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Abstract. Cournot competition, introduced in 1838 by Antoine Augn€burnot,
is a fundamental economic model that represents firms canggeta single mar-
ket of a homogeneous good. Each firm tries to maximize itgy+Hnaturally a
function of the production cost as well as market price offfftasluct—by decid-
ing on the amount of production. This problem has been sfucenprehensively
in Economics and Game Theory; however, in today’s dynamicdiverse econ-
omy, many firms often compete in more than one market simedtasly, i.e.,
each market might be shared among a subset of these firmds|sittation, a
bipartite graph models the access restriction where fir@ms@one side, markets
are on the other side, and edges demonstrate whether a firattess to a mar-
ket or not. We call this gamdetwork Cournot CompetitiofNCC). Computation
of equilibrium, taking into account a network of markets dinchs and the dif-
ferent forms of cost and price functions, makes challengimg interesting new
problems.

In this paper, we propose algorithms for finding pure Nashiliegia of NCC
games in different situations. First, we carefully desigoogential function for
NCC, when the price functions for markets are linear fumiof the production
in that market. This result lets us leverage optimizatiarhtéques for a single
function rather than multiple utility functions of many fismHowever, for non-
linear price functions, this approach is not feasible—ehisrindeed no single
potential function that captures the utilities of all firnts the case of nonlinear
price functions. We model the problem as a nonlinear comeigarity problem
in this case, and design a polynomial-time algorithm thalsian equilibrium
of the game for strongly convex cost functions and strongbnatone revenue
functions. We also explore the class of price functions émsures strong mono-
tonicity of the revenue function, and show it consists of@abirclass of functions.
Moreover, we discuss the uniqueness of equilibria in botthe§e cases which
means our algorithms find the unique equilibria of the garhast but not least,
when the cost of production in one market is independent fiteencost of pro-
duction in other markets for all firms, the problem can be s#pd into several
independent classic&ournot Oligopolyproblems in which the firms compete
over a single market. We give the first combinatorial aldwnitfor this widely
studied problem. Interestingly, our algorithm is much dienand faster than pre-
vious optimization-based approaches.

1 Introduction

In this paper we study selling a utility with a distributioetaork, e.g., natural gas,
water and electricity, in several markets when the cleagpimce of each market is de-
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termined by its supply and demand. The distribution netviaggments the market into
different regional markets with their own prices. Therefdhe relations between sup-
pliers and submarkets form a complex network [29, 22, B, 365713]. For example,
a market with access to only one supplier suffers a mondpmojisice, while a market
having access to multiple suppliers enjoys a lower pricerasualt of the price compe-
tition.

Antoine Augustin Cournotintroduced the first model for sting the duopoly com-
petition in 1838. He proposed a model where two individuata different springs of
water, and sell it independently. Each individual decidethe amount of water to sup-
ply, and then the aggregate water supply determines theataike through an inverse
demand function. Cournot characterizes the unique eqiuititboutcome of the market
when both suppliers have the same marginal costs of pragycaid the inverse de-
mand function is linear. He argued that in the unique equilib outcome, the market
price is above the marginal cost.

Joseph Bertrand 1883 criticized the Cournot model, wheeestrategy of each
player is the quantity to supply, and in turn suggested tcsictam prices, rather than
quantities, as strategies. In the Bertrand model each fiongds a price for a homoge-
neous good, and the firm announcing the lowest price gethalinarket share. Since
the firm with the lowest price receives all the demand, eaah ffias incentive to price
below the current market price unless the market price neatith cost. Therefore, in an
equilibrium outcome of the Bertrand model, assuming allgime costs are the same
and there are at least two competitors in the market, the eharice will be equal to
the marginal cost.

The Cournot and Bertrand models are two basic tools for tigating the competi-
tive market price, and have attracted much interest for hinngleeal markets; see, e.g.,
[8,136,.7/15]. While these are two extreme models for anaty#te price competition,
itis hard to say which one is essentially better than theroth@articular, the predictive
power of each strongly depends on the nature of the marketyanes from applica-
tion to application. For example, the Bertrand model exygaihe situation where firms
literally set prices, e.g., the cellphone market, the Ipptarket, and the TV market. On
the other hand, Cournot’s approach would be suitable foratiogl markets like those
of crude oil, natural gas, and electricity, where firms de@tout quantities rather than
prices.

There are several attempts to find equilibrium outcomeseturnot or Bertrand
competitions in the oligopolistic setting, where a smalhtoer of firms compete in
only one market; see, e.d., [24) 33| 32,118,/ 17, 37]. Nevktiseit is not entirely clear
what equilibrium outcomes of these games are when firms ctargper more than
one market. In this paper, we investigate the problem of figaiquilibrium outcomes
of the Cournot competition in a network setting where thesesgveral markets for a
homogeneous good and each market is accessible to a sufisetsof

1.1 Example

We start with the following warm-up example. This is a basiaraple for the Cournot
competition in the network setting. It consists of threensg®s. We assume firme



Network Cournot Competition 3

{A, B} produces quantity;; of the good in markef € {1, 2}. Letq be the vector of
all quantities. The detailed computations are in the Append

Scenario 1 Consider the Cournot competition in an oligopolistic settivith two firms
and one market (see Figlre 1). lgt)) = 1 — qa1 — g1 be the market price (the
inverse demand function), and(q) = 1¢? be the cost of production for firm
1 € {A, B}. The profit of a firm is what it gets by selling all the quanstief good
it produces in all markets minus its cost of production. Efere, the profit of firm
i denoted byr;(q) is ¢;1 (1 — a1 —gpB1) — 2 ¢% - InaNash equilibrium of the game,
each firm maximizes its profit assuming its opponent does maxt@e its strategy.
Hence, the unique Nash equilibrium of the game can be foursblwng the set of
equationsé’& = 275 = (). Soqa; = ¢p1 = 1 is the unique Nash equilibrium

9gqB1
wherep(q) = 3, andra(q) = mp(q) = 0.9375.

First Scenario Second Scenario Third Scenario
m4=0.0938 7p=0.0938 74=0.0938 7wpE=0.0938 Ta=0.124 m5=0.064

qa1l qB1 qA gB2 gA1 qA2 qB2

X

pi=1 =1 pa=1 p1=0.64  p2=0.48

Fig. 1. This figure represents the three scenarios of our exampttoiMg = (4, 4) represents
the unique equilibrium in the first scenario. Vectpe= (3, <, £, &) is the unique equilibrium of
the second scenario. Finally, Vecigr= (0.18, 0.1, 0.16) is the unique equilibrium in the third

scenario.

Scenario 2 We construct the second scenario by splitting the marketénprevious
scenario into two identical markets such that both firms lameess to both markets
(see Figurgll). Since the demand is divided between twoitd#markets, the price
for market;j would bep,(q) = 1 — 2g4, — 2¢g,, i.€., the clearance price of each
market is the same as the clearance price of the market inra8oeh when the
supply is half of the supply of the market in Scenario 1. Iis $éenario, the profit
of firm ¢ € {A, B} ismi(a) = 35, 4ij (1 — 2945 — 245;) — 5(qin + ¢i2)*. Any

Nash equilibrium of this game satisfies the set of equat?ﬁs g;z; = % =

g;;z =0. By flndmgthe unique solution to this set of equations, ceverify that
L 1,1, 1) is the unique equilibrium of the game wherglq) = p2(q) = 1,

q-= (§7 3
andm(q m5(q) = 0.09375. Since we artificially split the market into two

_a

)=
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identical markets, this equilibrium is, not surprisinglye same as the equilibrium
in the previous scenario.

Scenario 3 Consider the previous scenario, and supposefinas no access to the first
market (see Figuilg 1). Let the demand functions and the apstibns be the same
as the previous scenario. The profits of firimend2 can be written as follows:

ma(q) = qa1(1 — 2qa1) + qa2(l — 2qa2 — 2qB2) — %(q;n + qa2)?,
m8(q) = qB2(1 — 2qa2 — 2qB2) — %%292-
The unique equilibrium outcome of the game is found by sgjthre set of equa-
tions g7 — Sra — BrB — (). One can verify that vectay = (ga1, g2, gp2) =
(0.18,0.1,0.16) is the unique equilibrium outcome of the game wheréq) =
0.64, p2(q) = 0.48, m4(q) = 0.124, andrz(q) = 0.064. The following are a few
observations worth mentioning.
— Firm A has more power in this scenario due to having a captive niarket
— The equilibrium price of market is higher than the equilibrium price in the
previous scenarios.
— The position of firmB affects its profit. Since it has no access to maikdtis
not as powerful as firm.
— The equilibrium price of marke is smaller than the equilibrium price in the
previous scenarios.

