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Abstract

We consider (approximate) revenue maximization in auctions where the distribution on input
valuations is given via “black box” access to samples from the distribution. We observe that the
number of samples required – the sample complexity – is tightly related to the representation
complexity of an approximately revenue-maximizing auction. Our main results are upper bounds
and an exponential lower bound on these complexities.

1 Introduction

This paper studies revenue maximization in multi-parameter auctions in a Bayesian setting, a
question that has received much attention lately. To place our results in context, let us start with
a high-level overview.

1.1 Background

In the general (quasi-linear, independent-private-value, Bayesian) setting, we have a mechanism
designer that can choose an outcome from a set A of possible ones. There are n bidders, each of
which has a valuation vi : A → ℜ that gives a real value for each possible outcome. These valuations
are private, and the mechanism designer only knows that each vi comes from a prior distribution
Di on valuations. Based on these distributions, the mechanism designer must design a mechanism
that determines, for each profile of bidder valuations, an outcome which may be probabilistic – a
lottery – and a payment from each player. The rational behavior of the bidders is captured by two
sets of constraints: Incentive constraints require that no bidder can improve his expected utility
by behaving according to – i.e. “reporting to the mechanism” – another valuation v′i. Individual
Rationality constraints require that bidders never lose from participating in the mechanism. Under
these two sets of constraints the mechanism designer’s goal is to maximize his expected revenue.

Myerson’s classical work [17] completely solves the problem for the special case of single parame-
ter valuations, where each vi is effectively captured by a scalar. In this case, the optimal mechanism
has a very simple form: first a simple transformation is performed on each vi separately (in a way
that depends on Di but not the other players’ valuations). Then the deterministic outcome that
maximizes the sum of the transformed (“virtual”) valuations is chosen, and the payments are then
given by a simple critical value rule. It turns out that this completely breaks down once we leave
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the single-parameter settings and it is known that deterministic mechanisms can be significantly
inferior to general ones that are allowed to allocate lotteries [16, 18, 15, 4, 11], and that good
revenue may require complex mechanisms [14]. Moreover, this is so even in very simple settings
such as auctions with a single bidder and two items.

It is well known that even in the general multi-parameter case, the revenue maximizing mecha-
nism is obtained using linear optimization: the variables are the probabilities of each outcome for
each profile of valuations and the payments of each player for each profile of valuations, and the
constraints are the incentive constraints and the individual rationality constraints that turn out to
be linear in these variables. While this may seem very encouraging both from a characterization
and from a computation point of view, there is a rub: this linear programming formulation hides
several exponential blowups in the natural parameters in most settings. Two types of such blowups,
and how to overcome them, have received considerable attention recently: an exponential blowup
in n, the number of bidders, that is a result of the fact that we have variables for each profile of
valuations (e.g. [1, 2, 6, 8]), and the fact that, in the case of various multi-item auctions, m, the
size of the outcome space, is naturally exponential in the number of items (e.g. [10, 12, 7]).

1.2 Our Setting

In this paper we study a third type of exponential blowup that was not yet considered: the size of
the support of each Di – the size of the valuation space – is naturally exponential in the number
of outcomes m. Formally, it is often a continuum since a valuation assigns a real value to each
alternative, but even once we discretize (as we certainly will have to do for any computational
purpose), then the valuation space has size that is exponential in m. Do we need to pay this
exponential price in m or perhaps one can optimize revenue – at least approximately – in time
polynomial in the number of outcomes?

For most bite of our main result, which is negative, we focus on the simplest scenario of this
type, one that exhibits only this exponential blowup in the size of the outcome space, and no others.
Specifically, we will have a single bidder who is bidding for one of the m abstract alternatives in A.
For a single bidder, this generic mechanism design setting is essentially equivalent1 to an auction
setting studied e.g. in [11, 4] in which A is a set of items for sale, a “unit demand” bidder is
interested in acquiring at most a single item and has a potentially different value v(j) for each item
j ∈ A. Furthermore, for a single bidder, an auction is just a pricing scheme, giving a menu that
assigns a price for each possible lottery (x1...xm) where xj ≥ 0 is the probability of getting item j
and

∑
j∈A xj ≤ 1.

As observed in [4], if D (the prior distribution over v) happens to have a “small” support then
the linear program is small and we are done. However, this is typically not the case: even if
we restrict all item values to be 0 or 1 there are 2m possible valuations and the linear program is
exponential. So how can we even represent D in such a case? In some cases D will have some simple
structure, e.g. it may be a product distribution over item values, in which case it will have some
succinct representation that depends on this structure. In other cases it may come from “nature”
and we will, in some sense, have to “learn” D in order to construct our mechanism. Both of these
scenarios can be captured by a black box sampling model in which our access to D is by means
of getting a sequence of samples v, each one chosen independently at random from D. Will we be
able to design an (approximately) revenue-maximizing auction for D using a reasonable number of
samples?

