct agents bid above ρ (possibly in different rounds). If this
occurs then for all subsequent rounds, the reserve price will increase to rH .

6 In the present setting with mechanism M(ρ, r?L, r
?
H), agent i will see a reserve that

has already risen to r?H in each subsequent round that i participates in. (Later we
will generalize the threshold mechanism in Section 5, but it will still be true that if i
bids above ρ once, future bids of i will not affect the reserve, hence truthful bidding
will be exactly optimal in subsequent rounds.)
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Theorem 4. Recall (1). Let λ = 1 − FL(ρ). Assume λ ≤ (1 − FH(ρ))/18. Fix
positive ε < r?H − r?L. Define δ = ε/(r?H − r?L). Let

n3 ≡ 1 + 8.48 log(2/δ)/(1− FH(ρ)) <∞ ,

n4 ≡ 0.56 log(2/δ)/λ ,

n̄ ≡ max(n3, n4) ,

T1 ≡
4

δ

⌈
n3 − 1

(min(n, n̄)− 1)α

⌉
.

We provide mechanisms that work well for any n ≥ n3 and T ≥ T1.

– Suppose n3 < n4. For all n ∈ [n3, n4] and T ≥ T1 = 4
δ

⌈
n3−1

(n−1)α

⌉
, the gener-

alized threshold mechanism M(ρ, r?L, r
?
H , 2.26 log(2/δ)) is (δ, ε)-dynamic in-

centive compatible, and it is additively εT close to the revenue benchmark.

– For all n ≥ max(n3, n4) and T ≥ T1 = 4
δ

⌈
n3−1

(n̄−1)α

⌉
, the generalized threshold

mechanism M(ρ, r?L, r
?
H , 4λn) is (δ, ε)-dynamic incentive compatible, and it

is additively εT close to the revenue benchmark.

As a remark to ease the burden of notation: note that T1 ≤ 4
δ

⌈
1
α

⌉
for the n values

of interest, i.e., for n ≥ n3. In other words, 4
δ

⌈
1
α

⌉
rounds suffice to obtain our

positive results. Also, note that for nα = Θ(1), we still have n3 = O(log(1/δ))
and T1 = O(log(1/δ)/δ) as was the case for Theorem 2, so our requirements on
the number of bidders and number of rounds needed continue to be reasonable.

6 Discussion

Transient Valuations So far we assumed that the valuations of the agents
are constant over time. In this section, we consider the following extension of
our model: each time an agent participates, he draws a new valuation from Fs
independently with some probability β (our original model corresponds to the
case β = 0), and retains his previous valuation with probability 1− β.

We observe that our incentive compatibility result of Theorem 2 (also Corol-
lary 1) holds in this setting because the incentive of the agents to deviate is
even smaller and the proof work nearly as before for any β ∈ [0, 1]. In addition,
Theorem 1 holds if we consider mechanisms that are periodic ex-post individu-
ally rational [Bergemann and Välimäki, 2010]; in other words, the utility of any
truthful agent at the end of each round t, 1 ≤ t ≤ T should be non-negative.

The following example shows that a mechanism that is not ex-post individ-
ually rational can obtain a higher revenue by charging the agents a high price
in advance: Suppose there is only one agent (n = 1), the agent participates in
all rounds (α = 1), and the agent draws a new valuation at each round from the
uniform distribution over [0, 1] (β = 1). It is not difficult to see that the optimal
constant reserve for this setting is equal to 1

2 which yields the expected revenue

of T
4 since the agent will purchase the item with probability 1

2 . Now consider a

mechanism that offers reserve price T−1
2 − ε (for an arbitrarily small ε) in the
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first round and if the agent accepts that price, the mechanism offers the item for
free in the future rounds, and if the agent refuses the offer, the mechanism posts
a price of 1 at each round. Observe that the agent will accept the mechanism’s
offer in the first round and the revenue obtained in this case is equal to T−1

2 − ε.
However, this mechanism is not ex-post individually rational. For β ∈ (0, 1)
the optimal mechanism (that does not satisfy the ex-post IR property) would
take the form of contracts followed by sequence of auctions [Kakade et al., 2013,
Battaglini, 2005].

