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Abstract. Cournot competition, introduced in 1838 by Antoine Augustin Cournot,
is a fundamental economic model that represents firms competing in a single mar-
ket of a homogeneous good. Each firm tries to maximize its utility—naturally a
function of the production cost as well as market price of theproduct—by decid-
ing on the amount of production. This problem has been studied comprehensively
in Economics and Game Theory; however, in today’s dynamic and diverse econ-
omy, many firms often compete in more than one market simultaneously, i.e.,
each market might be shared among a subset of these firms. In this situation, a
bipartite graph models the access restriction where firms are on one side, markets
are on the other side, and edges demonstrate whether a firm hasaccess to a mar-
ket or not. We call this gameNetwork Cournot Competition(NCC). Computation
of equilibrium, taking into account a network of markets andfirms and the dif-
ferent forms of cost and price functions, makes challengingand interesting new
problems.
In this paper, we propose algorithms for finding pure Nash equilibria of NCC
games in different situations. First, we carefully design apotential function for
NCC, when the price functions for markets are linear functions of the production
in that market. This result lets us leverage optimization techniques for a single
function rather than multiple utility functions of many firms. However, for non-
linear price functions, this approach is not feasible—there is indeed no single
potential function that captures the utilities of all firms for the case of nonlinear
price functions. We model the problem as a nonlinear complementarity problem
in this case, and design a polynomial-time algorithm that finds an equilibrium
of the game for strongly convex cost functions and strongly monotone revenue
functions. We also explore the class of price functions thatensures strong mono-
tonicity of the revenue function, and show it consists of a broad class of functions.
Moreover, we discuss the uniqueness of equilibria in both ofthese cases which
means our algorithms find the unique equilibria of the games.Last but not least,
when the cost of production in one market is independent fromthe cost of pro-
duction in other markets for all firms, the problem can be separated into several
independent classicalCournot Oligopolyproblems in which the firms compete
over a single market. We give the first combinatorial algorithm for this widely
studied problem. Interestingly, our algorithm is much simpler and faster than pre-
vious optimization-based approaches.

1 Introduction

In this paper we study selling a utility with a distribution network, e.g., natural gas,
water and electricity, in several markets when the clearingprice of each market is de-
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termined by its supply and demand. The distribution networkfragments the market into
different regional markets with their own prices. Therefore, the relations between sup-
pliers and submarkets form a complex network [29, 22, 8, 36, 7, 15, 13]. For example,
a market with access to only one supplier suffers a monopolistic price, while a market
having access to multiple suppliers enjoys a lower price as aresult of the price compe-
tition.

Antoine Augustin Cournot introduced the first model for studying the duopoly com-
petition in 1838. He proposed a model where two individuals own different springs of
water, and sell it independently. Each individual decides on the amount of water to sup-
ply, and then the aggregate water supply determines the market price through an inverse
demand function. Cournot characterizes the unique equilibrium outcome of the market
when both suppliers have the same marginal costs of production, and the inverse de-
mand function is linear. He argued that in the unique equilibrium outcome, the market
price is above the marginal cost.

Joseph Bertrand 1883 criticized the Cournot model, where the strategy of each
player is the quantity to supply, and in turn suggested to consider prices, rather than
quantities, as strategies. In the Bertrand model each firm chooses a price for a homoge-
neous good, and the firm announcing the lowest price gets all the market share. Since
the firm with the lowest price receives all the demand, each firm has incentive to price
below the current market price unless the market price matches its cost. Therefore, in an
equilibrium outcome of the Bertrand model, assuming all marginal costs are the same
and there are at least two competitors in the market, the market price will be equal to
the marginal cost.

The Cournot and Bertrand models are two basic tools for investigating the competi-
tive market price, and have attracted much interest for modeling real markets; see, e.g.,
[8, 36, 7, 15]. While these are two extreme models for analyzing the price competition,
it is hard to say which one is essentially better than the other. In particular, the predictive
power of each strongly depends on the nature of the market, and varies from applica-
tion to application. For example, the Bertrand model explains the situation where firms
literally set prices, e.g., the cellphone market, the laptop market, and the TV market. On
the other hand, Cournot’s approach would be suitable for modeling markets like those
of crude oil, natural gas, and electricity, where firms decide about quantities rather than
prices.

There are several attempts to find equilibrium outcomes of the Cournot or Bertrand
competitions in the oligopolistic setting, where a small number of firms compete in
only one market; see, e.g., [24, 33, 32, 18, 17, 37]. Nevertheless, it is not entirely clear
what equilibrium outcomes of these games are when firms compete over more than
one market. In this paper, we investigate the problem of finding equilibrium outcomes
of the Cournot competition in a network setting where there are several markets for a
homogeneous good and each market is accessible to a subset offirms.

1.1 Example

We start with the following warm-up example. This is a basic example for the Cournot
competition in the network setting. It consists of three scenarios. We assume firmi ∈
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{A,B} produces quantityqij of the good in marketj ∈ {1, 2}. Letq be the vector of
all quantities. The detailed computations are in the Appendix.

Scenario 1 Consider the Cournot competition in an oligopolistic setting with two firms
and one market (see Figure 1). Letp(q) = 1− qA1 − qB1 be the market price (the
inverse demand function), andci(q) = 1

2q
2
i1 be the cost of production for firm

i ∈ {A,B}. The profit of a firm is what it gets by selling all the quantities of good
it produces in all markets minus its cost of production. Therefore, the profit of firm
i denoted byπi(q) is qi1(1−qA1−qB1)− 1

2q
2
i1. In a Nash equilibrium of the game,

each firm maximizes its profit assuming its opponent does not change its strategy.
Hence, the unique Nash equilibrium of the game can be found bysolving the set of
equations∂πA

∂qA1
= ∂πB

∂qB1
= 0. SoqA1 = qB1 = 1

4 is the unique Nash equilibrium

wherep(q) = 1
2 , andπA(q) = πB(q) = 0.9375.

A

πA=0.0938

B

πB=0.0938

1

p1=
1
2

qA1 qB1

First Scenario

A

πA=0.0938

B

πB=0.0938

1

p1=
1
2

2

p2=
1
2

qA1 qB2

Second Scenario

qA2 qB1

A

πA=0.124

B

πB=0.064

1

p1=0.64

2

p2=0.48

qA1 qA2 qB2

Third Scenario

Fig. 1. This figure represents the three scenarios of our example. Vector q = ( 1
4
, 1
4
) represents

the unique equilibrium in the first scenario. Vectorq = ( 1
8
, 1
8
, 1
8
, 1
8
) is the unique equilibrium of

the second scenario. Finally, Vectorq = (0.18, 0.1, 0.16) is the unique equilibrium in the third
scenario.

Scenario 2 We construct the second scenario by splitting the market in the previous
scenario into two identical markets such that both firms haveaccess to both markets
(see Figure 1). Since the demand is divided between two identical markets, the price
for marketj would bepj(q) = 1 − 2qAj − 2qBj , i.e., the clearance price of each
market is the same as the clearance price of the market in Scenario 1, when the
supply is half of the supply of the market in Scenario 1. In this scenario, the profit
of firm i ∈ {A,B} is πi(q) =

∑

j qij(1 − 2qAj − 2qBj) − 1
2 (qi1 + qi2)

2. Any

Nash equilibrium of this game satisfies the set of equations∂πA

∂qA1
= ∂πA

∂qA2
= ∂πB

∂qB1
=

∂πB

∂qB2
= 0. By finding the unique solution to this set of equations, one can verify that

q = (18 ,
1
8 ,

1
8 ,

1
8 ) is the unique equilibrium of the game wherep1(q) = p2(q) =

1
2 ,

andπA(q) = πB(q) = 0.09375. Since we artificially split the market into two
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identical markets, this equilibrium is, not surprisingly,the same as the equilibrium
in the previous scenario.

Scenario 3 Consider the previous scenario, and suppose firm2 has no access to the first
market (see Figure 1). Let the demand functions and the cost functions be the same
as the previous scenario. The profits of firms1 and2 can be written as follows:

πA(q) = qA1(1− 2qA1) + qA2(1− 2qA2 − 2qB2)−
1

2
(qA1 + qA2)

2,

πB(q) = qB2(1− 2qA2 − 2qB2)−
1

2
q2B2.

The unique equilibrium outcome of the game is found by solving the set of equa-
tions ∂πA

∂qA1
= ∂πA

∂qA2
= ∂πB

∂qB2
= 0. One can verify that vectorq = (qA1, qA2, qB2) =

(0.18, 0.1, 0.16) is the unique equilibrium outcome of the game wherep1(q) =
0.64, p2(q) = 0.48, πA(q) = 0.124, andπB(q) = 0.064. The following are a few
observations worth mentioning.

– Firm A has more power in this scenario due to having a captive market3.
– The equilibrium price of market1 is higher than the equilibrium price in the

previous scenarios.
– The position of firmB affects its profit. Since it has no access to market1, it is

not as powerful as firmA.
– The equilibrium price of market2 is smaller than the equilibrium price in the

previous scenarios.