1The formal distinction is that in the unit-demand setting we may allow to not allocate any item to the bidder,
which in the generic mechanism design setting would correspond to an additional possible outcome “*” that has a
fixed value v(∗) = 0.
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The focus of this paper is the general case where D is not necessarily a product distribution. The
case of product distributions was previously studied by [9, 11] who together achieve a polynomial-
time constant-factor approximation to the optimal revenue, and by [5] that gets a quasi-polynomial-
time (1+ ǫ) approximation to the revenue of deterministic auctions. It is known, however, that the
general case of correlated distributions on item values is harder, e.g. deterministic prices can not
provide a constant approximation [4].

The most natural approach for maximizing revenue from a distribution D that is given as a
black box would be to sample some polynomial number of valuations from it, construct a revenue
maximizing auction for this sample, and hope that the constructed auction also has good revenue
on the original distribution D. This, however, may fail terribly even for symmetric product dis-
tributions: Let D be the distribution where item values are chosen identically independently at
random with the following probabilities, where δ > 0 is some small constant: with probability δ:
v(j) = 1; with probability δ/m: v(j) = 2; and otherwise: v(j) = 0. Clearly just asking for a price
of 1 for each item will give revenue of very close to 1 (and somewhat higher revenue is possible,
taking advantage of the 2’s). Yet, we show that with high probability the following is an optimal
auction for a sample drawn from this distribution: Price each individual item at 2 and, for price 1,
offer lotteries only for the sets of 1-valued items that were represented in the sample. None of these
lotteries would be desirable by a new random sample from D, and thus this auction will obtain
only Θ(δ) revenue from D.

The astute reader will recognize this failure as a classic case of over-fitting: the optimal mech-
anism for the sample is so specifically targeted to the sample that it loses any optimality for the
real distribution D. The remedy for such over-fitting is well known: we need to “discourage” such
tailoring and encourage “simple” auctions. At this point we need to specify what “simple” auctions
are, a question that is also closely linked to the question of how to represent the auction that we
output. The simplest answer is the “menu-complexity” suggested in [14]: we measure the com-
plexity as the number of possible allocations of the auction, i.e. as the number of entries in the
menu specifying the auction. More complex representations that may be more succinct for some
auctions are also possible. Our lower bounds will apply to any auction representation language.
Formally, an auction representation language is an arbitrary function that maps binary strings to
auctions. The complexity of an auction in a given language is just the length of the smallest binary
string that is mapped to this auction. Thus for example the menu-size of an auction corresponds
to complexity in the representation language where the menu-entries are explicitly represented by
listing the probabilities and price for each entry separately.2

1.3 Our Results

Fixing an auction representation language, we present the following sample-and-optimize template
for revenue maximization that takes into account the complexity of the output auction (in said
representation language). A similar idea is used in the context of prior-free mechanism design
by [3]. In our setting, beyond the dependence on complexity of the auction, the number of samples
needs to depend (polynomially) on three other parameters: the number of items m, the required
precision ǫ, and the range of the values. Specifically, assume that all valuations in the support of
D lie in the bounded range 1 ≤ v(j) ≤ H for all j. Since most of the expected value of a valuation
may come from events whose probability is O(1/H), it is clear that we will need Ω(H) samples to

2Counting bits, we are off from just counting the number of menu entries by a factor of O(m log ǫ) where ǫ is the
precision in which real numbers are represented. We will focus on exponential versus polynomial complexities, so do
not assign much importance to this gap.
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even notice these events.3

Sample-and-Optimize Algorithm Template

1. Sample t = poly(C,m, ǫ−1,H) samples from D.

2. Find an auction of complexity at most C that maximizes (as much as possible) the revenue
for the uniform distribution over the sample and output it.

To convert this algorithm template to an algorithm, one must specify C and then demonstrate
an effective algorithm to find the auction of complexity C that achieves high revenue on the sample.
(Note that without the complexity bound, even fully maximizing revenue is efficiently done using
the basic linear program, but this does not carry-over to complexity-bounded maximization.) Once
the complexity is bounded, at least information-theoretically, the “usual” learning-like uniform
convergence bounds indeed apply and we have:

Proposition 1.1. Fix any auction representation language, and take an algorithm that follows
this template and always produces an auction that approximates to within an α factor the optimal
revenue from the sample over all auctions of complexity C. Then the produced auction also approx-
imates to within a factor of (1− ǫ)α the revenue from the real prior distribution D over all auctions
of complexity C.

Thus we get approximate revenue maximization over all complexity-C auctions. However, if this
limited class is inferior to general auctions, this does not yield approximate revenue maximization
over all auctions, which is our goal. The following questions thus remain:

1. What is the complexity C required of an auction in order to obtain good revenue? How good
an approximation can we get when we require C to be polynomial in H and m?