Connection to Mean Field Equilibrium We now comment briefly on the
connection between our work, and the concept of mean field equilibrium. A
number of recent papers study notions of mean field equilibrium, e.g., Iyer et al.
[2011], Balseiro et al. [2013] study mean field equilibria in dynamic auctions,
and Gummadi et al. [2013] studies mean field equilibrium in multiarmed ban-
dit games. An agent making a mean field assumption assumes that the set of
competitors (or cooperators) she faces will be drawn uniformly at random from
a large pool of agents with a known distribution of types. In our work, agents’
participate in a particular round of a dynamic auction independently at random,
but our results do not require n → ∞ and agents retain their valuation for all
rounds in which they participate. In Theorem 3, one can have any fixed number
of agents exceeding n1 = O(log(1/ε)), and participants reason about the poste-
rior distribution of competitors they will face in a round, given the information
available to them. This posterior distribution of the valuations of competitors
is in general different from the prior distribution of valuations and evolves from
one round to the next.

7 Conclusion

We considered repeated auctions of items, all of the same type, with the auc-
tioneer not knowing the type of the items a-priori. In our model, the issue of
incentives is challenging because a bidder typically participates in multiple auc-
tions, and is hence sensitive to changes in future reserve prices based on current
bidding behavior. We demonstrated a fairly broad setting in which a simple
dynamic reserve second price auction mechanism can lead to substantial im-
provements in revenue over the best fixed reserve second price auction. In fact,
our threshold mechanism is approximately truthful and achieves near optimal
revenue in our setting. We demonstrate a numerical illustration of our results
with a reasonable choice of model parameters, and show significant improvement
in revenue over the static baseline.

For our future work, we would like to investigate the effects of various prop-
erties of the (joint) distributions of the valuation of the advertisers (e.g., more
than two types), the characteristics of learning algorithms (as opposed to simple
threshold mechanisms), and the effect of the rate (and manner) in which the
valuations of advertisers change over time on the equilibrium and the revenue of
the auctioneer.
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Dirk Bergemann and Juuso Välimäki. The dynamic pivot mechanism. Econo-
metrica, 78:771–789, 2010.

Omar Besbes and Assaf Zeevi. Dynamic pricing without knowing the demand
function: risk bounds and near-optimal algorithms. Operations Research, 57:
1407–1420, 2009.

Omar Besbes and Assaf Zeevi. Blind network revenue management. Operations
Research, 60:1520–1536, 2012.

Sushil Bikhchandani and Kevin McCardle. Behavior-based price discrimination
by a patient seller. B.E. Journals of Theoretical Economics, 12, June 2012.

L. Elisa Celis, Gregory Lewis, Markus Mobius, and Hamid Nazerzadeh. Buy-
it-now or take-a-chance: Price discrimination through randomized auctions.
Management Science, 2014.

Denis Charles, Deeparnab Chakrabarty, Max Chickering, Nikhil R. Devanur,
and Lei Wang. Budget smoothing for internet ad auctions: A game theoretic
approach. In Proceedings of the Fourteenth ACM Conference on Electronic
Commerce, EC ’13, pages 163–180, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-1962-1.

Steve Chien and Alistair Sinclair. Convergence to approximate nash equilibria
in congestion games. Games and Economic Behavior, 71(2):315327, 2011.

Vincent Conitzer, Curtis R. Taylor, and Liad Wagman. Hide and seek: Costly
consumer privacy in a market with repeat purchases. Marketing Science, 31
(2):277–292, March 2012. ISSN 1526-548X.



Dynamic Reserve Prices for Repeated Auctions: Learning from Bids 17

José Correa, Ricardo Montoya, and Charles Thraves. Contingent preannounced
pricing policies with strategic consumers. Working Paper, 2013.