1.2 Related Work

There are several papers that investigate the Cournot competition in an oligopolistic
setting (see, e.g., [24, 33, 18, 17, 37]). In spite of these works, little is known about
the Cournot competition in a network. Ilkılıç [19] studiesthe Cournot competition in a
network setting, and considers a network of firms and marketswhere each firm chooses
a quantity to supply in each accessible market. He studies the competition when the
inverse demand functions are linear and the cost functions are quadratic (functions of
the total production). In this study, we consider the same model when the cost functions
and the demand functions may have quite general forms. We show the game with linear
inverse demand functions is a potential game and therefore has a unique equilibrium
outcome. Furthermore, we present two polynomial-time algorithms for finding an equi-
librium outcome for a wide range of cost functions and demandfunctions. While we
investigate the Cournot competition in networks, there is arecent paper which considers
the Bertrand competition in network setting [3], albeit in amuch more restricted case
of only two firms competing in each market.

The final price of each market in the Cournot competition is a market clearing price;
i.e, the final price is set such that the market becomes clear.Finding a market clearance
equilibrium is a well-established problem, and there are several papers which propose
polynomial-time algorithms for computing equilibriums ofmarkets in which the price

3A captive market is one in which consumers have limited options and the seller has a
monopoly power.
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of each good is defined as the price in which the market clears.Examples of such mar-
kets include Arrow-Debreu market and its special case Fisher market (see related work
on these markets [12, 11, 10, 21, 9, 31, 16]). Devanur and Vazirani [10] design an ap-
proximation scheme which computes the market clearing prices for the Arrow-Debreu
market, and Ghiyasvand and Orlin [16] improve the running time of the algorithm. The
first polynomial-time algorithm for finding an Arrow-Debreumarket equilibrium is pro-
posed by Jain [21] for a special case with linear utilities. The Fisher market, a special
case of the Arrow-Debreu market, attracted a lot of attention as well. Eisenberg and
Gale [12] present the first polynomial-time algorithm by transferring the problem to a
concave cost maximization problem. Devanur et al. [11] design the first combinatorial
algorithm which runs in polynomial time and finds the market clearance equilibrium
when the utility functions are linear. This result is later improved by Orlin [31].

For the sake of completeness, we refer to recent works in the computer science lit-
erature [20, 14], which investigate the Cournot competition in an oligopolistic setting.
Immorlica et al. [20] study a coalition formation game in a Cournot oligopoly. In this
setting, firms form coalitions, and the utility of each coalition, which is equally divided
between its members, is determined by the equilibrium of a Cournot competition be-
tween coalitions. They prove the price of anarchy, which is the ratio between the social
welfare of the worse stable partition and the social optimum, is Θ(n2/5) wheren is
the number of firms. Fiat et al. [14] consider a Cournot competition where agents may
decide to be non-myopic. In particular, they define two principal strategies to maximize
revenue and profit (revenue minus cost) respectively. Note that in the classic Cournot
competition all agents want to maximize their profit. However, in their study each agent
first chooses its principal strategy and then acts accordingly. The authors prove this
game has a pure Nash equilibrium and the best response dynamics will converge to
an equilibrium. They also show the equilibrium price in thisgame is lower than the
equilibrium price in the standard Cournot competition.

1.3 Results and techniques

We consider the problem of Cournot competition on a network of markets and firms for
different classes of cost and inverse demand functions. Adding these two dimensions to
the classical Cournot competition which only involves a single market and basic cost
and inverse demand functions yields an engaging but complicated problem which needs
advanced techniques for analyzing. For simplicity of notation we model the competition
by a bipartite graph rather than a hypergraph: vertices on one side denote the firms, and
vertices on the other side denote the markets. An edge between a firm and a market
demonstrates willingness of the firm to compete in that specific market. The complexity
of finding the equilibrium, in addition to the number of markets and firms, depends on
the classes that inverse demand and production cost functions belong to.

We summarize our results in the following table.



6 Abolhassani et al.

Cost functions Inverse demand
functions

Running time Technique

Convex Linear O(E3) Convex optimiza-
tion, formulation as
an ordinal potential
game

Convex Strongly monotone
marginal revenue
function4

poly(E)
Reduction to a non-
linear complementar-
ity problem

Convex, separable Concave O(n log2 Qmax) Supermodular op-
timization, nested
binary search

In the above table,E denotes the number of edges of the bipartite graph,n denotes
the number of firms, andQmax denotes the maximum possible total quantity in the
oligopoly network at any equilibrium. In our results we assume the inverse demand
functions are nonincreasing functions of total productionin the market. This is the ba-
sic assumption in the classical Cournot Competition model:As the price in the market
increases, it is reasonable to believe that the buyers drop out of the market and de-
mand for the product decreases. The classical Cournot Competition model as well as
many previous works on Cournot Competition model assumes linearity of the inverse
demand function [19, 20]. In fact there is little work on generalizing the inverse de-
mand function in this model. The second and third row of the above table shows we
have developed efficient algorithms for more general inverse demand functions satis-
fying concavity rather than linearity. This can be accounted as a big achievement. The
assumption of monotonicity of the inverse demand function is a standard assumption
in Economics [2, 1, 27]. We assume cost functions to be convexwhich is the case in
many works related to both Cournot Competition and BertrandNetwork [25, 38]. In a
previous work [19], the author considered Cournot Competition on a network of firms
and markets; however, assumed that inverse demand functions are linear and all the cost
functions are quadratic function of the total production bythe firm in all markets which
is quite restrictive. Most of the results in other related works in Cournot Competition
and Bertrand Network require linearity of the cost functions [3, 20]. A brief summary
of our results presented in three sections is given below.

Linear Inverse Demand Functions In case inverse demand functions are linear and
production costs are convex, we present a fast and efficient algorithm to obtain the equi-
librium. This approach works by showing that Network Cournot Competition belongs
to a class of games calledordinal potential games. In such games, the collective strat-
egy of the independent players is to maximize a single potential function. The potential
function is carefully designed in such a way that changes made by one player reflects
in the same way in the potential function as in their own utility function. We design a

4Marginal revenue function is the vector function which mapsproduction quantities for an
edge to marginal revenue along that edge.
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potential function for the game, which depends on the network structure, and show how
it captures this property. Moreover, in the case where the cost functions are convex, we
prove concavity of this designed potential function (Theorem 6) concluding convex op-
timization methods can be employed to find the optimum and hence, the equilibrium of
the original Cournot competition. We also discuss uniqueness of equilibria in case the
cost functions are strictly concave. Our result in this section is specifically interesting
since we find the unique equilibrium of the game. We prove the following theorems in
Section 3.

Theorem 1. The Network Cournot Competition with linear inverse demandfunctions
forms an ordinal potential game.

Theorem 2. Our designed potential function for the Network Cournot Competition
with linear inverse demand functions is concave provided that the cost functions are
convex. Furthermore, the potential function is strictly concave if the cost functions
are strictly convex, and hence the equilibria for the game isunique. In addition, a
polynomial-time algorithm finds the optimum of the potential function which describes
the market clearance prices.

The general caseSince the above approach does not work for nonlinear inversede-
mand functions, we design another interesting but more involved algorithm to capture
more general forms of inverse demand functions. We show thatan equilibrium of the
game can be computed in polynomial time if the production cost functions are convex
and the revenue function is monotone. Moreover, we show under strict monotonicity of
the revenue function, the solution is unqiue, and thereforeour results in this section is
structural; i.e. we find the one and only equilibria. For convergence guarantee we also
need Lipschitz condition on derivatives of inverse demand and cost functions. We start
the section by modeling our problem as a complementarity problem. Then we prove
how holding the aforementioned conditions for cost and revenue functions yields satis-
fying Scaled Lipschitz Condition(SLC) and semidefiniteness for matrices of derivatives
of the profit function. SLC is a standard condition widely used in convergence analysis
for scalar and vector optimization [39]. Finally , we present our algorithm, and show
how meeting these new conditions by inverse demand and cost functions helps us to
guarantee polynomial running time of our algorithm. We alsogive examples of classes
of inverse demand functions satisfying the above conditions. These include many fam-
ilies of inverse demand functions including quadratic functions, cubic functions and
entropy functions. The following theorem is the main resultof Section 4 which sum-
marizes the performance of our algorithm.

Theorem 3. A solution to the Network Cournot Competition can be found inpolyno-
mial number of iterations under the following conditions:

1. The cost functions are (strongly) convex.
2. The marginal revenue function is (strongly5) monotone.

5For at least one of the first two conditions, strong version ofcondition should be satisfied,
i.e., either cost functions should be strongly convex or themarginal revenue function should be
strongly monotone.
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3. Ther first derivative of cost functions and inverse demandfunctions and the
second derivative of inverse demand functions are Lipschitz continuous.

Furthermore, the solution is unique assuming only the first condition. Therefore,
our algorithm finds the unique equilibria of NCC.