1.2 Related Work

There are several papers that investigate the Cournot ddgiapén an oligopolistic
setting (see, e.g., [24, 33,118, 17, 37]). In spite of theseksydittle is known about
the Cournot competition in a network. Ilkili¢ [19] studig®e Cournot competition in a
network setting, and considers a network of firms and maikbése each firm chooses
a quantity to supply in each accessible market. He studeesdimpetition when the
inverse demand functions are linear and the cost functiomg@adratic (functions of
the total production). In this study, we consider the samdehahen the cost functions
and the demand functions may have quite general forms. We tteogame with linear
inverse demand functions is a potential game and therefmweatunique equilibrium
outcome. Furthermore, we present two polynomial-timertigams for finding an equi-
librium outcome for a wide range of cost functions and demfamdtions. While we
investigate the Cournot competition in networks, thererescant paper which considers
the Bertrand competition in network setting [3], albeit imaich more restricted case
of only two firms competing in each market.

The final price of each market in the Cournot competition issakmt clearing price;
i.e, the final price is set such that the market becomes ¢leating a market clearance
equilibrium is a well-established problem, and there axeise papers which propose
polynomial-time algorithms for computing equilibriums mfarkets in which the price

3A captive market is one in which consumers have limited ogtiand the seller has a
monopoly power.
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of each good is defined as the price in which the market cl&xanples of such mar-
kets include Arrow-Debreu market and its special case Fistagket (see related work
on these markets [12,[11,/110, 21} 9} 31, 16]). Devanur and&aiZiL0] design an ap-
proximation scheme which computes the market clearingpfiiar the Arrow-Debreu
market, and Ghiyasvand and Orlin [16] improve the runningetbf the algorithm. The
first polynomial-time algorithm for finding an Arrow-Debrenarket equilibrium is pro-
posed by Jain [21] for a special case with linear utilitieke Fisher market, a special
case of the Arrow-Debreu market, attracted a lot of attengéis well. Eisenberg and
Gale [12] present the first polynomial-time algorithm bynisgerring the problem to a
concave cost maximization problem. Devanur et al. [11]glesiie first combinatorial
algorithm which runs in polynomial time and finds the marketcance equilibrium
when the utility functions are linear. This result is latexproved by Orlin|[31].

For the sake of completeness, we refer to recent works indhmater science lit-
erature|[20, 14], which investigate the Cournot compaetitioan oligopolistic setting.
Immorlica et al. [[20] study a coalition formation game in au@wot oligopoly. In this
setting, firms form coalitions, and the utility of each ctiah, which is equally divided
between its members, is determined by the equilibrium of arf@mt competition be-
tween coalitions. They prove the price of anarchy, whichésratio between the social
welfare of the worse stable partition and the social optimisn®(n?/®) wheren is
the number of firms. Fiat et al. [14] consider a Cournot coiitipatwhere agents may
decide to be non-myopic. In particular, they define two gpatstrategies to maximize
revenue and profit (revenue minus cost) respectively. N@eih the classic Cournot
competition all agents want to maximize their profit. Howeuetheir study each agent
first chooses its principal strategy and then acts accoldiiifpe authors prove this
game has a pure Nash equilibrium and the best response dysauitli converge to
an equilibrium. They also show the equilibrium price in thsme is lower than the
equilibrium price in the standard Cournot competition.

1.3 Results and techniques

We consider the problem of Cournot competition on a netwérkarkets and firms for
different classes of cost and inverse demand functionsingdtiese two dimensions to
the classical Cournot competition which only involves aggnmarket and basic cost
and inverse demand functions yields an engaging but coatptipproblem which needs
advanced techniques for analyzing. For simplicity of notatve model the competition
by a bipartite graph rather than a hypergraph: vertices ersate denote the firms, and
vertices on the other side denote the markets. An edge betavdiem and a market
demonstrates willingness of the firm to compete in that $igeniarket. The complexity
of finding the equilibrium, in addition to the number of matkand firms, depends on
the classes that inverse demand and production cost fmsdtiglong to.

We summarize our results in the following table.
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Cost functions Inverse demand Running time |Technique
functions
Convex Linear O(E?) Convex  optimiza-

tion, formulation a
an ordinal potentia

12

game

Convex Strongly monotone Reduction to a non-
marginal  revenyePO!Y(E) linear complementalr-
functiorf] ity problem

Convex, separable Concave O(nlog” Qmax)|Supermodular  op-

timization,  nested
binary search

In the above tableE denotes the number of edges of the bipartite graptienotes
the number of firms, and),,.. denotes the maximum possible total quantity in the
oligopoly network at any equilibrium. In our results we assuthe inverse demand
functions are nonincreasing functions of total productiothe market. This is the ba-
sic assumption in the classical Cournot Competition mo#iglthe price in the market
increases, it is reasonable to believe that the buyers dubpfothe market and de-
mand for the product decreases. The classical Cournot Giiimpanodel as well as
many previous works on Cournot Competition model assunmesgltity of the inverse
demand function [19, 20]. In fact there is little work on gealzing the inverse de-
mand function in this model. The second and third row of thevaltable shows we
have developed efficient algorithms for more general irvelsmand functions satis-
fying concavity rather than linearity. This can be accodrds a big achievement. The
assumption of monotonicity of the inverse demand functfoa standard assumption
in Economics|[2, 1, 27]. We assume cost functions to be comtegh is the case in
many works related to both Cournot Competition and Bertfdativork [25/38]. In a
previous work|[19], the author considered Cournot Comioetibn a network of firms
and markets; however, assumed that inverse demand fugetietinear and all the cost
functions are quadratic function of the total productiorthoy firm in all markets which

is quite restrictive. Most of the results in other relatedkgoin Cournot Competition
and Bertrand Network require linearity of the cost func#id&,[20]. A brief summary
of our results presented in three sections is given below.

Linear Inverse Demand Functions In case inverse demand functions are linear and
production costs are convex, we present a fast and effidigmitam to obtain the equi-
librium. This approach works by showing that Network Cour@ompetition belongs

to a class of games callexidinal potential gamesn such games, the collective strat-
egy of the independent players is to maximize a single piatfanction. The potential
function is carefully designed in such a way that changesentgdone player reflects
in the same way in the potential function as in their own wytilunction. We design a

“Marginal revenue function is the vector function which mapsduction quantities for an
edge to marginal revenue along that edge.
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potential function for the game, which depends on the nétsucture, and show how
it captures this property. Moreover, in the case where tisefomctions are convex, we
prove concavity of this designed potential function (Thead8) concluding convex op-
timization methods can be employed to find the optimum anddghe equilibrium of
the original Cournot competition. We also discuss unigserté equilibria in case the
cost functions are strictly concave. Our result in thisisecis specifically interesting
since we find the unigue equilibrium of the game. We prove tlewing theorems in
Sectior 3.

Theorem 1. The Network Cournot Competition with linear inverse demfumttions
forms an ordinal potential game.

Theorem 2. Our designed potential function for the Network Cournot Q@etition
with linear inverse demand functions is concave provided the cost functions are
convex. Furthermore, the potential function is strictlyncave if the cost functions
are strictly convex, and hence the equilibria for the gamerngue. In addition, a
polynomial-time algorithm finds the optimum of the potdritiaction which describes
the market clearance prices.

The general caseSince the above approach does not work for nonlinear invdgse
mand functions, we design another interesting but morelnedoalgorithm to capture
more general forms of inverse demand functions. We showathaquilibrium of the
game can be computed in polynomial time if the production fiosctions are convex
and the revenue function is monotone. Moreover, we shownstdet monotonicity of
the revenue function, the solution is ungiue, and theredoreresults in this section is
structural; i.e. we find the one and only equilibria. For cengence guarantee we also
need Lipschitz condition on derivatives of inverse demamdi@ost functions. We start
the section by modeling our problem as a complementaritplpro. Then we prove
how holding the aforementioned conditions for cost andmaedunctions yields satis-
fying Scaled Lipschitz ConditiofSLC) and semidefiniteness for matrices of derivatives
of the profit function. SLC is a standard condition widely dig® convergence analysis
for scalar and vector optimization [39]. Finally , we presenr algorithm, and show
how meeting these new conditions by inverse demand and egostiéns helps us to
guarantee polynomial running time of our algorithm. We aja@ examples of classes
of inverse demand functions satisfying the above conditidhese include many fam-
ilies of inverse demand functions including quadratic fiorws, cubic functions and
entropy functions. The following theorem is the main resiiSectior # which sum-
marizes the performance of our algorithm.