2. What is the computational complexity of step 2 of the algorithm template, i.e. of construc-
tively finding a mechanism that maximizes revenue over mechanisms of bounded complexity
C?

We provide definitive answers to the first question and preliminary answers to the second.
Apriori, it is not even clear that any finite complexity C suffices for getting good revenue (for fixed
H and m). Previous work ([12]) implies that arbitrarily good approximations are possible using
menu-size complexity that is polynomial in H and exponential in m and for the special case m = 2
even poly-logarithmic size in H, [14]. This is done by taking the optimal auction and “rounding”
its entries. This is trickier than it may seem since a slight change of probabilities may cause a
great change in revenue, so such proofs need to carefully adjust the rounding of probabilities and
prices making sure that significant revenue is never lost.4 We describe a general way to perform
this adjustment, allowing us to tighten these results: we get poly-logarithmic dependence in H for
general m, stronger bounds for “monotone” valuations, and do it all effectively in a computational
sense. Monotone valuations are restricted to have v(1) ≤ v(2) ≤ ... ≤ v(m), and naturally model
cases such as values for a sequence of ad-slots or for increasing numbers of items in a multi-unit
auction.

3This also explains why bounding the range of valuations, as we do, is required for the sampling question to make
any sense. Equivalently, we could have instead bounded the variance of D without significantly changing any of our
results.

4Technically, there is no countable ǫ-net of auctions in the sense of approximating the revenue for every distribution.
Instead, one needs to construct a “one-sided” net, and to loose a quadratic factor in ǫ as well.
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Theorem 1.2. For every distribution D and every ǫ > 0 there exists an auction with menu-size

complexity at most C =
(
logH+logm+log ǫ−1

ǫ

)O(m)
whose revenue is at least (1 − ǫ) fraction of the

optimal revenue for D. For the special case of distributions over “monotone” valuations, menu-size
complexity of at most C = mO((log3 H+log2 ǫ)/ǫ2) suffices. Furthermore, in both cases these auctions
can be computed in poly(C,H, ǫ−1,m) time by sampling poly(C,H, ǫ−1,m) valuations from D.

So in general a menu of complexity exponential in m suffices. A basic question is whether
complexity polynomial in m suffices (in terms of menu-size or perhaps other stronger representation
languages). The “usual tricks” suffice to show that an O(logH)-approximation of the revenue is
possible with small menus.

Proposition 1.3. For every distribution D there exists an auction with m menu-entries (and with
all numbers represented in O(logH) bits) that extracts Ω(1/ logH) fraction of the optimal revenue
from D. Furthermore, this auction can be computed in polynomial time from poly(H) samples.

Can this be improved? Can we get a constant factor approximation with polynomial-size
complexity? Our main result is negative. Previous techniques that separate the revenue of simple
auctions from that of general auctions do not suffice for proving an impossibility here for two reasons.
First, these bounds only apply to menu-size complexity and not to general auction representations;
this is explicit in [14] and implicit in [4].5 Second, these bounds proceed by giving an upper bound
to the revenue that a single menu-entry can extract. Since small menus can extract an O(1/ logH)
fraction of the optimum revenue, such techniques can have no implications for sampling complexity
since, as mentioned above, Ω(H) is a trivial lower bound on the sampling complexity. Our main
result shows that even for a small range of values H, auctions may need to be exponentially complex
in m in order to break the O(1/ logH) revenue approximation ratio.

Theorem 1.4. For every auction representation language and every 1 < H < 2m/400 there exists a
distribution D on [1..H]m such that every auction with complexity at most 2m/400 has revenue that
is at most an O(1/ logH) fraction of the optimal revenue for D.

Notice that this immediately implies a similar exponential lower bound on the number of samples
needed: since we allow any auction description language, simply listing the sample is one such
language for which the lower bound holds.

At this point we examine our second question, regarding the computational complexity of
“fitting” an auction of low complexity to sampled data. We show that even given a menu-size
bound, it is NP -hard to approximate the optimal revenue of auctions of that menu-size.6

Theorem 1.5. Given as input a sample of valuations and a target menu-size C, it is NP-hard to
approximate the optimal revenue achievable in size C to within any factor better than 1− 1

e
H−1
H .

This hardness result does not preclude a satisfactory answer to our original goal of effectively
finding an auction that approximates the revenue also on the original distribution D since for that
it suffices to find a “small” auction with good revenue on the sample, rather than the “smallest”
one. Thus a bi-criteria approximation to step 2 suffices7, and may be algorithmically easier: find a
menu of size poly(C,m,H) which approximates (as well as possible) the revenue of the best menu

5Since these papers exhibit an explicit distribution that provides the separation, the optimal auction for this
distribution can always be specified in some language by just listing the few parameters of the distribution.