Cournot oligopoly Another reasonable model for considering cost functions ofthe
firms is the case where the cost of production in a market depends only on the quantity
produced by the firm in that specific market (and not on quantities produced by this firm
in other markets). In other words, the firms have completely independent sections for
producing different goods in various markets, and there is no correlation between cost
of production in separate markets. Interestingly, in this case the competitions are sep-
arable; i.e. equilibrium for Network Cournot Competition can be found by finding the
quantities at equilibrium for each market individually. This motivates us for considering
Cournot game where the firms compete over a single market. We present a new algo-
rithm for computing equilibrium quantities produced by firms in a Cournot oligopoly,
i.e., when the firms compete over a single market. Cournot Oligopoly is a well-known
model in Economics, and computation of its Cournot Equilibrium has been subject to
a lot of attention. It has been considered in many works including [34, 23, 30, 26, 6]
to name a few. The earlier attempts for calculating equilibrium for a general class of
inverse demand and cost functions are mainly based on solving a Linear Complemen-
tarity Problem or a Variational Inequality. These settingscan be then turned into convex
optimization problems of sizeO(n) wheren is the number of firms. This means the
runtime of the earlier works cannot be better thanO(n3) which is the best performance
for convex optimization [5]. We give a novel combinatorial algorithm for this impor-
tant problem when the quantities produced are integral. We limit our search to integral
quantities for two reasons. First, in real-world all commodities and products are traded
in integral units. Second, this algorithm can easily be adapted to compute approximate
Cournot-Nash equilibrium for the continuous case and sincethe quantities at equilib-
rium may not be rational numbers, this is the best we can hope for. Our algorithm runs
in time O(n log2(Qmax)) whereQmax is an upper bound on total quantity produced
at equilibrium. Our approach relies on the fact that profit functions are supermodular
when the inverse demand function is nonincreasing and the cost functions are convex.
We leverage the supermodularity of inverse demand functions and Topkis’ Monotonic-
ity Theorem [35] to design a nested binary search algorithm.The following is the main
result of Section 5.

Theorem 4. A polynomial-time algorithm successfully computes the quantities pro-
duced by each firm at an equilibrium of the Cournot oligopoly if the inverse demand
function is non-increasing, and the cost functions are convex. In addition, the algorithm
runs inO(n log2(Qmax)) whereQmax is the maximum possible total quantity in the
oligopoly network at any equilibrium.

2 Notations

Suppose we have a set ofn firms denoted byF and a set ofm markets denoted by
M. A single good is produced in each of these markets. Each firm might or might
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not be able to supply a particular market. A bipartite graph is used to demonstrate these
relations. In this graph, the markets are denoted by the numbers1, 2, . . . ,m on one side,
and the firms are denoted by the numbers1, 2, . . . , n on the other side. For simplicity,
throughout the paper we use the notationi ∈ M meaning the marketi, andj ∈ F
meaning firmj. For firm j ∈ F and marketi ∈ M there exists an edge between the
corresponding vertices in the bipartite graph if and only iffirm j is able to produce
the good in marketi. This edge will be denoted(i, j). The set of edges of the graph is
denoted byE , and the number of edges in the graph is shown byE. For each market
i ∈ M, the set of verticesNM(i) is the set of firms that this market is connected to
in the graph. Similarly,NF (j) denotes the set of neighbors of firmsj among markets.
The edges inE are sorted and numbered1, . . . , E, first based on the number of their
corresponding market and then based on the number of their corresponding firm. More
formally, edge(i, j) ∈ E is ranked above edge(l, k) ∈ E if i < l or i = l andj < k.
The quantity of the good that firmj produces in marketi is denoted byqij . The vector
q is anE×1 vector that contains all the quantities produced over the edges of the graph
in the same order that the edges are numbered.

The demand for goodi, denotedDi, is the sum of the total quantity of this good
produced by all firms, i.e.,Di =

∑

j∈NM(i) qij . The price of goodi, denoted by the
functionPi(Di), is only a decreasing function of total demand for this good and not the
individual quantities produced by each firm in this market. For a firm j, the vectorsj
denotes the strategy of firmj, which is the vector of all quantites produced by this firm
in the marketsNF (j). Firm j ∈ F has a cost function related to its strategy denoted by
cj(sj). The profit that firmj makes is equal to the total money that it obtains by selling
its production minus its cost of production. More formally,the profit of firmj, denoted
by πj , is

πj =
∑

i∈NF (j)

Pi(Di)qij − cj(sj). (1)

3 Cournot competition and potential games

In this section, we design an efficient algorithm for the casewhere the price functions
are linear. More specifically, we design an innovativepotential functionthat captures
the changes of all the utility functions simultaneously, and therefore, show how finding
the quantities at the equilibrium would be equivalent to finding the set of quantities
that maximizes this function. We use the notion ofpotential gamesas introduced in
Monderer and Shapley [28]. In that paper, the authors introduceordinal potential games
as the set of games for which there exists apotential functionP ∗ such that the pure
strategy equilibrium set of the game coincides with the purestrategy equilibrium set of
a game where every party’s utility function isP ∗.

In this section, we design a function for the Network CournotCompetition and show
how this function is a potenial function for the problem if the price functions are linear.
Interestingly, this holds for any cost function meaning Network Cournot Competition
with arbitrary cost functions is an ordinal potential game as long as the price functions
are linear. Furthermore, we show when the cost functions areconvex, our designed
potential function is concave, and hence any convex optimization method can find the
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equilibrium of such a Network Cournot Competition. In case cost functions are strictly
convex, the potential function is strictly concave. We restate a well known theorem in
this section to conclude that the convex optimization in this case has a unique solution,
and therefore the equilibria that we find in this case is the one and only equilibria of the
game.

Definition 1. A game is said to be anordinal potential gameif the incentive of all
players to change their strategy can be expressed using a single global function called
the potential function. More formally, a game withn players and utility functionui for
playeri ∈ {1, . . . , n} is called ordinal potential with potential functionP ∗ if for all the
strategy profilesq ∈ R

n and every strategyxi of playeri the following holds:

ui(xi, q−i)− ui(qi, q−i) > 0 iff P ∗(xi, q−i)− P ∗(qi, q−i) > 0.

An equivalent definition of an ordinal potential game is a game for which a potential
funcitonP ∗ exists such that the following holds for all strategy profilesq ∈ R

n and for
each playeri.

∂ui

∂qi
=

∂P ∗

∂qi
.

In other words, for each strategy profileq, any change in the strategy of playeri has the
same impact on its utility function as on the game’s potential function.

The pure strategy equilibrium set of any ordinal potential game coincides with the
pure strategy equilibrium set of a game with the potential functionP ∗ as all parties’
utility function.

Theorem 5. The Network Cournot Competition with linear price functions is an ordi-
nal potential game.

Proof. Let Pi(Di) = αi − βiDi be the linear price function for marketi ∈ M where
αi ≥ 0 andβi ≥ 0 are constants determined by the properties of marketi. Note that
this function is decreasing with respect toDi. Here we want to introduce a potential
functionP ∗, and show that∂πj

∂qij
= ∂P∗

∂qij
holds∀(i, j) ∈ E . The utility function of firm

j is

πj =
∑

i∈NF (j)

(

αi − βi

∑

k∈NF (j)

qkj

)

qij − cj(sj),

and taking partial derivative with respect toqij yields

∂πj

∂qij
= αi − βi

∑

k∈NF (j)

qkj − βiqij −
∂cj(sj)

∂qij
.

We defineP ∗ to be

P ∗ =
∑

i∈M

[

αi

∑

j∈NM(i)

qij − βi

∑

j∈NM(i)

q2ij − βi

∑

k≤j

k,j∈NM(i)

qijqik −
∑

j∈NM(i)

cj(sj)

|NF(j)|

]

,
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whose partial derivative with respect toqij is

∂P ∗

∂qij
= αi − 2βiqij −

∂

∂qij






βi

∑

l≤m

l,m∈NM(i)

qilqim






− ∂cj(sj)

∂qij

= αi − 2βiqij − βi(Di − qij)−
∂cj(sj)

∂qij

=
∂πj

∂qij
.

Since this holds for eachi ∈ M and eachj ∈ F , the Network Cournot Competition
is an ordinal potential game.

We can efficiently compute the equilibrium of the game if the potential functionP ∗

is easy to optimize. Below we prove that this function is concave.

Theorem 6. The potential functionP ∗ from the previous theorem is concave provided
that the cost functions of the firms are convex. Moreover, if the cost functions are strictly
convex then the potential function is strictly concave.

Proof. The proof goes by decomposingP ∗ into pieces that are concave. We first define
f for one specific marketi as

f =
∑

j∈NM(i)

q2ij +
∑

k≤j

k,j∈NM(i)

qijqik,

and prove that it is convex.
Recall thatq is anE × 1 vector of all the quantities of good produced over the

existing edges of the graph. We can writef = q
TMq whereM is anE × E matrix

with all elements on its diagonal equal to1 and all other elements equal to1√
2
:

M =













1 1√
2
· · · 1√

2
1√
2

1 · · · 1√
2

...
...

. . .
...

1√
2

1√
2
· · · 1













.

To show thatf is convex, it suffices to prove thatM is positive semidefinite, by
finding a matrixR such thatM = RTR. Consider the following(E + 1)× E matrix:

R =















c c · · · c
a 0 · · · 0
0 a · · · 0
...

...
. . .

...
0 0 · · · a















,
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wherea, c are set below. LetRi be thei-th column ofR. We haveRi · Ri = a2 + c2

andRi ·Rj = c2 for i 6= j.
Settingc = 2−

1
4 anda =

√
1− c yieldsM = RTR, showing thatM is positive

semidefinite, hence the convexity off .
The following expression for a fixed marketi ∈ M, sum of three concave functions,

is also concave.