Theorem 3. A solution to the Network Cournot Competition can be foundatyno-
mial number of iterations under the following conditions:

1. The cost functions are (strongly) convex.
2. The marginal revenue function is (stro@lynonotone.

SFor at least one of the first two conditions, strong versiooafdition should be satisfied,
i.e., either cost functions should be strongly convex orrtfaeginal revenue function should be
strongly monotone.
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3. Ther first derivative of cost functions and inverse demfamdtions and the
second derivative of inverse demand functions are Lipsclihtinuous.

Furthermore, the solution is unique assuming only the fiostdition. Therefore,
our algorithm finds the unique equilibria of NCC.

Cournot oligopoly Another reasonable model for considering cost functionthef
firms is the case where the cost of production in a market dépenly on the quantity
produced by the firm in that specific market (and not on quiastiroduced by this firm
in other markets). In other words, the firms have completediependent sections for
producing different goods in various markets, and thereisarrelation between cost
of production in separate markets. Interestingly, in tleisecthe competitions are sep-
arable; i.e. equilibrium for Network Cournot Competitioancbe found by finding the
guantities at equilibrium for each market individually.i¥ motivates us for considering
Cournot game where the firms compete over a single market.ré¢ept a new algo-
rithm for computing equilibrium quantities produced by fifim a Cournot oligopoly,
i.e., when the firms compete over a single market. Courngtdpbly is a well-known
model in Economics, and computation of its Cournot Equillibr has been subject to
a lot of attention. It has been considered in many works ofioly |[34,/23, 30, 26,/6]
to name a few. The earlier attempts for calculating equilibrfor a general class of
inverse demand and cost functions are mainly based on gadvitinear Complemen-
tarity Problem or a Variational Inequality. These settings be then turned into convex
optimization problems of siz&(n) wheren is the number of firms. This means the
runtime of the earlier works cannot be better tiidm?) which is the best performance
for convex optimization/[5]. We give a novel combinatorigd@ithm for this impor-
tant problem when the quantities produced are integral.ile dur search to integral
quantities for two reasons. First, in real-world all comritied and products are traded
in integral units. Second, this algorithm can easily be s&thfp compute approximate
Cournot-Nash equilibrium for the continuous case and siheequantities at equilib-
rium may not be rational numbers, this is the best we can hap©fir algorithm runs
in time O(n 1og2(QmaX)) where@..x IS an upper bound on total quantity produced
at equilibrium. Our approach relies on the fact that profitchions are supermodular
when the inverse demand function is nonincreasing and thfgnctions are convex.
We leverage the supermodularity of inverse demand funstar Topkis’ Monotonic-
ity Theorem|[35] to design a nested binary search algoritfime.following is the main
result of Sectiofnlb.

Theorem 4. A polynomial-time algorithm successfully computes thentjtias pro-
duced by each firm at an equilibrium of the Cournot oligopélhe inverse demand
function is non-increasing, and the cost functions are eanin addition, the algorithm
runs in O(n logQ(QmaX)) whereQ .« IS the maximum possible total quantity in the
oligopoly network at any equilibrium.

2 Notations

Suppose we have a set offirms denoted byF and a set ofn markets denoted by
M. A single good is produced in each of these markets. Each firghtnor might
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not be able to supply a particular market. A bipartite graplrsied to demonstrate these
relations. In this graph, the markets are denoted by the Bushl®2, . . ., m on one side,
and the firms are denoted by the numbkrs, . . ., n on the other side. For simplicity,
throughout the paper we use the notatioa M meaning the market and; € F
meaning firmj. For firm j € F and market € M there exists an edge between the
corresponding vertices in the bipartite graph if and onlfirih j is able to produce
the good in market. This edge will be denoted, j). The set of edges of the graph is
denoted by, and the number of edges in the graph is showrEbyor each market

i € M, the set of verticesV, (i) is the set of firms that this market is connected to
in the graph. SimilarlyN=(;) denotes the set of neighbors of firmamong markets.
The edges irf are sorted and numberaéd. .. | F, first based on the number of their
corresponding market and then based on the number of thregspmnding firm. More
formally, edge(i, j) € £ is ranked above edgé, k) € £if i < lori =1landj < k.
The quantity of the good that firhproduces in marketis denoted by;;. The vector
qis anFE x 1 vector that contains all the quantities produced over tlyegdf the graph
in the same order that the edges are numbered.

The demand for good denotedD;, is the sum of the total quantity of this good
produced by all firms, i.eD; = ZjeNM(i) gi;. The price of good, denoted by the
function P;(D;), is only a decreasing function of total demand for this good @ot the
individual quantities produced by each firm in this market: & firm j, the vectors;;
denotes the strategy of firsiy which is the vector of all quantites produced by this firm
in the marketsVz(j). Firm j € F has a cost function related to its strategy denoted by
¢;(s5). The profit that firmj makes is equal to the total money that it obtains by selling
its production minus its cost of production. More formathe profit of firm;, denoted
by 7;, is

m= Y. PiDia; —c;lss). 1)

1ENF(F)

3 Cournot competition and potential games

In this section, we design an efficient algorithm for the cabkere the price functions
are linear. More specifically, we design an innovageential functionthat captures
the changes of all the utility functions simultaneouslyd #merefore, show how finding
the quantities at the equilibrium would be equivalent to ifigdthe set of quantities
that maximizes this function. We use the notionpaoftential gamess introduced in
Monderer and Shapley [28]. In that paper, the authors inizedrdinal potential games
as the set of games for which there existgsadential functionP* such that the pure
strategy equilibrium set of the game coincides with the gtna&egy equilibrium set of
a game where every party’s utility function".

In this section, we design a function for the Network Coui@oinpetition and show
how this function is a potenial function for the problem iétprice functions are linear.
Interestingly, this holds for any cost function meaningwatk Cournot Competition
with arbitrary cost functions is an ordinal potential garsdang as the price functions
are linear. Furthermore, we show when the cost functionscangex, our designed
potential function is concave, and hence any convex optititim method can find the
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equilibrium of such a Network Cournot Competition. In caestdunctions are strictly
convex, the potential function is strictly concave. We agsta well known theorem in
this section to conclude that the convex optimization is ttdse has a unigue solution,
and therefore the equilibria that we find in this case is theeamd only equilibria of the
game.

Definition 1. A game is said to be aardinal potential gamé the incentive of all
players to change their strategy can be expressed usinggesjtobal function called
the potential function. More formally, a game wittplayers and utility function; for
playeri € {1,...,n} is called ordinal potential with potential functiaf* if for all the
strategy profilegy € R™ and every strategy; of player: the following holds:

wi(i, q—i) — wi(qi, q—i) > 0 iff P*(xi,q—s) — P*(qi,q—¢) > 0.
An equivalent definition of an ordinal potential game is a gdor which a potential

funciton P* exists such that the following holds for all strategy prafije= R™ and for
each playetr.

Oui _ 0P

9qi B 0q;
In other words, for each strategy profieany change in the strategy of playignas the
same impact on its utility function as on the game’s potéfuiaction.

The pure strategy equilibrium set of any ordinal potentahg coincides with the
pure strategy equilibrium set of a game with the potentiatfion P* as all parties’
utility function.

Theorem 5. The Network Cournot Competition with linear price functas an ordi-
nal potential game.

Proof. Let P;(D;) = o; — 3; D; be the linear price function for market M where
«a; > 0andg; > 0 are constants determined by the properties of markdote that
this function is decreasing with respectfy. Here we want to introduce a potential

function P*, and show tha: ;” = % holdsV(7, j) € £. The utility function of firm
jis
T = Z <ai — Bi Z ij>qz'j —¢;(s5),
i€ENF(j) kENF(5)

and taking partial derivative with respectdg yields

ci(s5)

or;
L=ai =B Y. — Bigij — O
ij

04is KENF(j)
We defineP* to be

P*:Z[ai Z qij — Bi Z q’?j_ﬁi Z QijQik — Z |]c\j]§;))|},

ieM FEN M (1) FEN M (1) k‘jeklg/{/l(i) FENM(2)
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whose partial derivative with respectdg is

oP* 0 oc;(s;
=i —28iqi; —=— | Bi D, Gadim | — 9eys5)

aQij B 3%; <m " 8(]1'3'
l,mENM [3
Oci(s;
= a; — 2Biqij — Bi(Di — qi5) — aj( i)
qij
_ Om;
8%‘]'.