6Here we would expect stronger auction representation languages to only be harder to deal with.
7In fact, it is also necessary.

5



of size C over a given sample. Whether this bi-criteria problem can be solved in polynomial time
is left as our first open problem.

Our second open problem concerns the question of structured distributions, specifically product
distributions over item values studied in [9, 11, 5]. Proposition 1.1 implies that, as these distribu-
tions can be succinctly represented, polynomially many samples suffice for finding a nearly optimal
auction for product distributions.8 It is not clear, however, how this can be done algorithmically
and whether the simple menu-size auction description language suffices for succinctly representing
the (approximately) optimal auction. Constant factor approximation with small menu-size (even
deterministic menus) follow from [9, 11], but a (1 + ǫ)-approximation is still open.

2 Preliminaries

2.1 The Model

In the single-buyer unit-demand mechanism design problem, or the pricing problem for short, we
assume that there are m “items” or “outcomes” [m] = {1, . . . ,m}, and a single risk-neutral buyer
equipped with a valuation v ∈ R

m
+ . Additionally, we assume the existence of an additional outcome

∗ for which a buyer has value 0 – e.g. the outcome in which the player receives no item. We assume
that v is drawn from a distribution D supported on some family of valuations V ⊆ R

m
+ .

We adopt the perspective of an auctioneer looking to sell the items in order to maximize his
revenue. After soliciting a bid b ∈ V, the auctioneer chooses an allocation, namely a (partial)
lottery x ∈ ∆m =

{
x ∈ R

m
+ :

∑
i xi ≤ 1

}
over the items, and a payment p ∈ R+. Formally, the

auctioneer’s task is to design a mechanism, equivalently, an auction, (x, p), where x : V → ∆m

maps a player’s reported valuation to a lottery on the m items, and p : V → R+ maps the same
report to a payment. When each allocation in the range of x is a deterministic choice of an item,
we say the mechanism (or auction) is deterministic, otherwise it is randomized.

To simplify our results, we usually assume that players’ valuations lie in a bounded range.
Specifically, we require that the support V of our distribution is contained in [1,H]m, for some
finite upper-boundH which may depend on the number of items being sold. Given this assumption,
we restrict our attention without loss of generality to mechanisms with payment rules constrained
to prices in [1,H] ∪ {0}. Moreover, we assume without loss of generality that p(v) = 0 only if
x(p) = ~0.9

Whereas our complexity results are independent of the representation of D, our algorithmic
results hold in the black-box model, in which the auctioneer is given sample access to the distribution
D, and otherwise knows nothing about D besides its support V.

2.2 Truthfulness and Menus

We constrain our mechanism (x, p) to be truthful : i.e. bidding b = v maximizes the buyer’s utility
v · x(b)− p(b). The well known characterization below reduces the design of such a mechanism to
the design of a pricing menu.

Fact 2.1 (Taxation Principle). A mechanism (x, p) is truthful if and only if there is a menu
M ⊆ ∆m × R of allocation/price pairs such that

(x(v), p(v)) ∈ argmax
(x,p)∈M

{v · x− p} (1)

8This is directly implied when the item values have finite (polynomial) support; the techniques used in section 4.1
suffice for showing it in general.

9An optimal mechanism satisfying these two properties always exists for all the problems we consider.
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We adopt the menu perspective through much of this paper, interchangeably referring to a
mechanism (aka auction) and its corresponding menu M . When interpreting a menu M as a
mechanism, we break ties in v · x− p in favor higher prices. When every allocation in the menu is
a deterministic choice of an item, we call M an item-pricing menu, otherwise we call it a lottery-
pricing menu.

We also require our mechanisms to be individually rational, in that the player’s utility from
participation in the mechanism is never negative. To enforce this, we assume that (~0, 0) is in every
menu. As described in Section 2.1, we usually restrict valuations to [1,H]m and payments for
non-zero lotteries to [1,H]. Therefore, we think of a menu as a subset of ∆m × [1,H], and include
(0, 0) implicitly.

2.3 Auction Complexity and Benchmarks

Given a mechanism M and valuation v, we use Rev(M,v) to denote the payment of a buyer with
valuation v when participating in the mechanism. Given a distribution D over valuations, we
use Rev(M,D) = Ev∼D Rev(M,v) to denote the expected revenue generated by the mechanism
when a player is drawn from distribution D. We use Rev(D) to denote the supremum, over all
mechanisms M , of Rev(M,D). When M is a family of mechanisms, we use Rev(M,D) to denote
supM∈MRev(M,D).