αi

∑

j∈NM(i)

qij − βi

(

∑

j∈NM(i)

q2ij +
∑

k≤j

k,j∈NM(i)

qijqik

)

−
∑

j∈NM(i)

cj(sj)

|NF (j)|
.

Summing over all markets proves concavity ofP ∗. Note that if a function is the
sum of a concave function and a strictly concave function, then it is strictly concave
itself. Therefore, sincef is concave, we can conclude strictly concavity ofP ∗ under
the assumption that the cost functions are strictly convex.

The following well-known theorem discusses the uniquenessof the solution to a
convex optimization problem.

Theorem 7. LetF : K → R
n be a strictly concave and continuous function for some

finite convex spaceK ∈ R
n. Then the following convex optimization problem has a

unique solution.

max f(x) s.t. x ∈ K. (2)

By Theorem 6, if the cost functions are strictly convex then the potential function is
strictly concave and hence, by Theorem 7 the equilibrium of the game is unique.

Let ConvexP (E , (α1, . . . , αm), (β1, . . . , βm), (c1, . . . , cn)) be the following con-
vex optimization program:

min −
∑

i∈M

[

αi

∑

j∈NM(i)

qij − βi

∑

j∈NM(i)

q2ij − βi

∑

k≤j

k,j∈NM(i)

qijqik −
∑

j∈NM(i)

cj(sj)

|NF (j)|

]

(3)

subject to qij ≥ 0 ∀(i, j) ∈ E .

Note that in this optimization program we are trying to maximizeP ∗ for a bipartite
graph with set of edgesE , linear price functions characterized by the pair(αi, βi) for
each marketi ∈ M, and cost functionscj for each firmj ∈ F .

Algorithm 1 Compute quantities at equilibrium for the Network Cournot Competition.
procedure COURNOT-POTENTIAL(E , cj , (αi, βi)) ⊲ Set of edges, cost functions and
price functions

Use a convex optimization algorithm to solve

ConvexP (E , (α1, . . . , αm), (β1, . . . , βm), (c1, . . . , cn)).

and return the vectorq of equilibrium quantities.
end procedure
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The above algorithm has a time complexity equal to the time complexity of a convex
optimization algorithm withE variables. The best such algorithm has a running time
O(E3)[5].

4 Finding equilibrium for cournot game with general cost and
inverse demand functions

In this section, we formulate an algorithm for a much more general class of price and
cost functions. Our algorithm is based on reduction of Network Cournot Competition
(NCC) to a polynomial time solvable class of Non-linear Complementarity Problem
(NLCP). First in Subsection 4.1, we introduce our marginal profit function as the vector
of partial derivatives of all firms with respect to the quantities that they produce. Then in
Subsection 4.2, we show how this marginal profit function canhelp us to reduce NCC
to a general NLCP. We also discuss uniqueness of equilibriumin this situation which
yields the fact that solving NLCP would give us the one and only equilibrium of this
problem. Unfortunately, in its most general form, NLCP is computationally intractable.
However, for a large class of functions, these problems are polynomial time solvable.
Most of the rest of this section is dedicated to proving the fact that NCC is polytime
solvable on vast and important array of price and cost functions. In Subsection 4.3, we
rigorously define the conditions under which NLCP is polynomial time solvable. We
present our algorithm in this subsection along with a theorem which shows it converges
in polynomial number of steps. To show the conditions that weintroduce for conver-
gence of our algorithm in polynomial time are not restrictive, we give a discussion in
Subsection 4.4 on the functions satisfying these conditions, and show they hold for a
wide range of price functions.

AssumptionsThroughout the rest of this section we assume that the price functions
are decreasing and concave and the cost functions are strongly convex (The notion of
strongly convex is to be defined later). We also assume that for each firm there is a finite
quantity at which extra production ceases to be profitable even if that is the only firm
operating in the market. Thus, all production quantities and consequently quantities
supplied to markets by firms are finite. In addition, we assumeLipschitz continuity and
finiteness of the first and the second derivatives of price andcost functions. We note that
these Lipschitz continuity assumptions are very common forconvergence analysis in
convex optimization [5] and finiteness assumptions are implied by Lipschitz continuity.
In addition, they are not very restrictive as we don’t expectunbounded fluctuation in
costs and prices with change in supply. For sake of brevity, we use the terms inverse
demand function and price function interchangeably.

4.1 Marginal profit function

For the rest of this section, we assume thatPi andci are twice differentiable functions
of quantities. We definefij for a firm j and a marketi such that(i, j) ∈ E as follows.

fij = − ∂πj

∂qij
= −Pi(Di)−

∂Pi(Di)

∂qij
qij +

∂cj
∂qij

. (4)
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Recall that the price function of a market is only a function of the total production
in that market and not the individual quantities produced byindividual firms. Thus
∂Pi(Di)

∂qij
= ∂Pi(Di)

∂qik
∀j, k ∈ NM(i). Therefore, we replace these terms byP ′

i (Di).

fij = −Pi(Di)− P ′
i (Di)qij +

∂cj
∂qij

. (5)

Let vectorF be the vector of allfij ’s corresponding to the edges of the graph in
the same format that we defined the vectorq. That isfij corresponding to(i, j) ∈ E
appears aboveflk corresponding to edge(l, k) ∈ E iff i < l or i = l andj < k. Note
thatF is a function ofq.

Moreover, we separate the part representing marginal revenue from the part repre-
senting marginal cost in functionF . More formally, we splitF into two functionsR
andS such thatF = R + S, and the element corresponding to the edge(i, j) ∈ E in
themarginal revenue fuctionR(q) is:

rij = − ∂πj

∂qij
= −Pi(Di)− P ′(Di)qij ,

whereas for themarginal cost functionS(q), it is:

sij =
∂cj
∂qij

.

4.2 Non-linear complementarity problem

In this subsection we formally define the non-linear complementarity problem (NLCP),
and prove our problem is a NLCP.

Definition 2. LetF : Rn → R
n be a continuously differentiable function onRn

+. The
complementarity problem seeks a vectorx ∈ R

n that satisfies the following constraints:

x, F (x) ≥ 0,

xTF (x) = 0.
(6)

Theorem 8. The problem of finding the vectorq at equilibrium in the Cournot game is
a complementarity problem.

Proof. Let q∗ be the vector of the quantities at equilibrium. All quantities must be non-
negative at all times; i.e.,q∗ ≥ 0. It suffices to showF (q∗) ≥ 0 andq∗TF (q∗) = 0.
At equilibrium, no party benefits from changing its strategy, in particular, its produc-
tion quantities. For each edge(i, j) ∈ E , if the corresponding quantityq∗ij is positive,

thenq∗ij is a local maxima forπj ; i.e., fij(q∗) = − ∂πj

∂qij

∣

∣

∣

q∗
= 0. On the other hand,

if q∗ij = 0, then ∂πj

∂qij

∣

∣

∣

q∗
cannot be positive, since, if it is, firmj would benefit by in-

creasing the quantityqij to a small amountǫ. Therefore, ∂π
∂qij

∣

∣

∣

q∗
is always nonpositive
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or equivalentlyfij(q∗) ≥ 0, i.e.,F (q∗) ≥ 0. Also, as we mentioned above, a nonzero

q∗ij is a local maximum forπj ; i.e.,fij(q∗) = − ∂π
∂qij

∣

∣

∣

q∗
= 0. Hence, eitherq∗ij = 0 or

fij(q
∗) = 0; thus,q∗ijfij(q

∗) = 0. This yields
∑

(i,j)∈E q
∗
ijfij(q

∗) = q∗TF (q∗) = 0.

Definition 3. F : K → R
n is said to be strictly monotone atx∗ if

〈(F (x) − F (x∗))T , x− x∗〉 ≥ 0, ∀x ∈ K. (7)

F is said to be strictly monotone if it is monotone at anyx∗ ∈ K. Equivalently,F
is strictly monotone if the jacobian matrix is positive definite.

The following theorem is a well known theorem for Complementarity Problems.

Theorem 9. Let F : K → R
n be a continuous and strictly monotone function with

a pointx ∈ K such thatF (x) ≥ 0 (i.e. there exists a potential solution to the CP).
Then the Complementarity Problem introduced in (6) characterized by functionF has
a unique solution.

Hence, the Complementarity Problem characterized by function F introduced ele-
ment by element in (4) has a unique solution under the assumption that the revenue func-
tion is strongly monotone (special case of strictly monotone). Note that the marginal
profit function orF in our case is non-negative in at least one point. Otherwise,no
firm has any incentive to produce in any market and the equilibrium is when all pro-
duction quantities are equal to zero. In the next subsection, we aim to find this unique
equilibrium of the NCC problem.

4.3 Designing a polynomial-time algorithm

In this subsection, we introduce Algorithm 2 for finding equilibrium of NCC, and show
it converges in polynomial time by Theorem 10. This theorem requires the marginal
profit function to satisfy Scaled Lipschitz Condition(SLC)and monotonicity. We first
introduce SLC, and show how the marginal profit function satisfies SLC and montonicty
by Lemmas 1 to 5. We argue the conditions that the cost and price functions should have
in order for the marginal profit function to satisfy SLC and monotonicity in Lemma 5.
Finally, in Theorem 10, we show convergence of our algorithmin polynomial time.