Jacques Cremer and Richard P McLean. Full extraction of the surplus in
bayesian and dominant strategy auctions. Econometrica, 56(6):1247–57,
November 1988.

Constantinos Daskalakis, Aranyak Mehta, and Christos H. Papadimitriou. A
note on approximate nash equilibria. Theor. Comput. Sci., 410(17):1581–1588,
2009.

Sriram Dasu and Chunyang Tong. Dynamic pricing when consumers are strate-
gic: Analysis of posted and contingent pricing schemes. European Journal of
Operational Research, 204(3):662–671, August 2010.

Arnoud V. den Boer and Bert Zwart. Simultaneously learning and optimizing
using controlled variance pricing. Management Science, 2014.

Rosa Branca Esteves. A survey on the economics of behaviour-based price dis-
crimination. NIPE Working Papers 5/2009, NIPE - Universidade do Minho,
2009.

Tomás Feder, Hamid Nazerzadeh, and Amin Saberi. Approximating nash equi-
libria using small-support strategies. In Jeffrey K. MacKie-Mason, David C.
Parkes, and Paul Resnick, editors, ACM Conference on Electronic Commerce,
pages 352–354. ACM, 2007. ISBN 978-1-59593-653-0.

Drew Fudenberg and J. Miguel Villas-Boas. Behavior-Based Price Discrimina-
tion and Customer Recognition. Elsevier Science, Oxford, 2007.

Ashish Goel, Mohammad Mahdian, Hamid Nazerzadeh, and Amin Saberi. Ad-
vertisement allocation for generalized second-pricing schemes. Operations Re-
search Letters, 38(6):571–576, 2010.

Ramki Gummadi, Peter Key, and Alexandre Proutiere. Optimal bidding strate-
gies and equilibria in dynamic auctions with budget constraints. Working
Paper, 2013.

J. Michael Harrison, N. Bora Keskin, and Assaf Zeevi. Bayesian dynamic pricing
policies: Learning and earning under a binary prior distribution. Management
Science, 58(3):570–586, 2012.

Oliver D. Hart and Jean Tirole. Contract renegotiation and coasian dynamics.
Review of Economic Studies, 55:509–540, 1988.
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A Appendix

A.1 Proof of Theorem 2

We now prove Theorem 2 by first showing that threshold mechanism ε-incentive-
compatible. First assume s = L. Consider any agent i with valuation vi ∈
[0, L̄] and assume that other agents are truthful always. Since vi ≤ ρ, it is
clear that truthful bidding weakly dominates any other strategy, since this is
true myopically, the reserve is unaffected, and the bidding behavior of others is
unaffected by the bids of agent i. In this case, the reserve remains r?L and the
agents bid truthfully throughout, so there is no loss in revenue.

Now assume s = H. In Appendix D, we prove the following lemma.
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Lemma 3. Assume s = H, n ≥ n0 ≡ 1 + C log(2/δ)/(1 − FH(ρ)). Fix an
agent i. With probability at least 1 − (δ/2)C/1.59, irrespective of what agent i
does, at least k = 1 bidder j 6= i with valuation exceeding ρ will bid in the

first τ =
⌈
n0−1

(n−1)α

⌉
rounds. For k ≤ C log(2/δ)/3.18, at least k bidders different

from i with valuation exceeding ρ will bid in the first τ =
⌈
n0−1

(n−1)α

⌉
rounds with

probability at least 1− (δ/2)C/4.24.

Here we have used 1/(1 − e−1) < 1.59. We now show how the lemma, for
k = 1, implies the results.

Proof of Theorem 2. In the first τ ≤ εT
2(r?H−r?L) rounds, agent i being truthful

can cause the reserve to rise though it wouldn’t otherwise have risen, leading to
a loss of at most (r?H − r?L)αiτ ≤ αiεT

2 in expected utility for the agent. If the
reserve would not have risen in the first τ rounds but agent i caused it to rise,
this can lead to a further loss of up to (r?H − r?L) per round of participation,
and such a loss occurs with probability at most ε/(2(r?H − r?L)) from Lemma
3, leading to a bound of αiεT

2 for this loss to the agent. Combining yields the
overall bound of αiεT on the loss incurred by agent i by being truthful relative
to any other strategy for s = H.