Recall that a auction description language is just a mapping from binary strings to mechanisms.
I.e. it is simply a way of encoding menus in binary strings. The representation complexity of an
auction in such a language is simply the length of the shortest string that is mapped to it. For this
paper, the only important property of auction description languages is that there are at most 2C

auctions of complexity C. (Of course, in applications we will also worry about its expressive power,
its computational difficulty, etc.) The simplest auction description language allows describing an
auction by directly listing its menu entries one by one. Each menu entry is composed of m + 1
numbers, and if all the numbers can be presented using O(r) bits of precision, then the total
complexity of a k-entry auction in this format is O(kmr). In this paper we never need more than
r = O(logm+logH+log ǫ−1) bits of precision, so the gap between menu-size (the number of menu
entries) and complexity using this language (the total number of bits used in such a description) is
not significant.

We use Revk(D) to denote the maximum revenue of a mechanism with complexity at most k.
When using menu-size complexity, we say M is a k-menu if |M | ≤ k, and use Mk to denote the
set of all k-menus, and M∞ to denote the set of all menus.

3 Sampling vs. Auction Complexity

3.1 Over Fitting with Complex Auctions

In this subsection we will consider the basic sampling algorithm that makes a small number of
samples and optimizes the auction for this sample.

Naive Sample-and-Optimize Algorithm

1. Sample t = poly(m) samples from D.

2. Find an auction that maximizes the revenue for the uniform distribution over the sample and
output it.
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We will show that this does not work even for symmetric product distributions.
Let δ > 0 be some small constant and let D be the distribution on valuations where item values

are chosen identically and independently at random as follows: with probability δ: v(j) = 1; with
probability δ/m: v(j) = 2; and otherwise: v(j) = 0. We will show that optimizing for a sample
may give very low revenue on D itself:

Proposition 3.1. Take a random polynomial-size sample then, with high probability, there is an
auction that is optimal for the sample and yet its revenue from D is O(δ).

Proof. The following auction will get, for every valuation v in the support, revenue that is exactly
equal to the maximum item price in v, and thus it will be optimal. First we sell each item at price
2. For every v in the sample that does not value any item at 2, let Sv denote the set of (about δm)
items that it gives value 1 for, and our auction will offer a lottery that picks an item uniformly at
random from Sv for price 1.

Let us say that a sample is typical if all valuations v in it have between δm/2 and 2δm items
with non-zero value and additionally the intersection of any two such supports is at most of size
2δ2m. We claim that our sample is typical with very high probability: The expected size of the
support of a random valuation from D is δm and taking two random valuations, their expected
support intersection size is δ2m. Chernoff bounds show that we are far from this expectation with
exponentially small probability, and this allows taking the union bound over all polynomially-many
pairs in the sample, to get the required properties simultaneously for the whole sample.

For every v in our sample that does not value any item at 2, we will surely get revenue 1 for the
uniform lottery on Sv, and this is as high as possible. Now the claim is that, for a typical sample,
all v in the sample that do have some item valued at 2 will actually buy an item at price 2 which
again is highest possible. For this to be the case we need that v’s value from any lottery offered
is less than 1 (which would give him negative utility from all menu entries that are priced at less
than 2). This is so since his value from the uniform lottery on S is at most 2 times the probability
that v gives non-negative value to a random element chosen from S, which by the assumption that
the sample is typical is bounded from above by (2δ2m)/(δm/2) = 4δ for all S that were offered as
lotteries. We thus have that for typical samples this auction is optimal.

Now let us examine the revenue that this auction will get from D: A random v will have an item
valued at 2 with probability of about δ, giving us O(δ) revenue from these. Otherwise, v will buy
a lottery over a set S only if its value from it is 1 which means that v’s support is fully contained
in S. For a random v from D this happens, for any of the (polynomially many) lotteries in our
auction, only with exponentially small probability.

3.2 Uniform Convergence over Simple Auctions

When we limit the “complexity” of the auction that our algorithm is allowed to produce to be sig-
nificantly smaller than the sample size, we can guarantee that the produced auction approximately
maximizes revenue for the original distribution D. The pertinent property here is that there cannot
be too many auctions of low complexity. This is all that it takes to prove the correctness of the
basic sample-and-optimize algorithm template:

Sample-and-Optimize Algorithm Template

1. Sample t = poly(C,m, ǫ−1,H) samples from D.

2. Find an auction of complexity at most C that maximizes (as much as possible) the revenue
for the uniform distribution over the sample and output it.

8



Proposition 3.2. (1.1 from the Introduction) Fix any auction representation language, and take
an algorithm that follows this template and always produces an auction M of complexity at most
C (in the given language) that approximates, to within an α factor, the optimal revenue from the
sample, over all auctions of complexity C. Then, the produced auction also approximates, to within
a factor of (1− ǫ)α, the revenue from the real prior distribution D, over all auctions of complexity
C.

Proof. Take some auction M that achieves some revenue r ≥ 1 on D. By definition of revenue,
r = Ev∼D[p(v)]. In order to estimate it we take t samples v1...vt from D and we can directly apply
Chernoff-Hoeffding bounds to estimate the probability that the average revenue for our sample,
(
∑

i p(v
i))/t, is far from its expectation. The standard deviation of D is clearly bounded from above

by H so the probability that |(∑i p(v
i))/t − r| > ǫ/2 is bounded from above by exp(−Ω(tǫ2/H2).