Since this holds for eache M and eacly € F, the Network Cournot Competition
is an ordinal potential game.

We can efficiently compute the equilibrium of the game if tlégmtial functionP*
is easy to optimize. Below we prove that this function is G

Theorem 6. The potential functio* from the previous theorem is concave provided
that the cost functions of the firms are convex. Moreovéreitbst functions are strictly
convex then the potential function is strictly concave.

Proof. The proof goes by decomposiftf into pieces that are concave. We first define
f for one specific marketas

f= Z a;; + Z Qij ik s
JENM(,L) k,jekl\%z/l(i)
and prove that it is convex.
Recall thatq is an £ x 1 vector of all the quantities of good produced over the
existing edges of the graph. We can wrfte= q” M q where M is anE x E matrix
with all elements on its diagonal equalt@nd all other elements equal%:

1 L ... L1

M= V2
41
V2 V2

To show thatf is convex, it suffices to prove that/ is positive semidefinite, by
finding a matrixR such thatM/ = RT R. Consider the followingE + 1) x E matrix:

cc--- ¢
al---0

R—|0a--0

)

00---a
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wherea, c are set below. LeR; be thei-th column ofR. We haveR; - R; = a® + ¢
andR; - R; = ¢*fori # j.

Settinge = 2% anda = V1 —¢ yields M = RT R, showing that\ is positive
semidefinite, hence the convexity ff

The following expression for a fixed markiet M, sum of three concave functions,
is also concave.

¢ (85)
a4 — 51'( >ooa@+ Y, QijQik) - > |]\J7;(3')|'
FENM(3) FEN M (3) kiR (6) FENM(5)

Summing over all markets proves concavity Bf. Note that if a function is the
sum of a concave function and a strictly concave functioant is strictly concave
itself. Therefore, sincg is concave, we can conclude strictly concavitylof under
the assumption that the cost functions are strictly convex.

The following well-known theorem discusses the uniquermdédbe solution to a
convex optimization problem.

Theorem 7. Let F' : K — R™ be a strictly concave and continuous function for some
finite convex spack € R™. Then the following convex optimization problem has a
unique solution.

max f(z) s.t. z € K. 2

By Theoreni b, if the cost functions are strictly convex tHempotential function is
strictly concave and hence, by Theorlegin 7 the equilibriunhefgame is unique.

Let ConvexP(E, (a1,...,am), (B1,-.., Bm), (c1,...,cn)) be the following con-
vex optimization program:

min —Z Liz %ij — &-Z a;; — Bi Z ij dik _Z ]C\J]‘(SJ") } ®)

IEMSENMG)  jENMG) kS jenm VFO)I
subject to gij >0 V(i,j) € €.

Note that in this optimization program we are trying to maizienP* for a bipartite
graph with set of edges$, linear price functions characterized by the pair, ;) for
each market ¢ M, and cost functions; for each firmj ¢ F.

Algorithm 1 Compute quantities at equilibrium for the Network Cournongpetition.
procedure COURNOT-POTENTIALE, ¢;, (o, 8;)) > Set of edges, cost functions and
price functions

Use a convex optimization algorithm to solve

ConvexP(E, (a1, ... ,am), (B, Bm), (c1y...,¢n)).

and return the vectay of equilibrium quantities.
end procedure
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The above algorithm has a time complexity equal to the tirmeglexity of a convex
optimization algorithm withE' variables. The best such algorithm has a running time
O(E3)[5].

4 Finding equilibrium for cournot game with general cost and
inverse demand functions

In this section, we formulate an algorithm for a much moreggahclass of price and
cost functions. Our algorithm is based on reduction of Neltw@ournot Competition
(NCC) to a polynomial time solvable class of Non-linear Cdenpentarity Problem
(NLCP). First in Subsectidn 4.1, we introduce our margimafipfunction as the vector
of partial derivatives of all firms with respect to the quéas that they produce. Then in
Subsectiofi 412, we show how this marginal profit function leeip us to reduce NCC
to a general NLCP. We also discuss uniqueness of equilibiiutinis situation which
yields the fact that solving NLCP would give us the one and/ @guilibrium of this
problem. Unfortunately, in its most general form, NLCP isnutationally intractable.
However, for a large class of functions, these problems algnpmial time solvable.
Most of the rest of this section is dedicated to proving ttet faat NCC is polytime
solvable on vast and important array of price and cost fonstiln Subsectidn 4.3, we
rigorously define the conditions under which NLCP is polymartime solvable. We
present our algorithm in this subsection along with a theosdich shows it converges
in polynomial number of steps. To show the conditions thatneduce for conver-
gence of our algorithm in polynomial time are not restriefiwe give a discussion in
Subsectiofi 4]4 on the functions satisfying these conditiand show they hold for a
wide range of price functions.

AssumptionsThroughout the rest of this section we assume that the puicetibns
are decreasing and concave and the cost functions are Isticoryyex (The notion of
strongly convex is to be defined lateWe also assume that for each firm there is a finite
quantity at which extra production ceases to be profitabés éfithat is the only firm
operating in the market. Thus, all production quantitied aansequently quantities
supplied to markets by firms are finite. In addition, we assuipschitz continuity and
finiteness of the first and the second derivatives of pricecastifunctions. We note that
these Lipschitz continuity assumptions are very commorcémvergence analysis in
convex optimization [5] and finiteness assumptions areigdgly Lipschitz continuity.
In addition, they are not very restrictive as we don't expgdbounded fluctuation in
costs and prices with change in supply. For sake of brevigyuse the terms inverse
demand function and price function interchangeably.

4.1 Marginal profit function

For the rest of this section, we assume tRaandc; are twice differentiable functions
of quantities. We defing;; for a firm j and a market such that:, j) € £ as follows.
(’)wj (’)Pl (Dz) B aCj

fij =— = —Fi(D; ‘g :
! 3%‘;‘ ( ) 3%‘;‘ ! 3%‘

(4)
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Recall that the price function of a market is only a functidrttee total production
in that market and not the individual quantities producedrdividual firms. Thus

dP;(D; dP;(D; . .
6;”_ ) — 6q(ik ) j, k € Na(d). Therefore, we replace these termsmyD;).

86]'
a%‘j'

fij = =Pi(Di) = P{(Di)ai; + (5)

Let vectorF' be the vector of allf;;'s corresponding to the edges of the graph in
the same format that we defined the vectoThat is f;; corresponding tdi, j) € £
appears abové; corresponding to edggé, k) € £iff i < lor: =1andj < k. Note
that F' is a function ofg.

Moreover, we separate the part representing marginal vevigEom the part repre-
senting marginal cost in functiof. More formally, we splitF' into two functionsRk
andS such thatF = R + S, and the element corresponding to the efigg) € £ in
themarginal revenue fuctio®(q) is:

o, /
04, = —Pi(D;) — P'(Di)qij,

Tij =

whereas for thenarginal cost functiorf(q), it is:

aCj
Sii = ——.
7 a%j

4.2 Non-linear complementarity problem

In this subsection we formally define the non-linear commatarity problem (NLCP),
and prove our problem is a NLCP.

Definition 2. Let F' : R™ — R"™ be a continuously differentiable function &% . The
complementarity problem seeks a veatas R” that satisfies the following constraints:

IL',F(IE) Z 07
= 0.

6
Theorem 8. The problem of finding the vectgrat equilibrium in the Cournot game is
a complementarity problem.

Proof. Let ¢* be the vector of the quantities at equilibrium. All quaestmust be non-
negative at all times; i.eq* > 0. It suffices to show#(¢*) > 0 and¢*” F(¢*) = 0.
At equilibrium, no party benefits from changing its strategyparticular, its produc-
tion quantities. For each edgg j) € &, if the corresponding quantity;; is positive,
= 0. On the other hand,
-
cannot be positive, since, if it is, firpmwould benefit by in-

871']'
04

theng;; is a local maxima forr;; i.e., fi;(¢*) = —

on;
8111‘]‘ q

if q; =0, then

creasing the quantity;; to a small amoung. Therefore,—aif
]

is always nonpositive
7
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or equivalentlyf;;(¢*) > 0, i.e., F'(¢*) > 0. Also, as we mentioned above, a nonzero

q;; is a local maximum forr;; i.e., fij(¢*) = — 2| = 0. Hence, eitheq;; = 0 or

) - 9qij P
fii(q") = 0; thus,g;; fi5(¢*) = 0. This yieldsY" ; ;¢ a5 fis(¢") = ¢*T F(g*) = 0.