Finally we bound the loss in revenue from using this mechanism if s = H.
Recall that the optimal auction if the auctioneer knows s = H beforehand is to
commit and run a second price auction with reserve r?H in all rounds. Hence,
similar to the above, the expected revenue loss to the auctioneer is bounded by
τ(r?H − r?L) + ε

2(r?H−r?L) · T (r?H − r?L) ≤ εT if s = H. Since for each possible s, the

expected loss in revenue is bounded above by εT , the same bound holds when
we take expectation over s. �

B Proof of Theorem 3

First assume s = L. A simple union bound ensures that that all bidders have
a valuation of at most ρ with probability at least 1 − λn ≥ 1 − δ, in which
case truthful bidding weakly dominates any other strategy. (Since vi ≤ ρ, it is
clear that truthful bidding weakly dominates any other strategy, since this is
true myopically and the bidding behavior of others is unaffected by the bids of
agent i.) Hence, the realization is 0-good with respect to the mechanism with
probability at least 1 − δ. Further, we can easily bound the loss in expected
revenue relative to the benchmark under truthful bidding: There is no loss with
probability 1− δ (the mechanism matches the benchmark mechanism, since the
reserve remains r?L throughout) and a loss of at most (r?H − r?L)T (due to the
reserve rising to r?H) with probability δ. Thus, the loss in expected revenue is
bounded by δ(r?H − r?L)T = εT as required.

Now assume s = H. For any agent with a valuation less than or equal to ρ,
truthful bidding again weakly dominates any other strategy, since this is true
myopically and the bidding behavior of others is unaffected by the bids of agent
i. It remains to deal with agents whose valuation exceeds ρ, to establish that
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truthful bidding is (δ, ε)-incentive-compatible. In particular, we need to show
that with probability at least 1 − δ, the realization is ε-good with respect to
the mechanism, i.e., that each such agent i loses no more than αi(T − t)ε in
expectation on the equilibrium path from bidding truthfully in round t, for each
t that i participates in. But this follows from Lemma 2: all realizations such
that Qtδ occurs are ε-good, and Pr(Q(tδ)) ≥ 1 − δ. See the argument after the
statement of Theorem 3 in Section 3 for further details.

It remains to show that the loss in revenue is no more than εT , assuming
truthful bidding under ε-good realizations. Now, using Lemma 3 and Qt ⊇ Q∼it ,
we have

Pr(Qτ ) ≥ 1− (δ/2)2 ≥ 1− δ/2 .

Under Qτ , the mechanism matches the benchmark mechanism for rounds after
τ and hence there is no loss in revenue relative to the benchmark, after the
first τ rounds. In any round, the loss due to setting the wrong reserve (under
truthful bidding) is bounded by r?H − r?L. Under Q̄τ , the loss can be this large
in each of T rounds, in worst case. It follows that the overall loss in revenue is
bounded by (r?H − r?L)(τ + Pr(Q̄τ )T ). But by definition, τ = δT1/4 ≤ Tδ/4 and
Pr(Q̄τ ) ≤ δ/2, implying that the loss in revenue relative to the benchmark is at
most (r?H − r?L)δ(3/4)T = (3/4)εT ≤ εT as required, using the definition of δ.