Taking t = O((C + log δ−1)H2/ǫ2) we get this probability to be bounded from above by δ2−C .
We now apply the union bound over all the at most 2C auctions that have complexity at most

C, obtaining that with high probability (at least 1− δ) for every auction with complexity at most
C, its revenue over the sample is within ǫ/2 of its revenue from D. In which case, an auction that
comes to within a factor α of optimal for the sample is also within a factor of (1 − ǫ)α factor of
optimal for the distribution (all over the auctions of complexity at most C.)

4 Constructions of Simple Approximating Auctions

4.1 From Rounding Lotteries to “Rounding” Auctions

When attempting to approximate a given auction (menu), it is quite natural to simply round all
entries in the menu and hope that this does not hurt the revenue significantly. As mentioned in
the introduction, this is not trivial since tiny decreases in probabilities or tiny increases in price
may be the “last straw” chasing away bidders that made knife’s-edge choice of the entry. This
subsection shows that, never the less, this may be done with a little further tweaking: once we have
a good way to round lotteries we can “round” whole menus, loosing an approximation factor that
is polynomially related to the rounding error.

Definition 4.1. Let V be a set of valuations, and L be a set of lotteries. We say that L ǫ-covers
V if for every lottery x ∈ ∆m there exists a lottery x̃ ∈ L such that for every v ∈ V we have that
x · v ≥ x̃ · v ≥ (1− ǫ)x · v − ǫ.

Lemma 4.2. Let L be a set of lotteries that ǫ-covers a set of valuations V , then for every menu
M there exists a menu M̃ all of whose entries have lotteries in L and have prices represented
using O(log ǫ−1 + logH + logm) bits such that for every v ∈ V , we have that Rev(M̃ , v) ≥ (1 −
ǫ′)Rev(M,v)− ǫ′, where ǫ′ = O(logH

√
ǫ). Moreover, if the calculation of x̃ from x is efficient then

so is the calculation of M̃ from M .

Proof. Define the rounding map ξ : ∆m → L so that x̃ = ξ(x) is as in Definition 4.1. Let us
partition the entries (x, p) of the menu M into levels, where each level k, for k = 1...K with
K = O(logH/δ), contains all entries whose price is in the range (1 + δ)k−1 < p ≤ (1 + δ)k. For

every entry (x, p) of M in level k we will put an entry (x′, p′) in M̃ where x′ = ξ((1 − ǫ)K−kx)
and p′ is obtained by first multiplying p by a factor of (1 − ǫ)K , then rounding p down to an
integer multiple of ǫ, and then subtracting 2kǫ. Thus entries with lower level payments have
their allocations reduced more than, and their payments reduced less than, those with higher
payments. Specifically notice that if (x, p) is at level k and (y, q) is at a lower level k′ < k then (A)
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p′−q′ < ((1−ǫ)Kp−2kǫ)−((1−ǫ)Kq−2k′ǫ−ǫ) ≤ (1−ǫ)K(p−q)−ǫ and that (B) for every v ∈ V we
have that x′·v−y′ ·v = ξ((1−ǫ)K−kx)·v−ξ((1−ǫ)K−k′y)·v > ((1−ǫ)K−k+1x·v−ǫ)−(1−ǫ)K−k′y·v ≥
(1− ǫ)K(x · v − y · v)− ǫ.

Now take a valuation v that, in M , chooses entry (x, p) and thus x · v − p ≥ y · v − q for all

other entries (y, q) in the menu and thus (C) p − q ≤ x · v − y · v. In M̃ the valuation v will
choose some entry (y′, q′). We claim that q cannot be at a lower level than p since otherwise we
have y′ · v − q′ ≥ x′ · v − p′ and thus x′ · v − y′ · v ≤ p′ − q′ which is impossible since we get a
contradiction combining it with (A) p′ − q′ < (1− ǫ)K(p− q)− ǫ, (C) p− q ≤ x · v − y · v, and (B)
(1− ǫ)K(x · v − y · v)− ǫ < x′ · v − y′ · v.

Let us now see how large a loss may we have incurred between payment p and payment q′.
First, q may be smaller by a factor (1 + δ) than p, then to obtain q′ we first lost a multiplicative
factor of (1 − ǫ)K and then an additive factor of at most (2K + 1)ǫ (including the rounding).
Thus q′ ≥ (1 − δ)(1 − ǫ)Kp − (2K + 1)ǫ. Choosing δ = θ(

√
ǫ) we have K = θ(logH/

√
ǫ) and so

q′ ≥ (1− ǫ′)p − ǫ′ for ǫ′ = O(logH
√
ǫ).