Before introducing the next theorem, we explain what the Jacobians∇R, ∇S, and
∇F are for the Cournot game. First note that these areE × E matrices. Let(i, j) ∈ E
and(l, k) ∈ E be two edges of the graph. Lete1 denote the index of edge(i, j), ande2
denote the index of edge(l, k) in the graph as we discussed in the first section. Then the
element in rowe1 and columne2 of matrix∇R, denoted∇Re1e2 , is equal to∂rij

∂qlk
. We

name the corresponding elements in∇F and∇S similarly. We have∇F = ∇R+∇S
asF = R+ S.

Definition 4 (Scaled Lipschitz Condition (SLC)).A functionG : D 7→ R
n, D ⊆ R

n

is said to satisfyScaled Lipschitz Condition (SLC)if there exists a scalarλ > 0 such
that∀ h ∈ R

n, ∀ x ∈ D, such that‖X−1h‖ ≤ 1, we have:

‖X [G(x+ h)−G(x)−∇G(x)h]‖∞ ≤ λ|hT∇G(x)h|, (8)
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whereX is a diagonal matrix with diagonal entries equal to elementsof the vectorx in
the same order, i.e.,Xii = xi for all i ∈ M.

Satisfying SLC and monotonicity are essential for marginalprofit function in The-
orem 10. In Lemma 5 we discuss the assumptions for cost and revenue function under
which these conditions hold for our marginal profit function. We use Lemmas 1 to 5 to
showF satisfies SLC. More specifically, we demonstrate in Lemma 1, if we can derive
an upperbound for LHS of SLC forR andS, then we can derive an upperbound for
LHS of SLC forF = R + S too. Then in Lemma 2 and Lemma 3 we show LHS ofS
andR in SLC definition can be upperbounded. Afterwards, we show monotonicity of
S in Lemma 4. In Lemma 5 we aim to proveF satifies SLC under some assumptions
for cost and revenue functions. We use the fact that LHS of SLCfor F can be upper-
bounded using Lemma 3 and Lemma 2 combined with Lemma 1. Then we use the fact
that RHS of SLC can be upperbounded using strong monotonicity of R and Lemma 4.
Using these two facts, we concludeF satisfies SLC in Lemma 5.

Lemma 1. LetF,R, S be threeRn → R
n functions such thatF (q) = R(q)+S(q), ∀q ∈

R
n. LetR andS satisfy the following inequalities for someC > 0 and∀ h such that

‖X−1h‖ ≤ 1:

‖X [R(q + h)−R(q)−∇R(q)h]‖∞ ≤ C‖h‖2,
‖X [S(q + h)− S(q)−∇S(q)h]‖∞ ≤ C‖h‖2,

whereX is the diagonal matrix withXii = qi. Then we have:

‖X [F (q + h)− F (q)−∇F (q)h]‖∞ ≤ 2C‖h‖2.

The following lemmas give upper bounds for LHS of the SLC forS andR respec-
tively.

Lemma 2. AssumeX is the diagonal matrix withXii = qi. ∀ h such that‖X−1h‖ ≤
1, there exists a constantC > 0 satisfying:‖X [S(q + h) − S(q) − ∇S(q)h]‖∞ ≤
C‖h‖2.
Lemma 3. AssumeX is the diagonal matrix withXii = qi. ∀ h such that‖X−1h‖ ≤
1, ∃C > 0 such that‖X [R(q + h)−R(q)−∇R(q)h]‖∞ ≤ C‖h‖2.

If R is assumed to be strongly monotone, we immediately have a lower bound on
RHS of the SLC forR. The following lemma gives a lower bound on RHS of the SLC
for S.

Lemma 4. If cost functions are (strongly) convexS is (strongly) monotone6789.

6A matrix M ∈ R
n×n is strongly positive definiteiff ∀ x ∈ R

n and someα > 0 xTMx ≥
α‖x‖2.

7 A differentiable functionf : D 7→ R
n is monotoneiff its Jacobian∇f is positive semidef-

inite over its domainD.
8 A differentiable functionf : D 7→ R

n is strongly monotoneiff its Jacobian∇f is strongly
positive definite over its domain,D.

9A twice differentiable functionf : D 7→ R is strongly convexiff its Hessian∇2f is strongly
positive definite over its domain,D.
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The following lemma combines the results of Lemma 2 and Lemma3 using Lemma
1 to derive an upper bound for LHS of the SLC forF . We bound RHS of the SLC from
below by using strong montonicity ofR and Lemma 4.

Lemma 5. F satisfies SLC and is monotone if:

1. Cost functions are convex.
2. Marginal revenue function is monotone.
3. Cost functions are strongly convex or marginal revenue function is strongly mono-

tone.

We wrap up with the following theorem, which summarizes the main result of this
section. Lemma 5 guarantees that our problem satisfies the two conditions mentioned
in Zhao and Han 1999. Therefore, we can prove the following theorem.

Theorem 10. Algorithm 2 converges to an equilibrium of Network Cournot Competi-
tion in timeO

(

E2 log(µ0/ǫ)
)

under the following assumptions:

1. The cost functions are strongly convex.
2. The marginal revenue function is strongly monotone.
3. The first derivative of cost functions and price functionsand the second deriva-
tive of price functions are Lipschitz continuous.

This algorithm outputs an approximate solution(F (q∗), q∗) satisfying(q∗)TF (q∗)/n ≤
ǫ whereµ0 = (q0)

TF (q0)/n, and(F (q0), q0) is the initial feasible point10.

Algorithm 2 Compute quantities at equilibrium for the Cournot game.
1: procedure NETWORK-COURNOT(Pi, cj , ǫ) ⊲ The price functionPi for each market

i ∈ M, the cost functioncj for each firmj ∈ F , andǫ as the desired tolerance
2: Calculate vectorF of lengthE as defined in (4).
3: Find the initial feasible11solution (F (x0), x0) for the complementarity problem. This

solution should satisfyx0 ≥ 0 andF (x0) ≥ 0.
4: Run Algorithm3.1 from [39] to find the solution(F (x∗), x∗) to the CP characterized by

F .
5: return x∗ ⊲ The vectorq of quantities produced by firms at equilibrium
6: end procedure

4.4 Price Functions for Monotone Marginal Revenue Function

This section will be incomplete without a discussion of price functions that satisfy the
convergence conditions for Algorithm 2. We will prove that awide variety of price
functions preserve monotonicity of the marginal revenue function. To this end, we prove
the following lemma.

10Initial feasible solution can be trivially found. E.g., it can be the same production quantity
along each edge, large enough to ensure losses for all firms. Such quantity can easily be found by
binary search between [0, Q].
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Lemma 6. ∇R(q) is a positive semidefinite matrix∀ q ≥ 0, i.e.,R is monotone, pro-

vided that for all markets|P ′
i (Di)| ≥ |P ′′

i (Di)|Di

2 .

While the above condition may seem somewhat restrictive, they allow the prob-
lem to be solved on a wide range of price functions. Intuitively, the condition implies
that linear and quadratic terms dominate higher order terms. We present the following
corollaries as examples of classes of functions that satisfy the above condition.

Corollary 1. All decreasing concave quadratic price functions satisfy Lemma 6.

Corollary 2. All decreasing concave cubic price functions satisfy Lemma6.

Corollary 3. Let ai ∈ R
n
≥0 for i ∈ {1 . . . k} be arbitrary positive vectors. Letf :

R
n
≥0 7→ R be the following function:f(x) =

∑

i∈{1...k}(a
T
i x) log(a

T
i x). Thenf (and

−f ) satisfies Lemma 6.

5 Algorithm for Cournot Oligopoly

In this section we present a new algorithm for computing equilibrium quantities pro-
duced by firms in a Cournot oligopoly, i.e., when the firms compete over a single mar-
ket. Cournot Oligopoly is a standard model in Economics and computation of Cournot
Equilibrium is an important problem in its own right. A considerable body of literature
has been dedicated to this problem [34, 23, 30, 26, 6]. All of the earlier works that com-
pute Cournot equilibrium for a general class of price and cost functions rely on solving
a Linear Complementarity Problem or a Variational Inequality which in turn are set
up as convex optimization problems of sizeO(n) wheren is the number of firms in
oligopoly. Thus, the runtime guarantee of the earlier worksis O(n3) at best. We give a
novel combinatorial algorithm for this important problem when the quantities produced
are integral. Our algorithm runs in timen log2(Qmax) whereQmax is an upper bound
on total quantity produced at equilibrium. We note that, fortwo reasons, the restriction
to integral quantities is practically no restriction at all. Firstly, in real-world all com-
modities and products are traded in integral units. Secondly, this algorithm can easily
be adapted to compute approximate Cournot-Nash equilibrium for the continuous case
and since the quantities at equilibrium may not be rational numbers, this is the best we
can hope for.