Definition 3. F': K — R" is said to be strictly monotone at if

(F(z) — F(z*)T, 2 —2*) > 0,Vz € K. (7)

Fis said to be strictly monotone if it is monotone at arfye K. Equivalently,F'
is strictly monotone if the jacobian matrix is positive dién

The following theorem is a well known theorem for Complenaeity Problems.

Theorem 9. Let ' : K — R”™ be a continuous and strictly monotone function with
a pointz € K such thatF'(z) > 0 (i.e. there exists a potential solution to the CP).
Then the Complementarity Problem introducedn (6) chadzed by functiorf” has

a unique solution.

Hence, the Complementarity Problem characterized by imét introduced ele-
ment by element iri{4) has a unigue solution under the assontpat the revenue func-
tion is strongly monotone (special case of strictly monejoiNote that the marginal
profit function or ' in our case is non-negative in at least one point. Otherwise,
firm has any incentive to produce in any market and the egqiutibis when all pro-
duction quantities are equal to zero. In the next subseotveraim to find this unique
equilibrium of the NCC problem.

4.3 Designing a polynomial-time algorithm

In this subsection, we introduce Algorithith 2 for finding diprium of NCC, and show
it converges in polynomial time by Theordm] 10. This theorequires the marginal
profit function to satisfy Scaled Lipschitz Condition(SL&)d monotonicity. We first
introduce SLC, and show how the marginal profit functionsis SLC and montonicty
by Lemmasg1l t615. We argue the conditions that the cost and funictions should have
in order for the marginal profit function to satisfy SLC andmotonicity in Lemmab.
Finally, in Theoreni 110, we show convergence of our algorithimolynomial time.

Before introducing the next theorem, we explain what thelensV R, VS, and
VF are for the Cournot game. First note that thesefare E matrices. Le(i, j) € £
and(l, k) € £ be two edges of the graph. Let denote the index of edde, j), andes
denote the index of eddé, &) in the graph as we discussed in the first section. Then the
element in rone; and columre, of matrix VR, denotedv R, ., , is equal to_* ”f . We
name the corresponding element&ii’ andV S similarly. We havev ' = VR + VS
asF =R+ S.

Definition 4 (Scaled Lipschitz Condition (SLC)).A functionG : D — R"™, D C R"
is said to satisfyScaled Lipschitz Condition (SLG there exists a scalak > 0 such
thatV h € R,V = € D, such thaf] X ~'h|| < 1, we have:

IX[G(@ + h) = G(z) = VG()h][lo < NWTVG(2)hl, (8)
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whereX is a diagonal matrix with diagonal entries equal to elemenftthe vectorr in
the same order, i.eX;; = z; forall i € M.

Satisfying SLC and monotonicity are essential for margprafit function in The-
orem10. In LemmA@]5 we discuss the assumptions for cost aeduevfunction under
which these conditions hold for our marginal profit functidve use Lemmdd 1 {d 5 to
showF satisfies SLC. More specifically, we demonstrate in Lenmavieican derive
an upperbound for LHS of SLC fak and S, then we can derive an upperbound for
LHS of SLC for F = R + S too. Then in Lemmal2 and Lemrh&a 3 we show LHSSof
and R in SLC definition can be upperbounded. Afterwards, we showatanicity of
S in Lemma4. In Lemmal5 we aim to prove satifies SLC under some assumptions
for cost and revenue functions. We use the fact that LHS of 8itG" can be upper-
bounded using Lemnid 3 and Lempla 2 combined with Lefdma 1. Teamse the fact
that RHS of SLC can be upperbounded using strong monotgmiti® and Lemmai.
Using these two facts, we concludiesatisfies SLC in Lemnid 5.

Lemma 1. LetF, R, S be thredR™ — R™ functions such thal’'(q) = R(q)+S5(q), Vg€
R". Let R and S satisfy the following inequalities for son@é > 0 and¥ & such that
| XAl < 1:

IX[R(g+ h) = R(q) = VR(g)h]l| < C||h]I?,
IX[S(q +h) = S(q) = VS(@)h]ll < ClIR]1%,

whereX is the diagonal matrix withX;; = ¢;. Then we have:
IX[F(g+h) = F(q) — VF(g)h]|lec < 2C||A]*.

The following lemmas give upper bounds for LHS of the SLC $caind R respec-
tively.

Lemma 2. AssumeX is the diagonal matrix withX;; = ¢;. V h such that| X ~1h|| <
1, there exists a constaidt > 0 satisfying:|| X [S(¢ + h) — S(¢) — VS(Qh]]|o <
C||n]?.

Lemma 3. AssumeX is the diagonal matrix withX;; = ¢;. V h such that| X ~1h|| <
1,3C > 0such thaf X [R(q + h) — R(q) — VR(q)h]||e < C|Ih|>.

If Ris assumed to be strongly monotone, we immediately have erlbaund on
RHS of the SLC forR. The following lemma gives a lower bound on RHS of the SLC
for S.

Lemma 4. If cost functions are (strongly) conveéxis (strongly) monotorE.

A matrix M € R™ ™ is strongly positive definitéf ¥ 2 € R” and somex > 0 27 Mz >
allz.

" A differentiable functionf : D — R™ is monotonéff its JacobianV f is positive semidef-
inite over its domainD.

8 A differentiable functionf : D — R™ is strongly monotonif its JacobianV f is strongly
positive definite over its domaitd).

°A twice differentiable functiorf : D — R is strongly convexf its HessianV? f is strongly
positive definite over its domaird).
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The following lemma combines the results of Lenitha 2 and Lef@msing Lemma
(I to derive an upper bound for LHS of the SLC fiar We bound RHS of the SLC from
below by using strong montonicity d? and LemmaH}.

Lemma 5. I satisfies SLC and is monotone if:

1. Cost functions are convex.

2. Marginal revenue function is monotone.

3. Cost functions are strongly convex or marginal revenuetion is strongly mono-
tone.

We wrap up with the following theorem, which summarizes tr@mresult of this
section. Lemma@l5 guarantees that our problem satisfies thedwditions mentioned
iniZhao and Hah 1999. Therefore, we can prove the followiegtam.

Theorem 10. Algorithm[2 converges to an equilibrium of Network Cournontpeti-
tion in timeO (E? log(uo/€)) under the following assumptions:

1. The cost functions are strongly convex.

2. The marginal revenue function is strongly monotone.

3. The first derivative of cost functions and price functiand the second deriva-
tive of price functions are Lipschitz continuous.

This algorithm outputs an approximate solutidn(¢*), ¢*) satisfying(q’;%F(q*)/n <
e whereuy = (qo)T F(qo)/n, and(F(qo), qo) is the initial feasible poirttd.

Algorithm 2 Compute quantities at equilibrium for the Cournot game.

1: procedure NETWORK-COURNOT@;, ¢j,¢) > The price functionP; for each market
i € M, the cost functiore; for each firmj € F, ande as the desired tolerance

2: Calculate vectoF’ of length E as defined in[{4).

3: Find the initial feasibEsolution (F(z0),z0) for the complementarity problem. This
solution should satisfy, > 0 andF(zo) > 0.

4: Run Algorithm3.1 from [39] to find the solutior{ F'(z*), ™) to the CP characterized by
F.

5: return z* > The vectorg of quantities produced by firms at equilibrium

6: end procedure

4.4 Price Functions for Monotone Marginal Revenue Function

This section will be incomplete without a discussion of prianctions that satisfy the
convergence conditions for Algorithid 2. We will prove thawvale variety of price
functions preserve monotonicity of the marginal revenuefion. To this end, we prove
the following lemma.

Qynitial feasible solution can be trivially found. E.g., iae be the same production quantity
along each edge, large enough to ensure losses for all firmh.qbantity can easily be found by
binary search between [0, Q].
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Lemma 6. VR(q) is a positive semidefinite matrixg > 0, i.e., R is monotone, pro-
vided that for all market§p; (D,)| > LZdIPi

While the above condition may seem somewhat restrictivey #illow the prob-
lem to be solved on a wide range of price functions. Intuljivihe condition implies
that linear and quadratic terms dominate higher order tevespresent the following
corollaries as examples of classes of functions that getigf above condition.

Corollary 1. All decreasing concave quadratic price functions satisfinmd B.
Corollary 2. All decreasing concave cubic price functions satisfy Leffima

Corollary 3. Leta; € R%, fori € {1...k} be arbitrary positive vectors. Lef :
R%, — R be the following functionf(r) = Zie{l,,,k}(aiTx) log(alx). Thenf (and
— f) satisfies Lemmid 6.