Comment: This proof also allows us leeway to round the valuations v. Specifically, if one takes
a distribution D with continuous support, and defines a “rounded distribution” D′ obtained by
taking samples from D and rounding all values to integer multiples of ǫ, then while an arbitrary
auction M that maximizes revenue for D′ may give bad results for D, the “rounded” mechanism
M̃ will also give high revenue for D.

4.2 Approximations for General Valuations

So at this point we know that we just need to worry about rounding lotteries. Once we round all
values to a small number of discrete values, we will get a small number of lotteries. Unfortunately,
we need to use both an additive and multiplicative approximation error: the multiplicative ap-
proximation error allows a large additive error when values are close to H; and the additive error
saves us from having to approximate multiplicatively very small probabilities. Combining these
two notions of error allows us to make do with O(logH/ǫ) discrete levels of approximation.

Proposition 4.3. Let Rǫ be the set of real numbers containing zero and all integer powers of (1−ǫ)
in the range [ǫ/(Hm), 1], and let Lǫ be the set of lotteries all of whose entries are in Rǫ. Then Lǫ

ǫ-covers the set of all valuations v ∈ [1,H]m. Moreover, calculating x̃ from x can be done efficiently.

Proof. Let x̃ be obtained by rounding down each entry of x to a value in Rǫ. We have x̃ · v ≥∑
i|xi≥ǫ/(mH) x̃ivi and since for xi ≥ ǫ/(mH) we have x̃i ≥ (1 − ǫ)xi, we get x̃ · v ≥ (1 −

ǫ)
∑

i|xi≥ǫ/(mH) xivi. To complete the proof note that x·v ≤ ∑
i|xi≥ǫ/(mH) xivi+H

∑
i|xi<ǫ/(mH) xi ≤∑

i|xi≥ǫ/(mH) xivi + ǫ.

Corollary 4.4. There exists an ǫ-cover of the set of all valuations v : {1...m} → [1,H] whose size
is ((logm+ logH + log ǫ−1)/ǫ)m.

Corollary 4.5. (Part I of theorem 1.2 from the introduction) For every distribution D on [1,H]m

and every ǫ > 0 there exists an auction with menu-size complexity at most C =
(
logH+logm+log ǫ−1

ǫ

)O(m)

whose revenue is at least (1 − ǫ) fraction of the optimal revenue for D. Furthermore, this auction
can be computed effectively (in polynomial time in its size) from a sample of size poly(C,m,H, ǫ−1)
.

Proof. Combining corollary 4.4 using O((ǫ/ logH)2) in place of ǫ with lemma 4.2 we get the ex-
istence of mechanism with menu-size complexity of ((logm+ logH)/ǫ)O(m) whose approximation
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error (both additive and multiplicative) is ǫ. The additive approximation error of the whole mech-
anism is subsumed by the multiplicative one since the optimal one has revenue of at least 1. We
now plug this family of low complexity mechanisms into proposition 1.1, and obtain the required
result, in the information-theoretic sense.

To compute the the mechanism algorithmically from the sample, we first solve the linear program
on the sample (that is of size that is polynomial in C, thus exponential in m), obtain the optimal

mechanism M for the sample, and then round it to a mechanism M̃ that provides the required
approximation for the sample and – since it is of the right complexity – also for the distribution.

4.3 Approximations for Monotone Valuations

In this section, we consider a limited class of valuations and show that for distributions over
this class a much smaller complexity is needed. The class we consider fixes an order on items,
without loss of generality, the order 1, . . . ,m. A valuation v ∈ [1,H]m is monotone if vi ≤ vi+1 for
i ∈ {1, . . . ,m− 1}. Monotone valuations are natural in contexts such as multi-unit auctions, where
m identical goods are being sold, and an outcome corresponds to the number of goods allocated to
the buyer. In this setting, vi is the player’s value for i goods. Monotone valuations then correspond
to a free disposal assumption in multi-unit auctions.

Next we show that for the set of monotone valuations, we can find a small ǫ-cover of all lotteries,
which implies, using our “Rounding Lotteries to Rounding Auctions” paradigm, small complexity
auctions that approximate the revenue well for all monotone valuations. This family of auctions has
menu-size complexity that is polynomial in m when ǫ and H are constant, and quasi-polynomial
for H that is polynomial in m (and ǫ poly-logarithmic).

Theorem 4.6. (Part II of theorem 1.2 from the introduction) If D is supported on monotone

valuations then for every ǫ > 0 there exists a menu M with C = mO( log
3 H+log2 ǫ−1

ǫ2
) entries (and with

all numbers in it given with O(logm + logH + log ǫ−1) bits of precision) such that Rev(M,D) ≥
(1− ǫ)Rev(D). Furthermore, this auction can be computed in poly(C,H, ǫ−1,m) time by sampling
poly(C,H, ǫ−1,m) valuations from D.