As we have only a single market rather than a set of markets, wemake a few changes
to the notation. Let[n] = {1, . . . , n} be the set of firms competing over the single
market. Letq = (q1, q2, . . . , qn) be the set of all quantities produced by the firms. Note
that in this case, each firm is associated with only one quantity. Let Q =

∑

i∈[n] qi
be the sum of the total quantity of good produced in the market. In this case, there is
only a single inverse demand functionP : Z 7→ R≥0, which maps total supply,Q,
to market price. We assume that price decreases as the total quantity produced by the
firms increases, i.e.,P is a decreasing function ofQ. For each firmi ∈ [n], the function
ci : Z 7→ R≥0 denotes the cost to this firm when it produces quantityqi of the good in
the market. The profit of firmi ∈ [n] as a function ofqi andQ, denotedπi(qi, Q), is
P (Q)qi − ci(qi). Also let fi(qi, Q) = πi(qi + 1, Q + 1) − πi(qi, Q) be the marginal
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profit for firm i ∈ [n] of producing one extra unit of product. Although the quantities
are nonnegative integers, for simplicity we assume the functions ci, P , πi andfi are
zero whenever any of their inputs are negative. Also, we refer to the forward difference
P (Q+ 1)− P (Q) byP ′(Q).

5.1 Polynomial time algorithm

We leverage the supermodularity of price functions and Topkis’ Monotonicity Theorem
[35] (Theorem 14) to design a nested binary search algorithmwhich finds the equilib-
rium quantity vectorq when the price function is a decreasing function ofQ and the
cost functions of the firms are convex. Intuitively the algorithm works as follows. At
each point we guessQ′ to be the total quantity of good produced by all the firms. Then
we check how good this guess is by computing for each firm the set of quantites that it
can produce at equilibrium if we assume the total quantity isthe fixed integerQ′. We
prove that the set of possible quantities for each firm at equilibrium, assuming a fixed
total production, is a consecutive set of integers. LetIi = {qli, qli + 1, . . . , qui − 1, qui }
be the range of all possible quantities for firmi ∈ [n] assumingQ′ is the total quantity
produced in the market. We can concludeQ′ was too low a guess if

∑

i∈[n] q
l
i > Q′.

This implies our search should continue among total quantities aboveQ′. Similarly, if
∑

i∈[n] q
u
i < Q′, we can conclude our guess was too high, and the search shouldcontin-

ues among total quantities belowQ′. If neither case happens, then for each firmi ∈ [n],
there exists aq′i ∈ Ii such thatQ′ =

∑

i∈[n] q
′
i and firmi has no incentive to change

this quantity if the total quantity isQ′. This means that the setq′ = {q′1, . . . , q′n} forms
an equilibrium of the game and the search is over.

The pseudocode for the algorithm is provided in Algorithm 3,whose correctness
we prove next. The rest of this section is dedicated to proving Theorem 11. Here, we
present a brief outline of the proof. To help with the proof wedefine the functionsFi

andGi as follows. LetFi(qi, Q) = P (Q + 1)qi +
P ′(Q)

2 (qi − 1
2 )

2 − c(qi). We note
that the first difference ofF (qi, Q) is the marginal profit for firmi for producing one
more quantity given that the total production quantity isQ and firmi is producingqi.
LetGi(qi, Q) = Fi(qi, Q− 1). The first difference ofGi(qi, Q) is the marginal loss for
firm i for producing one less quantity given that the total production quantity isQ and
firm i is producingqi. Maximizers of these functions are closely related to equilibrium
quantities a firm can produce given that the total quantity inmarket isQ. We make this
connection precise and prove the validity of binary search in Lines 8-12 of Algorithm 3
in Lemma 7. In Lemma 8, we prove thatFi andGi are supermodular functions of
qi and−Q. In lemmas 9 and 10, we use Topkis’ Monotonicity Theorem to prove the
monotonicity of maximizers ofFi andGi. This, along with lemmas 11 and 12 leads to
the conclusion that the outer loop for finding total quatity at equilibrium is valid as well
and hence the algorithm is correct.

5.2 Proof of correctness

Throughout this sectionwe assume that the price function is decreasing and concave
and the cost functions are convex.
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Algorithm 3 Compute quantities produced by firms in a Cournot oligopoly.
1: procedure COURNOT-OLIGOPOLY(P,ci) ⊲ The market price functionP , the cost

functionsci for each firmi ∈ [n]
2: LetQmin := 1
3: LetQ∗

i be the optimal quantity that is produced by a firm when it is theonly firm in the
market

4: LetQmax :=
∑

i∈[n] Q
∗

i

5: while Qmin ≤ Qmax do
6: Q′ := ⌊Qmin+Qmax

2
⌋

7: for all i ∈ [n] do
8: Binary search to find the minimum nonnegative integerqli satisfying
9: fi(q

l
i, Q

′) = πi(q
l
i + 1, Q′ + 1)− πi(q

l
i, Q

′) ≤ 0
10: Binary search to find the maximum integerqui ≤ Q′ + 1 satisfying
11: fi(q

u
i − 1, Q′ − 1) = πi(q

u
i , Q

′)− πi(q
u
i − 1, Q′ − 1) ≥ 0

12: LetIi = {qli, . . . , q
u
i } be the set of all integers betweenqli andqui .

13: end for
14: if Σi∈[n]q

l
i > Q′ then

15: Qmin := Q′ + 1
16: else ifΣi∈[n]q

u
i < Q′ then

17: Qmax := Q′ − 1
18: else
19: Find a vector of quantitiesq = (q1, . . . , qn) such thatqi ∈ Ii and

∑
i∈[n] qi =

Q′

20: return q

21: end if
22: end while
23: end procedure
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Lemma 7. Let q∗i (Q) = {qli . . . qui } , whereqli = min argmaxqi∈{0...Qmax}Fi(qi, Q)
andqui = max argmaxqi∈{0...Qmax}Gi(qi, Q). Thenq∗i (Q) is the set of consecutive in-
tegersIi given by binary search in lines 8-12 of Algorithm 3. This is the set of quantities
firm i can produce at equilibrium given that the total quantity produced isQ.

Lemma 8. Let F−
i (qi,−Q) = Fi(qi, Q) andG−

i = Gi(qi,−Q). ThenF−
i andG−

i

are supermodular functions.

Lemma 9. Let I = {qli, . . . , qui } = qFi (Q) = argmaxqi∈{1...Qmax}Fi(qi, Q) and

I ′ = {q′l
i , . . . , q

′u
i } = qFi (Q

′) = argmaxqi∈{1...Qmax}Fi(qi, Q
′). LetQ > Q′. Then

q
′l
i ≥ qli andq

′u
i ≥ qui .

Lemma 10. Let I = {qli, . . . , qui } = qGi (Q) = argmaxqi∈{1...Qmax}Gi(qi, Q) and

I ′ = {q′l
i , . . . , q

′u
i } = qGi (Q

′) = argmaxqi∈{1...Qmax}Fi(qi, Q
′). LetQ > Q′. Then

q
′l
i ≥ qli andq

′u
i ≥ qui .

Lemma 11. Let Q be total production quantity guessed by Algorithm 3 at a stepof
outer binary search. LetI = (I1, . . . , In), whereIi = {qli, . . . , qui }, be the set of best
reponse ranges of all firms if the total quantity is a fixed integerQ. Then, if

∑n
i=1 q

u
i <

Q, there does not exist any equilibrium for which the total produced quantity is greater
than or equal toQ.

Lemma 12. Let Q be total production quantity guessed by Algorithm 3 at a stepof
outer binary search. LetI = (I1, . . . , In), whereIi = {qli, . . . , qui }, be the set of best
reponse ranges of all firms if the total quantity is a fixed integerQ. Then, if

∑n
i=1 q

l
i >

Q, there does not exist any equilibrium for which the total produced quantity is less
than or equal toQ.

Finally, the results of this section culiminate in the following theorem.

Theorem 11. Algorithm 3 successfully computes the vectorq = (q1, q2, . . . , qn) of
quantities at one equilibrium of the Cournot oligopoly if the price function is decreasing
and concave and the cost function is convex. In addition, thealgorithm runs in time
O(n log2(Qmax)) whereQmax is the maximum possible total quantity in the oligopoly
network at any equilibrium.

Proof. Lemma 7 guarantees that the inner binary search successfully finds the best re-
sponse range for all firms. Lemmas 11 and 12 ensure that the algorithm always contin-
ues its search for the total quantity at equilibrium in the segment where all the equilibria
are. Thus, when the search is over, it must be at an equilibrium of the game if one ex-
ists. If an equilibrium does not exist, then the algorithm will stop when it has eliminated
all quantities in{1 . . .Qmax} as possible total equilibrium production quantities. Let
Qmax be the maximum total quantity possible at any equilibrium ofthe oligopoly net-
work. Our algorithm performs a binary search over all possible quantities in[1, Qmax],
and at each step finds a range of quantities for each firmi ∈ [n] using another binary
search. This means the algorithm runs in timeO(n log2(Qmax)). We can find an upper
bound forQmax, noting thatQmax is at most the sum of the production quantites of
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the firms when they are the only producer in the market; i.e,Qmax ≤
∑

i∈[n] Q
∗
i where

Q∗
i = q∗i (qi) is the optimal quantity to be produced by firmi when there is no other

firms to compete with.
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6 Example

Here we write the set of equations of our example in more details.