5 Algorithm for Cournot Oligopoly

In this section we present a new algorithm for computing ldgiim quantities pro-
duced by firms in a Cournot oligopoly, i.e., when the firms cetapver a single mar-
ket. Cournot Oligopoly is a standard model in Economics awdputation of Cournot
Equilibrium is an important problem in its own right. A coderable body of literature
has been dedicated to this problem [34,/23| 30,26, 6]. Ahefdarlier works that com-
pute Cournot equilibrium for a general class of price and fiosctions rely on solving
a Linear Complementarity Problem or a Variational Inedyalhich in turn are set
up as convex optimization problems of si@¢n) wheren is the number of firms in
oligopoly. Thus, the runtime guarantee of the earlier wisk3(n?) at best. We give a
novel combinatorial algorithm for this important problerhen the quantities produced
are integral. Our algorithm runs in timelogQ(Qmax) whereQ, ... is an upper bound
on total quantity produced at equilibrium. We note that,tfeo reasons, the restriction
to integral quantities is practically no restriction at &lrstly, in real-world all com-
modities and products are traded in integral units. Segptiuk algorithm can easily
be adapted to compute approximate Cournot-Nash equitibiau the continuous case
and since the quantities at equilibrium may not be rationahbers, this is the best we
can hope for.

As we have only a single market rather than a set of marketmake a few changes
to the notation. Lefn] = {1,...,n} be the set of firms competing over the single
market. Letq = (¢1,qo, - - -, ¢n) be the set of all quantities produced by the firms. Note
that in this case, each firm is associated with only one qyahit Q = > .., ¢
be the sum of the total quantity of good produced in the matkethis case, there is
only a single inverse demand functidh : Z — R, which maps total supphy),
to market price. We assume that price decreases as the tatality produced by the
firms increases, i.eF, is a decreasing function @f. For each firm € [n], the function
¢i : Z — R>( denotes the cost to this firm when it produces quatityf the good in
the market. The profit of firmi € [n] as a function of;; andQ, denotedr;(¢;, @), is

P(Q)qi — ci(qi). Also let fi(¢i, Q) = mi(qi +1,Q + 1) — mi(q;, Q) be the marginal
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profit for firm ¢ € [n] of producing one extra unit of product. Although the quaesit
are nonnegative integers, for simplicity we assume thetfonsc;, P, w; and f; are
zero whenever any of their inputs are negative. Also, wer tefthe forward difference

P(Q+1) - P(Q) by P(Q).

5.1 Polynomial time algorithm

We leverage the supermodularity of price functions and ®pkonotonicity Theorem
[35] (Theoreni I¥) to design a nested binary search algorithioh finds the equilib-
rium quantity vectoiy when the price function is a decreasing functiontbaind the
cost functions of the firms are convex. Intuitively the aitfon works as follows. At
each point we guesg’ to be the total quantity of good produced by all the firms. Then
we check how good this guess is by computing for each firm thefspiantites that it
can produce at equilibrium if we assume the total quantithésfixed integeR’. We
prove that the set of possible quantities for each firm atlibgiuim, assuming a fixed
total production, is a consecutive set of integers. ket {¢}, ¢! +1,...,q¢* — 1,¢*}
be the range of all possible quantities for fitrg [n] assuming?’ is the total quantity
produced in the market. We can conclugéwas too low a guess Eie[n] ¢ > Q.
This implies our search should continue among total guastégbove)’. Similarly, if

> ie[n %' < Q', we can conclude our guess was too high, and the search stuniid-
ues among total quantities bel@y. If neither case happens, then for each firen[n],
there exists @, € I, such that)’' = Zie[n] ¢} and firm¢ has no incentive to change
this quantity if the total quantity i§’. This means that the sqt = {1, ..., ¢/, } forms
an equilibrium of the game and the search is over.

The pseudocode for the algorithm is provided in Algorithhw®ose correctness
we prove next. The rest of this section is dedicated to pwp¥ineoreni I11. Here, we
present a brief outline of the proof. To help with the proof define the functiong;
andG; as follows. LetF;(¢;, Q) = P(Q + 1)g; + P/éQ) (g: — %)2 — ¢(g;). We note
that the first difference of'(¢;, Q) is the marginal profit for firm for producing one
more quantity given that the total production quantitylisnd firms is producingy;.
LetGi(qi, Q) = Fi(¢g;, @ —1). The first difference of7;(¢;, Q) is the marginal loss for
firm 4 for producing one less quantity given that the total productjuantity isQ? and
firm 4 is producingy;. Maximizers of these functions are closely related to déopiiim
quantities a firm can produce given that the total quantitparket isQ). We make this
connection precise and prove the validity of binary seandtinies 8-12 of Algorithni. B
in LemmalT. In Lemm&]8, we prove tha and G; are supermodular functions of
q; and—Q. In lemmag® anf10, we use Topkis’ Monotonicity Theorem wvprthe
monotonicity of maximizers of’; andG;. This, along with lemmads11 afd]12 leads to
the conclusion that the outer loop for finding total quatiteguilibrium is valid as well
and hence the algorithm is correct.

5.2 Proof of correctness

Throughout this sectiowe assume that the price function is decreasing and concave
and the cost functions are convex
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Algorithm 3 Compute quantities produced by firms in a Cournot oligopoly.

1: procedure COURNOT-OLIGOPOLYP,c;) > The market price functio®, the cost
functionsc; for each firmi € [n]

2: LetQumin =1
3: LetQ; be the optimal quantity that is produced by a firm when it isahby firm in the
market

4 Let Qmax := Zie[n] Q7

5 while Qmin S anax do

6 Q = LQmin‘an]axJ

7 for all ¢ € [n] do

8 Binary search to find the minimum nonnegative integesatisfying

9 fildh, Q) =milgi +1,Q +1) —mi(q}, Q") <0
10: Binary search to find the maximum integér < Q' + 1 satisfying
11: fild = 1,Q — 1) =mi( Q) — mig! —1,Q —1) >0
12: Letl; = {¢},...,q"} be the set of all integers betweghandg;".
13: end for
14; if Dicpnjgr > Q' then
15: Qumin == Q' +1
16: else if X;c(qi < Q' then
17: Qmax := Q/ -1
18: else
19: Find a vector of quantitie§ = (g1, ..., gn) Such thaly; € I; andzie[n] ¢ =
Q/
20: return q
21: end if

22: end while
23: end procedure
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Lemma 7. Letq (Q) = {q!...q¢"} , whereg! = min argmarq, e(o...Quma. 1 Fi(qi Q)
andgy = maxargmarg,cqo...0,...1Gi(@, Q). Theng (Q) is the set of consecutive in-
tegersl; given by binary search in lines 8-12 of Algorithin 3. This is glet of quantities
firm ¢ can produce at equilibrium given that the total quantity quced isQ.

Lemma 8. Let F (¢;, —Q) = Fi(¢;, Q) andG; = Gi(¢;, —Q). ThenF,” and G
are supermodular functions.

Lemma?9. Let I = {qé,...,qu} = qZF(Q) = argmazqi6{1___Qmw}Fi(qi,Q) and
I = {q;l, .. .,q;“} = qu(Q’) = argmaxqi6{1___Qmw}Fi(qi,Q’). LetQ > Q'. Then
g > gl andg;" > g

Lemma 10. Let ] = {qé, gt = qZG(Q) = argmaxqie{L,,Qmam}Gi(qi,Q) and
I = {q;l, .. .,q;“} = qu(Q') = argmaxqi6{1___Qmw}Fi(qi,Q'). LetQ > @Q’'. Then
g > ¢! andg;* > g,

Lemma 11. Let (Q be total production quantity guessed by Algorithm 3 at a sikp
outer binary search. Lef = (I1,...,1I,), wherel; = {¢,...,q*}, be the set of best
reponse ranges of all firms if the total quantity is a fixedgete). Then, if>""" | ¢ <
@, there does not exist any equilibrium for which the totalduwoed quantity is greater
than or equal taQ).

Lemma 12. Let ) be total production quantity guessed by Algorithm 3 at a sikp
outer binary search. Lef = (I4,...,1I,), wherel; = {¢,...,q*}, be the set of best
reponse ranges of all firms if the total quantity is a fixedgete). Then, if>""_ | ¢! >
@, there does not exist any equilibrium for which the totaldaroed quantity is less
than or equal taQ).

Finally, the results of this section culiminate in the foliog theorem.