C Proof of Theorem 4

We start with the first bullet. The proof for s = H follows exactly the same steps
as the proof of Theorem 3, except that we make use of the second part of Lemma
3 (using n ≥ n3) since we are using k = 2.26 log(2/δ) ≤ 8.48 log(2/δ)/3.18
instead of k = 1. Consider s = L. The probability of k or more bidders with
valuation exceeding ρ is Pr(Binomial(n, λ) ≥ k). Since n ≤ n4, we have the
mean of the binomial µ = nλ ≤ µ0 = 0.56 log(2/δ), in particular, k ≥ 4µ0 ≥ 4µ.
Now, using a Chernoff bound (on Binomial(n, λ0) where λ0 = µ0/n ≥ λ leading
to a mean of µ0; clearly this binomial stochastically dominates the one we care
about), we infer that

Pr(Binomial(n, λ) ≥ k) ≤ Pr(Binomial(n, λ0) ≥ k)

≤ exp{−µ0 · 32/(2 + 3)} = exp{−0.56 log(2/δ) · 9/5}
≤ exp{−1.00 log(2/δ)} = δ/2 .

If all valuations are no more than ρ then such a realization is clearly 0-good
(i.e., incentive compatible in an exact sense) with respective to the mechanism.
Hence, we have shown that the probability of the realization being ε-good is at
least 1− δ/2, implying (δ, ε)-dynamic incentive compatibility for s = L. Further,
the loss in expected revenue for s = L is bounded above by (δ/2)T (r?H − r?L) =
εT/2 ≤ εT as required.

Now consider the second bullet. Consider s = H. The threshold is k = 4λn.
Let n̄ = max{n3, n4}.
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Lemma 4. Assume s = H, n ≥ n̄ ≥ n0 ≡ 1 + C log(2/δ)/(1 − FH(ρ)) and
k ≤ C log(2/δ)n/(3.18n̄). Fix an agent i. With probability at least 1−(δ/2)C/1.59,
irrespective of what agent i does, at least k bidders different from i with valuation

exceeding ρ will bid in the first τ =
⌈
n0−1

(n̄−1)α

⌉
rounds. with probability at least

1− (δ/2)C/4.24.

To use Lemma 4 we need an upper bound on n̄. Note that using δ ≤ 1 and
FH(ρ) ≥ 0, we have log(2/δ)/(1− FH(ρ)) ≥ n02. Hence we have

n3 ≤
log(2/δ)

1− FH(ρ)
(8.48 + 1/n02) ≤ 10.0 log(2/δ)

1− FH(ρ)
≤ log(2/δ)

1.8λ

using λ ≤ (1− FH(ρ))/18. It follows that

n̄ ≤ log(2/δ)

1.8λ
.

With reference to the upper bound on k in Lemma 4, we deduce that

8.48 log(2/δ)n/(3.18n̄) ≥ 2.26 log(2/δ)n/n̄ ≥ 2.26 · 1.8λn ≥ 4λn.

Hence, using Lemma 4, we deduce that under truthful bidding, the reserve rises

to rH within τ = 4
δ

⌈
n3−1

(n̄−1)α

⌉
with probability at least 1− (δ/2)2. Following the

argument in the proof of Lemma 2 from here, we deduce (δ, ε)-dynamic incentive
compatibility for s = H. We also deduce that the loss in expected revenue is
small similar to the proof of Theorem 3.

Consider the second bullet and s = L. The probability of k = 4λn or more
bidders with valuation exceeding ρ is Pr(Binomial(n, λ) ≥ 4λn). The mean µ =
λn ≥ 0.56 log(2/δ) since n ≥ n̄ ≥ n3. We infer using a Chernoff bound that

Pr(Binomial(n, λ) ≥ 4λn) ≤ exp{−µ · 32/(2 + 3)} ≤ exp{−0.56 log(2/δ) · 9/5}
≤ exp{−1.00 log(2/δ)} = δ/2 .

We then complete the proof of approximate dynamic incentive compatibility and
revenue optimality exactly as we did for the first bullet with s = L.

D Proofs of Lemmas

Proof of Lemma 1. To prove the first part of the claim, we construct mechanism
M̃ that obtains, in expectation, revenue equal to Revenue(Ms

T )/T . Since by
definition Revenue(Ms

1) is the optimal revenue that can be obtained when
T = 1, we conclude that Revenue(Ms

T ) ≤ T ×Revenue(Ms
1).