Scenario 1 The set of equations∂πA

∂qA1
= ∂πB

∂qB1
= 0 can be written as:

∂πA

∂qA1
= 1− 3qA1 − qB1 = 0

∂πB

∂qB1
= 1− 3qB1 − qA1 = 0

Scenario 2 The set of equations∂πA

∂qA1
= ∂πA

∂qA2
= ∂πB

∂qB1
= ∂πB

∂qB2
= 0 can be written as:

∂πA

∂qA1
= 1− 5qA1 − qA2 − 2qB1 = 0

∂πA

∂qA2
= 1− 5qA2 − qA1 − 2qB2 = 0

∂πB

∂qB1
= 1− 5qB1 − qB2 − 2qA1 = 0

∂πB

∂qB2
= 1− 5qB2 − qB1 − 2qA2 = 0.

Scenario 3 The set of equations∂πA

∂qA1
= ∂πA

∂qA2
= ∂πB

∂qB2
= 0 can be written as:

∂πA

∂qA1
= 1− 5qA1 − qA2 = 0

∂πA

∂qA2
= 1− 5qA2 − qA1 − 2qB2 = 0

∂πB

∂qB2
= 1− 5qB2 − 2qA2 = 0.
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7 Zhao and Han Convergence Theorem

The following theorem states the performance guarantee of the algorithm proposed by
Zhao and Han 1999.

Theorem 12 (Zhao Han Convergence Theorem).LetF : Rn → R
n be the function

associated with a complementarity problem satisfying the two following conditions:

– ∇F is a positive semidefinite matrix for a constant scalar.
– F satisfies SLC; i.e., for some scalarλ > 0,

‖X [F (x+ h)− F (x)−∇F (x)h]‖∞ ≤ λ|hT∇F (x)h|

holds∀x > 0 and∀h satisfying‖X−1h‖ ≤ 1.

Then the algorithm converges in timeO

(

nmax(1, λ) log(µ0/ǫ)

)

and outputs an ap-

proximate solution(F (x∗), x∗) satisfying(x∗)TF (x∗)/n ≤ ǫwhereµ0 = (x0)
TF (x0)/n,

and(F (x0), x0) is the initial feasible point.

8 Missing proofs

8.1 Missing proofs of Section 4

Proof (Proof of Theorem Lemma 1).Definition of functionF implies

‖X [F (q + h)− F (q)−∇F (q)h]‖∞ =‖X [R(q + h)−R(q)−∇R(q)h]

+X [S(q + h)− S(q)−∇S(q)h]‖∞

applying triangle inequality gives

‖X [F (q + h)− F (q)−∇F (q)h]‖∞ ≤‖X [R(q + h)−R(q)−∇R(q)h]‖∞
+ ‖X [S(q + h)− S(q)−∇S(q)h]‖∞

Combining with assumptions of the lemma, we have the required inequality.

Proof (Proof of Theorem Lemma 3).Before we proceed, we state the following theorem
from analysis and Lemma 13.

Theorem 13. [5] Let f : Rn 7→ R be a continuously differentiable function with Lips-
chitz gradient, i.e., for some scalerc > 0,

‖∇f(x)−∇f(y)‖ ≤ c‖x− y‖ ∀ x, y ∈ R
n.

Then, we have∀ x, y ∈ R
n,

f(y) ≤ f(x) +∇f(x)T (x− y) +
c

2
‖y − x‖2 (9)
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Lemma 13. For any vectorx ∈ R
n and an arbitraryS ⊆ [n], letX =

∑

i∈S xi. Then
we have

√
n‖x‖ ≥ X

Proof. Let Y =
∑

i∈[n] |xi|. Clearly,|Y | ≥ |X |.

Y 2 =
∑

i,j∈[n]

|xixj | =
∑

i<j

2|xixj |+ ‖x‖2

Since,s2 + t2 ≥ 2st ∀ s, t ∈ R, we have

X2 ≤ Y 2 ≤
∑

i<j

(x2
i + x2

j ) + ‖x‖2 = n‖x‖2

Now we are ready to prove Lemma 3. First note thatR(q+h)−R(q)−∇R(q)h is
anE×1 vector. LetHi =

∑

j∈NM(i) hij . The element corresponding to edge(i, j) ∈ E
in vectorR(q+h) isPi(Di+Hi)+P ′

i (Di+Hi)(qij+hij). Similarly, the element cor-
responding to edge(i, j) ∈ E in R(q) isPi(Di)+P ′

i (Di)qij whereas the corresponding
element in∇R(q)h is

∑

k∈NM
hik

∂rij
∂qik

= −∑k∈NM(i) hik(P
′
i (Di) + P ′′

i (Di)qij))+

hijP
′
i (Di). Therefore, the element corresponding to edge(i, j) ∈ E in vectorR(q +

h)−R(q)−∇R(q)h is:

−Pi(Di +Hi)−P ′
i (Di +Hi)(qij − hij)− Pi(Di)− P ′

i (Di)qij

+
∑

k∈NM(i)

hik(P
′
i (Di) + P ′′

i (Di)qij) + hijP
′
i (Di).

Besides,X is the diagonal matrix of sizeE × E with diagonal entries equal to
elements ofq in the same order. Therefore,X [R(q+h)−R(q)−∇R(q)h] is anE× 1
vector where the element corresponding to edge(i, j) ∈ E is qij multiplied by the
element corresponding to edge(i, j) in vectorR(q + h)−R(q)−∇R(q)h:

− qij

(

Pi(Di +Hi) + P ′
i (Di +Hi)(qij + hij)− Pi(Di)− P ′

i (Di)qij

−
∑

k∈NM(i)

hik(P
′
i (Di) + P ′′

i (Di)qij)− hijP
′
i (Di)

)

=− qij

(

[Pi(Di +Hi)− Pi(Di)−HiP
′
i (Di)]

+ [P ′
i (Di +Hi)− P ′

i (Di)−HiP
′′
i (Di)] (qij + hij) + hijHiP

′′
i (Di)

)

≤qij

(

|Pi(Di +Hi)− Pi(Di)−HiP
′
i (Di)|

+ |P ′
i (Di +Hi)− P ′

i (Di)−HiP
′′
i (Di)||(qij + hij)|+ |hijHiP

′′
i (Di)|

)

.
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LetP ′ andP ′′ be Lipschitz continuous functions with Lipschitz constants2L1 and
2L2 respectively. To bound the last expression, we use Theorem 13 and Lemma 13

|Pi(Di +Hi)− Pi(Di)−HiP
′
i (Di)| ≤ L1H

2
i ≤ L1E‖h‖2

|P ′
i (Di +Hi)− P ′

i (Di)−HiP
′′
i (Di)| ≤ L2H

2
i ≤ L2E‖h‖2

|hijHiP
′′
i (Di)| ≤ E‖h‖2P ′′

i (Di)

Then, from finiteness of derivatives, we have:

|hijHiP
′′
i (Di)| ≤ EM2‖h‖2

Thus, the LHS is bound from above by:

qijE‖h‖2(L1 + L2(qij + hij) +M2)

Let Q be an upper bound on maximum profitable quantity for any producer in any
market. Then the LHS is bound above byC‖h‖2, where:

C = QE(L1 + 2QL2 +M2) (10)

Proof (Proof of Theorem Lemma 2).Let mij = ∂ci
∂qij

. The element of vectorX(S(q +

h)− S(q)− h∇S) corresponding to edge(i, j) is given by:

qij(mij(q + h) +mij(q)− h∇ci(q))

Let 2L3 be an upper bound of Lipschitz constants for derivates ofci’s. Then, from
Theorem 13 and upper boundQ on production quantities, we have:

|qij(mij(q + h) +mij(q)− h∇ci(q))| ≤ QL3‖h‖2

Proof (Proof of Theorem Lemma 4).Let S′ =
∑

i∈F ci. ThenS′, being a sum of
strongly convex functions, is a strongly convex function. Also,S = ∇S′. Thus,hT∇2S′h =
hT∇Sh is bounded from below byαc‖h‖2, ∀h ∈ R

n for someαc > 0 if the cost func-
tions are strongly convex andalphac = 0 is cost functions are convex.

Proof (Proof of Theorem Lemma 5).From lemmas 3, 2 and 1, RHS of SLC forF
is O(E‖h‖2). If cost functions are strongly convex or marginal revenue function is
strongly monotone, then from Lemma 4 and definition of strongmonotonicity, the LHS
of SLC for F is Ω(‖h‖2). Thus,F satisfies SLC. We note thatF is a sum of two
monotone functions and hence is monotone.

Proof (Proof of Theorem Lemma 6).Let e1 be the index of the edge(i, j) ande2 be the
index of edge(l, k). The elements of∇R are as follows.

∇Re1e1 =











∂rij
∂qij

= −2P ′
i (Di)− P ′′

i (Di)qij if e1 = e2
∂rij
∂qik

= −P ′
i (Di)− P ′′

i (Di)qij if i = l, j 6= k
∂rij
∂qlk

= 0 if i 6= l, j 6= k.
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We note that since price functions are functions only of the total production in their

corresponding markets and not the individual quantities produced by firms,∂P
′
i (Di)
∂qij

=
∂P ′

i (Di)
∂qik

. Therefore, we have replaced the partial derivatives byP ′′
i (Di).