Theorem 11. Algorithm[3 successfully computes the veaior= (¢1, 492, - ., qn) Of
guantities at one equilibrium of the Cournot oligopoly iétprice function is decreasing
and concave and the cost function is convex. In additionatgerithm runs in time
O(n1og?(Qumax)) WhereQ . is the maximum possible total quantity in the oligopoly
network at any equilibrium.

Proof. LemmadY guarantees that the inner binary search succesfifals the best re-
sponse range for all firms. Lemnfad 11 12 ensure that thathlg always contin-
ues its search for the total quantity at equilibrium in thgnsent where all the equilibria
are. Thus, when the search is over, it must be at an equitiboilthe game if one ex-
ists. If an equilibrium does not exist, then the algorithrii stbp when it has eliminated
all quantities in{1... Q.. } as possible total equilibrium production quantities. Let
Qmax be the maximum total quantity possible at any equilibriunthef oligopoly net-
work. Our algorithm performs a binary search over all pdssifuantities in1, Qmax|,
and at each step finds a range of quantities for eachifiar{n] using another binary
search. This means the algorithm runs in ti: log” (Qumax)). We can find an upper
bound for@ ., Noting that@ ., is at most the sum of the production quantites of
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the firms when they are the only producer in the market(},g.x < Zie[n] Q; where
QF = q(¢:) is the optimal quantity to be produced by firmvhen there is no other
firms to compete with.
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6 Example

Here we write the set of equations of our example in more Betai

Scenario 1 The set of equationgt;% = 975 — () can be written as:

99B1
on
A =1-3qa1 — g1 =0
0qa1
or
B =1-3¢gp1—qa1 =0
0qp1

Scenario 2 The set of equationgﬁ‘1 = 3;1 = gq?l = ggBBQ = 0 can be written as:

Oma

9 =1-5ga1 —qa2—2gqB1 =0
qa1

Oma

3 =1-5qa2 —qa1 —2qp2=20
qA2

on

3 £ =1-5¢B1 — g2 —2gqa1 =0
4B1

on

3 B =1-5¢B2 — gB1 — 2qa2 = 0.
qB2

Scenario 3 The set of equation§™- — £74 — S22 — () can be written as:

or

3 A =1-5ga1 —qa2=0

qa1

or

3 A =1-95ga2 —qa1 —2qp2 =10
qA2

87TB

8 :1—5qB2—2qA2:0.
qB2
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7 Zhao and Han Convergence Theorem

The following theorem states the performance guaranteeecdigorithm proposed by
Zhao and Hah 1999.

Theorem 12 (Zhao Han Convergence Theorem)et F' : R™ — R™ be the function
associated with a complementarity problem satisfying weefbllowing conditions:

— VF is a positive semidefinite matrix for a constant scalar.
— F satisfies SLC,; i.e., for some scalar> 0,

IX[F (2 + h) — F(z) = VF(2)h]l|oc < AhTVE(2)h]

holdsVz > 0 andVh satisfying|| X ~1h| < 1.

Then the algorithm converges in tirﬁ)e<n max(1, \) log(ﬂo/€)> and outputs an ap-

proximate solutioi F'(z*), z*) satisfying(«*)T F'(z*) /n < ewhereug = (z0)T F(z0)/n,
and(F'(zg), zo) is the initial feasible point.

8 Missing proofs

8.1 Missing proofs of Section 4

Proof (Proof of Theorem Lemna Definition of functionF implies

|X[F(g+h)—F(q) — VFE(@)h][|oo = X[R(q+ h) — R(q) — VR(q)h]
+ X[S(g+h) = S(q) — VS(9)h]|l~

applying triangle inequality gives
IX[F(q+h) = F(q) = VF(@)h]ll <[IX[R(q+ h) = R(q) — VR(q)N][| oo
+ I X[S(q + ) — S(q) = VS(@)h]llo
Combining with assumptions of the lemma, we have the redurequality.

Proof (Proof of Theorem Lemrha Before we proceed, we state the following theorem
from analysis and Lemniall3.

Theorem 13. [5] Let f : R™ — R be a continuously differentiable function with Lips-
chitz gradient, i.e., for some scaler> 0,

IVf(z) = Vil < cllz -yl ¥,y eR™

Then, we hav¥ z,y € R",

1) < @) + V@ @ =) + 5y — all ©)
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Lemma 13. For any vectorz € R™ and an arbitraryS C [n], letX = >"._c z;. Then

we havey/n|jz|| > X
Proof. LetY = Zie[n] |z;|. Clearly,|Y'| > |X].

Z jwiaj| =) 2lei] + |z

,jEN i<j

i€S

Since,s? +t2 > 2st ¥ s,t € R, we have
X2 < Y2 <3 (@2 +a?) + |Ja)? = nflo?
1<J
Now we are ready to prove Lemrh 3. First note tRég + h) — R(q) — VR(q)h is
ank x1vector. Let; = . v, (i) hij- The element corresponding to edgg) € &
invectorR(q+h) is P,(D; + H;)+ P/ (D; + H;)(qi; + hi;). Similarly, the element cor-
responding to edgg, j) € € in R(q) is P;(D;)+ P} (D;)q;; whereas the corresponding
elementinVR(9)hiS X c v, hit 5o = = Lpe iy ik (P (Di) + P (Di)aig)) +
hi; P/(D;). Therefore, the element corresponding to efigg) € £ in vectorR(q +
h) — R(q) — VR(q)h is:
—Py(D; + Hi)—P{(D; + H;)(qij — hij) — Pi(D;) — P{(Di)as;
+ Y hak(P{(D:) + P/'(Di)gij) + his P (D).
kEN M (7)
Besides,X is the diagonal matrix of sizé& x E with diagonal entries equal to
elements ofy in the same order. Therefor®,[R(¢+ h) — R(q) — VR(¢)h]isanE x 1

vector where the element corresponding to efigg) € £ is ¢;; multiplied by the
element corresponding to ed@e;) in vectorR(q + h) — R(q) — VR(q)h:

— qij <B(Di + H;) + P{(Di + H;)(gij + hij) — Pi(Di) — P/(D;)qi;
— > ha(P{(D:) + P/(Di)ai;) — hijP{(Di)>
kEN A (4)
= — qij ( [Pi(D; + H;) — Pi(D;) — H; P{(D;)]
+ [P/(Di + H;) — P;(D;) — HiP'(D;)] (¢ij + hij) + hiniP{'(Di)>

<qij <|Pi(Di + H;) — P{(D;) — HP{(D;)|

+ |P/(D; + H;) — P/(D;) — Hi P/ (Di)||(qi; + hij)| + |hinz‘P{/(Dz‘)|> :
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Let P’ andP” be Lipschitz continuous functions with Lipschitz constht; and
2L, respectively. To bound the last expression, we use TheloBsamd Lemma13

|P,(D; + H;) — Py(D;) — H;P/(D;)| < LiH} < L E||n|?
|P/(D; + H;) — P/(D;) — H;P!"(D;)| < LoH? < Ly E||h||?
\hijH; P'(Dy)| < E|[h||*P{'(D;)

Then, from finiteness of derivatives, we have:
|his H; P}’ (D;)| < EMa||h|?
Thus, the LHS is bound from above by:
@i BI[P|* (L1 + La(gsj + hij) + Ma)

Let @ be an upper bound on maximum profitable quantity for any pecedin any
market. Then the LHS is bound above GyA||?, where:

C = QE(Ly +2QLy + M) (10)

Proof (Proof of Theorem Lemria Det m;; = 5’;] . The element of vectak (S(q +

h) — S(q) — hVS) corresponding to edge, j) is given by:
qij(mij(q + k) + mi;(q) — hVei(q))

Let 2L3 be an upper bound of Lipschitz constants for derivates;'sf Then, from
Theoreni_LIB and upper boudHon production quantities, we have:

|gij (mij(q + h) +mij(q) — hVei(q))| < QLs||h[?

Proof (Proof of Theorem Lemnid 4)et S’ = > ,_-c;. ThenS’, being a sum of
strongly convex functions, is a strongly convex functiols®S = VS’. Thus,h’V2S'h =
hT'V Sh is bounded from below by, ||.||?,Vh € R™ for somea, > 0 if the cost func-
tions are strongly convex andpha. = 0 is cost functions are convex.

Proof (Proof of Theorem Lemnida Srom lemma$1312 and 1, RHS of SLC fér
is O(E||h||?). If cost functions are strongly convex or marginal revenuecfion is
strongly monotone, then from Lemrnh 4 and definition of stnorogotonicity, the LHS
of SLC for F is £2(||h||?). Thus, F satisfies SLC. We note thdf is a sum of two
monotone functions and hence is monotone.