We construct mechanism M̃ as follows: Let B ⊆ {1, · · · , n} be the set of
agents who participate in the one-round auction. Note that each agent i knows
his own xit but not xjt for any other agent j 6= i. For all agents j /∈ B, draw
a (hypothetical) valuation i.i.d. from the distribution of valuations Fs. Now
consider the probability space generated by simulating mechanism Ms

T over a
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T round auction by sampling Xjt’s in each round and emulating the (optimal)
bidding strategy of the agents under Ms

T .
Consider the distribution DB of (qB, pB) in rounds where the set of agents

who participate is exactly B, in this probability space. More precisely, we are
considering not a single simulation, but the probability space of possible simula-
tion trajectories. For each trajectory ω, the pair (qB, pB) for each round in which
agents B participate contributes a weight in H proportional to the probability
of trajectory ω.

To determine the payments under M̃, draw (qB, pB) uniformly from distri-
bution DB. The mechanism M̃ charges the agents in B these amounts pB and
allocate the items according to qB.

We argue that the mechanism M̃ is truthful: It is not hard to see that the
ex interim expected utility of an agent i from participating in M̃ with bid bi
when others bid truthfully, is exactly 1/T times the ex interim expected utility
of participating in Ms

T and following his equilibrium strategy for valuation bi
there if others follow their equilibrium strategies. Recall that each agent i knows
his own xit but not xjt for any other agent j 6= i. It follows that truthful bidding

is an equilibrium in mechanism M̃. Further, under truthful bidding, it is not
hard to see that the expected revenue of mechanism M̃ is Revenue(Ms

T )/T ,
as claimed. Note that when αi = 1, 1 ≤ i ≤ n, the proof would be simplified and
could be argued using the revelation principle Myerson [1986].

We now prove the second part of the claim. Note that if Ms
1 is ex-post

incentive compatible, the leakage of information from one round to another does
not change the strategy of the bidders. Therefore, repeating mechanism Ms

1

obtain revenue T ×Ms
1 which is the upper-bound revenue. �

Proof of Lemma 2. Consider any agent i. By definition of tδ, we know that
for t ≤ tδ, for all agents i we have

Pr(Q̄∼it−1) > δ . (3)

Let τ = d n1−1
(n−1)αe. Note that τ ≤ δT1/4 ≤ δT/4⇒ τ ≤ δ(T − τ)/2. It follows

from Lemma 3 that

Pr(Q̄∼iτ ) ≤ δ2/2 (4)

In particular, we have tδ < τ and Pr(Qτ ) ≥ Pr(Q∼iτ ) ≥ 1−δ2/2 ≥ 1−δ, yielding
the second part of the lemma.

Combining Eqs. (7) and (4) we obtain that

Pr(Q̄∼iτ |Q̄∼it−1) ≤ Pr(Q̄∼iτ )/Pr(Q̄∼it−1) ≤ (δ2/2)/δ = δ/2 . (5)

Hence, agent i who participates for the first time in round t and sees reserve r?L,
infers that the reserve will rise to r?H by round τ + 1 with probability at least
1− δ/2, due to the bids of other agents. Thus, we can bound the expected cost
in future rounds to agent i by causing the reserve to rise by bidding truthfully:

– Under Q̄∼iτ , agent i may lose at most αi(T − t)(r?H − r?L) in future rounds
(in expectation).
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– Under Q∼iτ , agent i may lose at most αi(τ − t)(r?H − r?L) ≤ αiτ(r?H − r?L) in
rounds only up to round τ .