We must showxT∇R(Di)x is nonnegative∀x ∈ R
E and∀Di ≥ 0.

xT (∇R(Di))x =
∑

(i,j)∈E

∑

(k,l)∈E
xijxlk

∂rij
∂xlk

=
∑

i∈M

∑

j,k∈NM(i)

xijxik
∂rij
∂xik

=
∑

i∈M





∑

j∈NM(i)

x2
ij [−2P ′

i (Di)− P ′′
i (Di)xij ]

+
∑

j,k∈NM(i),j 6=k

xijxik [−P ′
i (Di)− P ′′

i (Di)qij ]





= −
∑

i∈M





∑

j∈NM(i)

x2
ijP

′
i (Di) +

∑

j,k∈NM(i)

xijxik(P
′
i (Di) + P ′′

i (Di)qij)





= −
∑

i∈M



P ′
i (Di)

∑

j∈NM(i)

x2
ij + P ′

i (Di)
∑

j,k∈NM(i)

xijxik + P ′′
i (Di)

∑

j,k∈NM(i)

xijqijxik





≥ −
∑

i∈M



P ′
i (Di)

∑

j∈NM(i)

x2
ij + P ′

i (Di)
∑

j,k∈NM(i)

xijxik − |P ′′
i (Di)||q||x||

∑

j∈NM(i)

xij |





≥
∑

i∈M






−P ′

i (Di)|x|2 − P ′
i (Di)





∑

j∈NM(i)

xij





2

+ |P ′′
i (Di)|Di|x||

∑

j∈NM(i)

xij |







SincePi’s are decreasing functions, we have ,P ′
i (Di) ≤ 0, ∀i ∈ M. Thus, over

domain ofPi’s (Di ≥ 0), the above expression is non-negative if|P ′′
i (Di)|Di ≤

2|P ′
i (Di)| Hence,xT (∇R(Di))x ≥ 0 equivalently∇R(Di) is positive semidefinite.

8.2 Missing proofs of Section 5

Proof (Proof of Theorem Lemma 7).Again letP ′(Q) = P (Q + 1) − P (Q) be the
forward difference of the price function, and letc′i(qi) = ci(qi + 1) − ci(qi). From
definition of profit functionπi andfi, we havefi(qi, Q) = P (Q+1)+P ′(Q)qi−c′i(qi).
AssumeQ is fixed. Suppose we haveqi < q̃i. The marginal profit of firm at production
quantityqi is P (Q + 1) + P ′(Q)qi − c′i(qi) whereas the marginal profit at production
quantityq̃i isP (Q+1)+P ′(Q)q̃i− c′i(q̃i). Thus,P (Q+1)+P ′(Q)qi > P (Q+1)+
P ′(Q)q̃i sinceP ′(Q) is negative (from concavity ofP ) andqi < q̃i. As the discrete cost
functions are convex, we havec′i(qi) < c′i(q̃i). This impliesfi(qi, Q) > fi(q̃i, Q) when
qi < q̃i. Thus, for a fixedQ, fi(qi, Q) is a non-increasing function ofqi. Similarly, we
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can see thatfi(qi, Q) is a non-increasing function ofQ. From definitions ofFi andGi,
we have:

Fi(qi + 1, Q)− Fi(qi, Q) = fi(qi, Q) (11)

Gi(qi + 1, Q)−Gi(qi, Q) = Fi(qi + 1, Q− 1)− Fi(qi, Q− 1) = fi(qi, Q− 1)
(12)

For a fixedQ, Let ql be the minimum maximizer ofFi(qi, Q). Thenfi(ql − 1, Q) > 0.
Let qu be the maximum maximizer ofGi(qi, Q). Becausefi is non-increasing, we have
fi(ql − 1, Q − 1) ≥ fi(ql − 1, Q) > 0. Thus, any number smaller thanql cannot be
a maximizer ofGi and we haveql ≤ qu. Let q ∈ {ql . . . qu}. Then, becauseq ≥ ql
we havefi(q,Q) ≤ 0 and fromq ≤ qu, we havefi(q − 1, Q − 1) ≥ 0. Thus,q is an
equilibrium quantity when total production quantity isQ. If q < ql, thenfi(q,Q) > 0
and if q > qu thenfi(q − 1, Q − 1) > 0. Thus{ql . . . qu} is the set of equilibrium
quantities. In Line 9 of Algorithm 3, we are searching for theminimum maximizer of
Fi and in Line 11 we are searching for maximum maximizer ofGi. Binary search for
these quantities is valid because first differences for bothfunctions (equations 11 and
12) are decreasing.

Proof (Proof of Theorem Lemma 8).We use the following definition from submodular
optimization in the lemma.

Definition 5. Given lattices(X1,≥) and(X2,≥), f : X1 ×X2 7→ R is supermodular
iff for any x1, y1 ∈ X1;x2, y2 ∈ X2 such thatx1 ≥ y1 andx2 ≥ y2, the following
holds:

f(x1, y2)− f(x1, x2) ≥ f(y1, y2)− f(y1, x2)

We have,Fi(qi, Q) = P (Q + 1)qi +
P ′(Q)

2 (qi − 1
2 )

2 − ci(qi). Let−Q1 > −Q2.
Let q′i > qi. Then, we have:

Fi(qi, Q1)− Fi(qi, Q2) = (P (Q1 + 1)− P (Q2 + 1))qi +
P ′(Q1)− P ′(Q2)

2
(qi −

1

2
)2

Fi(q
′
i, Q1)− Fi(q

′
i, Q2) = (P (Q1 + 1)− P (Q2 + 1))q′i +

P ′(Q1)− P ′(Q2)

2
(q′i −

1

2
)2

SinceP andP ′ are a decreasing functions, we haveP (Q1) ≥ P (Q2) andP ′(Q1) ≥
P ′(Q2). From this and the fact thatq′i > qi, we have:

Fi(q
′
i, Q1)− Fi(q

′
i, Q2) ≥ Fi(qi, Q1)− Fi(qi, Q2)

ThereforeF−
i is a supermodular function. SinceGi(qi, Q) = Fi(qi, Q − 1), may a

similar argument we can conclude thatG−
i is supermodular.

Proof (Proof of Theorem Lemma 9).We need the following definition and Topkis’
Monotonicity Theorem for proving the lemma.

Definition 6. Given a lattice(X,≥), we defineStrong Set OrderingoverA,B ⊆ X .
We sayA ≥s B iff ∀a ∈ A, ∀b ∈ B,max{a, b} ∈ A ∧min{a, b} ∈ B.
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We note that the strong set ordering induces a natural ordering on sets of consecutive
integers. LetI1 = {l1, . . . , u1}. Let I2 = {l2, . . . , u2}. ThenI1 ≥s I2 iff l1 ≥ l2 and
u1 ≥ u2.

Theorem 14 (Topkis’ Monotonicity Theorem[35]).For any lattices(X,≥) and(T,≥
), letf : X×T 7→ R be a supermodular function and letx∗(t) = argmaxx∈Xf(x, t).
If t ≥ t′, thenx∗(t) ≥s x

∗(t′), i.e.,x∗(t) is non-decreasing int.

We note that in the theorem above, strong set ordering is usedover x∗ because
argmax returns a set of values from latticeX .

Now we are ready to prove Lemma 9. From Lemma 8,F−
i (qi,−Q) is a supermod-

ular function. Thus, from Theorem 14,qFi (Q) = argmaxFi(qi, Q) is a non-decreasing
function of−Q, i.e.,qFi is a non-increasing function ofQ. ThusQ > Q′ =⇒ I ′ ≥s I.
As noted above, strong set ordering on a set of consecutive integers implies thatq

′l
i ≥ qli

andq
′u
i ≥ qui .

Proof (Proof of Theorem Lemma 10).From Lemma 8,G−
i (qi,−Q) is a supermodular

function. Thus, from Theorem 14,qGi (Q) = argmaxFi(qi, Q) is a non-decreasing
function of−Q, i.e.,qGi is a non-increasing function ofQ. ThusQ > Q′ =⇒ I ′ ≥s I.
As noted above, strong set ordering on a set of consecutive integers implies thatq

′l
i ≥ qli

andq
′u
i ≥ qui .

Proof (Proof of Theorem Lemma 11).Assume for contradiction that such an equilib-
rium exists for total quantityQ′ > Q. From Lemma 10, we haveqGi (Q) ≥s q

G
i (Q

′) =
{q′l

i . . . q
′u
i }. Thus, we havequi ≥ q

′u
i . SinceQ′ is an equilibrium quantity,

∑n
i=1 q

′u
i ≥

Q′. Thus, we haveQ′ < Q and this is a contradiction.

Proof (Proof of Theorem Lemma 12).Assume for contradiction that such an equilib-
rium exists for total quantityQ′ < Q. From Lemma 9, we haveqFi (Q) ≤s qFi (Q

′) =
{q′l

i . . . q
′u
i }. Thus, we haveqli ≤ q

′l
i . SinceQ′ is an equilibrium quantity,

∑n
i=1 q

′l
i leqQ

′.
Thus, we haveQ′ > Q and this is a contradiction.
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