Proof (Proof of Theorem Lemriia &)ete; be the index of the eddg, j) ande, be the
index of edg€!, k). The elements oV R are as follows.

Trid = —2P/(D;) — P'(Di)q; if e1 = e
VReie, = { gob = —P/(Di) = P/'(Di)gi; if i = 1,j # k

Orij _ if + .
m—0|fl7él,j7ék
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We note that since price functions are functions only of ttaltproduction in their

corresponding markets and not the individual quantitiesipced by flrmsa—P@ =

agq_(i))_ Therefore, we have replaced the partial derivative®ByD, ).
We must show” VR(D;)x is nonnegative’x € RF andvD; > 0.

" (VRD)z= Y > Tij Ttk 87@ => > !Ezg%kg—”

(i.4)€E (k,D)EE €M j k€N p (3)

Z Z %23' [_QPi/(Di) - Pi”(Di)xij]

i€EM \jENm(3)

+ Z zijxik [~ P (D;) — P/'(D;)qij)
G kENM (1) Gk

- Z Z ‘TszI(D )+ Z zijrix (P} (Ds) + P (Di)gij)

i€EM \jENM (D) JskE€N M (1)

= — Z PZ/(DZ) Z x?j —|—P1.I(Di) Z T4 %k +Pi”(Di) Z 4545 Tk

ieEM JENM() JkEN M (1) JkEN (1)

[(Di) > af+P(Dy) > wigwa — [P(Da)llall]] Y il
ieM FJEN A (2) J,kENa(2) JEN M ()
2

>3 | —FDef = P{(Di) | Dy | +IPI(D)IDilel] Y @il

ieM FEN M (1) FENM(2)

(]

Since P;’s are decreasing functions, we hav®/(D;) < 0, Vi € M. Thus, over
domain of P;’s (D; > 0), the above expression is non-negativéf’'(D;)|D; <
2|P!/(D;)| Hencez™ (VR(D;))z > 0 equivalentlyV R(D;) is positive semidefinite.

8.2 Missing proofs of Sectio b

Proof (Proof of Theorem Lemnia 7gain let P'(Q) = P(Q + 1) — P(Q) be the
forward difference of the price function, and 8{(¢;) = ¢i(¢; + 1) — ¢i(g;). From
definition of profit functionr; andf;, we havef;(¢;, Q) = P(Q+1)+P'(Q)qi—c}(q:)-
Assumeq) is fixed. Suppose we havg < ¢;. The marginal profit of firm at production
quantityg; is P(Q + 1) + P'(Q)q; — ¢(¢;) whereas the marginal profit at production
quantityg; is P(Q + 1)+ P'(Q)d: — ¢i(d@). Thus,P(Q + 1) + P'(Q)a: > P(Q+1) +
P'(@)qg; sinceP’(Q) is negative (from concavity dP) andg; < ¢;. As the discrete cost
functions are convex, we havl¢;) < c(g;). This impliesf;(q:;, Q) > fi(¢, Q) when

q; < ¢;- Thus, for a fixedR, f:(qi, @) is a non-increasing function @f. Similarly, we
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can see thaf;(¢;, Q) is a non-increasing function @. From definitions ofF; andG;,
we have:

Fi(¢: +1,Q) — Fi(¢;, Q) = fi(¢:,Q) (11)
Gi(gi+1,Q) — Gi(¢;,Q) = Fi(¢; +1,Q — 1) — Fi(¢;,Q — 1) = fi(¢:, Q — 1() )
12

For a fixed@, Let ¢; be the minimum maximizer of;(¢;, Q). Thenf; (¢ — 1,Q) > 0.
Let ¢, be the maximum maximizer &¥;(q¢;, Q). Becausgf; is non-increasing, we have
fila —1,Q = 1) > fi(q — 1,Q) > 0. Thus, any number smaller thancannot be
a maximizer ofG; and we havey < ¢,.Letq € {¢;...q.}. Then, because > ¢
we havef;(¢,Q) < 0 and fromg < ¢, we havef;(¢ — 1,Q — 1) > 0. Thus,q is an
equilibrium quantity when total production quantity@s If ¢ < ¢;, thenf;(¢,Q) > 0
and ifg > ¢, thenf;(¢ — 1,Q — 1) > 0. Thus{g; ... q.} is the set of equilibrium
guantities. In Liné B of Algorithril3, we are searching for thmmimum maximizer of
F; and in Line 11 we are searching for maximum maximize&of Binary search for
these quantities is valid because first differences for hatltions (equations11 and
[12) are decreasing.

Proof (Proof of Theorem Lemnha 8)e use the following definition from submodular
optimization in the lemma.

Definition 5. Given latticeg X7, >) and(Xs,>), f : X7 x X5 — R is supermodular

iff for any z1,y1 € X1;29,y2 € X5 such thatr; > y; andzs > ys9, the following
holds:

fx,y2) — fler, 22) > f(y1,y2) — f(y1, x2)
P

We have,F;(g;, Q) = P(Q + 1) + 242 (g; — 1)2 — ¢;(qs). Let —Q1 > — Q.
Letg, > ¢;. Then, we have:

P(@1) — P'(Q2) 1

Fi(gi, Q1) — Figi, Q2) = (P(Q1 + 1) — P(Q2 +1))gi + . (- 5)°
R @)~ Fildl, @) = (P(@1 + 1) — P(Qs + 1) + T F@) Ly

SinceP and P’ are a decreasing functions, we ha®&),) > P(Q2) and P’ (Q;) >
P’(Q5). From this and the fact thaf > ¢;, we have:

Fi(q;, Q1) — Fi(q;, Q2) > Fiqi, Q1) — Fi(qi, Q2)

ThereforeF;” is a supermodular function. Sine&;(¢;, Q) = Fi(¢;,Q — 1), may a
similar argument we can conclude ti@} is supermodular.

Proof (Proof of Theorem Lemnia Ve need the following definition and Topkis’
Monotonicity Theorem for proving the lemma.

Definition 6. Given a lattice(X, >), we defineStrong Set Orderingver A, B C X.
We sayA >, B iff Va € A,Vb € B,max{a,b} € A Amin{a,b} € B.
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We note that the strong set ordering induces a natural oxgleri sets of consecutive
integers. Letl; = {l,...,u1}. Letly = {la,...,usa}. Thenl; >, L iff [y > I and
Uy > Us.

Theorem 14 (Topkis’ Monotonicity Theorem[35]).For any lattices X, >) and (T, >
), letf : X x T — R be a supermodular function and let(¢) = argmaz,cx f(z,t).
Ift > ¢, thenx*(t) >, 2*(t'), i.e.,z*(t) is non-decreasing it.

We note that in the theorem above, strong set ordering is agedz* because
argmazx returns a set of values from lattice.

Now we are ready to prove Lemmh 9. From Lemih#8,(¢;, —Q) is a supermod-
ular function. Thus, from TheoremN4 (Q) = argmaxF;(q;, Q) is a non-decreasing
function of —Q, i.e.,q!" is a non-increasing function 6§. ThusQ > Q' = I’ >, I.
As noted above, strong set ordering on a set of consecutegdrs implies thaj;-l > g
andg;" > g;'.

Proof (Proof of Theorem Lemmall®rom LemmaB(; (¢;, —Q) is a supermodular
function. Thus, from Theorem 14 (Q) = argmaxF;(¢;,Q) is a non-decreasing
function of —Q, i.e.,¢¢ is a non-increasing function 6§. ThusQ > Q' = I' > I.
As noted above, strong set ordering on a set of consecutigsrs implies that,! > ¢/
andg;" > g}'.

Proof (Proof of Theorem Lemniallssume for contradiction that such an equilib-
rium exists for total quantity)’ > Q. From LemmaZl0, we havg’ (Q) >, ¢¢(Q’) =
{q;l . .q;“}. Thus, we have? > q;“. Since®’ is an equilibrium quantity} """, q;“ >
Q'. Thus, we have)’ < Q and this is a contradiction.

Proof (Proof of Theorem LemniallAssume for contradiction that such an equilib-
rium exists for total quantity)’ < Q. From LemmaD, we havg (Q) <, ¢/ (Q’) =
{q/'...q;"}. Thus, we have! < ¢;'. SinceQ’ is an equilibrium quantityy ", ¢;'leqQ’.
Thus, we have)’ > @ and this is a contradiction.
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