Thus, the overall future cost of bidding truthfully is bounded by

Pr(Q∼iτ )αiτ(r?H − r?L) + Pr(Q̄∼iτ )αi(T − t)(r?H − r?L)

≤ 1 · αi(r?H − r?L)δ(T − τ)/2 + (δ/2) · αi(T − t)(r?H − r?L)

≤ δαi(T − t)(r?H − r?L)

= εαi(T − t)

as required. Here we used τ ≤ δ(T − τ)/2 and t ≤ τ from the discussion above.
�

Proof of Lemma 3. Let Q∼iτ (k) denote the event of interest, and Q∼iτ be
the event for k = 1. For each agent j 6= i, agent j participates in some round t′

for t′ ≤ τ with probability 1− (1− αj)τ ≥ 1− (1− α)τ . Independently, agent j
has a valuation exceeding ρ with probability 1− FH(ρ). Hence, we have vj ≥ ρ
and agent j enters a bids before the end of round τ , with probability at least
(1 − (1 − α)τ )(1 − FH(ρ)), and this occurs independently for j 6= i. Note that
(1 − x)1/x ≤ e−1 for x ∈ (0, 1) since (1 − x)1/x is monotone decreasing in x.
Using this bound, we have

1− (1− α)τ ≥ 1− exp(−ατ)

≥ 1− exp(−(n0 − 1)/(n− 1))

≥ n0 − 1

n− 1
(1− exp(−1))

≥ n0 − 1

1.59(n− 1)
, (6)

where we also used the definition of τ and convexity of f(x) = exp(−2kx).
It follows that

Pr(Q̄∼iτ ) ≤ Pr
(

Binomial
(
n− 1, [1− (1− α)τ ][1− FH(ρ)]

)
= 0

)
=
(

1− [1− (1− α)τ ][1− FH(ρ)]
)n−1

. (7)

Hence,

Pr(Q̄∼iτ ) ≤ exp
{

[1− (1− α)τ ][1− FH(ρ)](n− 1)
}

≤ exp
{
− (n0 − 1)(1− FH(ρ))/1.59

}
≤ exp{−(C/1.59) log(2/δ)} = (δ/2)C/1.59 ,

using n0 ≥ 1 + C log(2/δ)/(1− FH(ρ)) and Eq. (6).
Similarly,

Pr(Q̄∼iτ (k)) ≤ Pr
(

Binomial
(
n− 1, [1− (1− α)τ ][1− FH(ρ)]

)
< k

)
=
(

1− [1− (1− α)τ ][1− FH(ρ)]
)n−1

. (8)
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The mean of the binomial is

µ = (n− 1)[1− (1− α)τ ][1− FH(ρ)] ≥ (n0 − 1)[1− FH(ρ)]/1.59 = C log(2/δ)/1.59

using Eq. (6). It follows using a Chernoff bound and k ≤ C log(2/δ)/3.18 ≤ µ/2
that

Pr(Q̄∼iτ (k)) ≤ exp{−µ(1− 1/2)2/2} = exp{−C log(2/δ)/4.24} = (δ/2)C/4.24.

�

Proof of Lemma 4. The proof is very similar to the proof of Lemma 3.
Let Q∼iτ (k) denote the event of interest. For each agent j 6= i, agent j partic-

ipates in some round t′ for t′ ≤ τ with probability 1− (1− αj)τ ≥ 1− (1− α)τ .
Proceeding as before, we have

1− (1− α)τ ≥ n0 − 1

1.59(n̄− 1)
. (9)

We have Eq. (8) for the probability of Q̄∼iτ (k) as before. The mean of the
binomial is

µ = (n− 1)[1− (1− α)τ ][1− FH(ρ)] ≥ (n0 − 1)[1− FH(ρ)](n− 1)/(1.59(n̄− 1))

= C log(2/δ)(n− 1)/(1.59(n̄− 1)) ≥ C log(2/δ)n/(1.59n̄) (10)

using Eq. (9) and n ≥ n̄.
It follows using a Chernoff bound and k ≤ C log(2/δ)n/(3.18n̄) ≤ µ/2 that

Pr(Q̄∼iτ (k)) ≤ exp{−µ(1− 1/2)2/2} = exp{−C log(2/δ)/4.24} = (δ/2)C/4.24 ,
(11)

using n ≥ n̄. �
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