As in the proof of corollary 4.5, using lemma 4.2 and proposition 1.1, this theorem follows from
the following lemma:

Lemma 4.7. For every ǫ, there is a set of lotteries L whose size is mO((logH+log ǫ−1)/ǫ), that ǫ-
covers the set of all monotone valuations with v : {1...m} → [1,H]. Moreover, calculating x̃ from
x can be done efficiently.

Proof. Given lottery x ∈ ∆m, we define the tail-probability form x ∈ [0, 1]m of x as follows:
xi =

∑m
j=i xj . We use the fact that, for a monotone valuation v and a lottery x, the value of the

lottery can be written as: v · x =
∑m

i=1(vi − vi−1)xi.
Let Q be the set of real numbers containing zero and all integer powers of (1− ǫ) in the range

[ǫ/H, 1]. The family L consists of all lotteries y ∈ ∆m who’s tail probabilities are all in Q: yi ∈ Q
for all i. To round a given lottery x into a rounded lottery x̃, look at the tail probability x, round
down each entry of x to a number in Q obtaining a vector y and then reconstruct a lottery from
these tail probabilities x̃i = yi−yi+1. Notice that this is a perfectly legal lottery since y is monotone
(since so was x) and thus yi ≥ 0 for all i and also

∑
i yi = y1 ≤ x1 ≤ 1.

Clearly y ≤ x, coordinate wise, and thus x̃ · v ≤ x · v. Now let us estimate the gap. We separate
x · v =

∑m
i=1(vi − vi−1)xi to two parts, those with xi > ǫ/H and those with xi < ǫ/H. For the first

part we have yi ≥ (1−ǫ)xi and so the first part is bounded from above by (1−ǫ)
∑m

i=1(vi−vi−1)yi =
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(1− ǫ)x̃ · v. The second part is bounded from above by ǫ
∑m

i=1(vi − vi−1)/H and since vi ≤ H it is
bounded by ǫ. We thus get x · v ≥ (1− ǫ)x̃ · v − ǫ as needed.

Finally let us calculate the size of L. Since y is monotone decreasing but can only take one of
O((logH + log ǫ−1)/ǫ values, it is determined by the few points where yi 6= yi−1. Thus there are at

most mO((logH+log ǫ−1)/ǫ).

5 Lower Bound for Auction Complexity

5.1 A Simple O(logH) Approximation

Before we embark on our lower bound, we note the matching upper bound.

Proposition 5.1. (proposition 1.3 from the Introduction) For every distribution D there exists an
auction with m menu-entries (and with all numbers represented using O(logH) bits) that extracts
Ω(1/ logH) fraction of the optimal revenue from D. Furthermore, this auction can be computed in
polynomial time from poly(H) samples.

Proof. Let Mp denote the m-entry menu which offers every item for a price of p; i.e. Mp =
{(ei, p) : i ∈ {1, . . . ,m}}, where ei is the i’th standard basis vector. One of the logH menus
M1,M2,M4, . . . ,MH is guaranteed to extract a 1/(2 logH) fraction of the expected maximum
item value, Ev∼D maxi vi, which in turn is an upper bound on the maximum revenue.

To make this algorithmic, observe that the revenue of each of M1,M2,M4, . . . ,MH is a random
variable between 0 and H. The algorithm is the obvious one: take n = ω(H2 log logH) samples
from D, and return the menu from M1,M2,M4, . . . ,MH with the greatest expected revenue on
the sample. By applying the Hoeffding bound and the union bound, our estimate for the revenue
of each menu Mp is within an additive error of 1/2 with high probability. Since Rev(D) ≥ 1, the
chosen menu satisfies the claimed bound.

5.2 The Lower Bound

Theorem 5.2. (Theorem 1.4 from the introduction) For every auction representation language and
every 1 < H < 2m/400, there exists a distribution D on [1..H]m such that for every mechanism M
with complexity at most 2m/400 we have that Rev(M,D) = O(1/ logH) · Rev(D).

Proof. We will construct the distribution D probabilistically.
Our starting point will be a fixed baseline distribution B that takes an “equal revenue” one-

dimensional distribution and spreads it symmetrically over a random subset of the items. Each
valuation in the support of B is specified by a set S ⊂ {1..m} of size exactly k = m/3 and an integer
scale value 1 ≤ z ≤ logH. The valuation will give value 2z for every item in S and value 1 for every
other item. The probability distribution over these is induced by choosing S uniformly at random
among sets of size k and choosing z as to obtain an “equal revenue distribution” Pr[z = x] = 2−x.
We can view this distribution over the v’s as choosing uniformly at random from a multi-set V of
exactly

(
m
k

)
(H − 1) valuations (for every set S of size k we have H/2 copies of a valuation with

value 2, H/4 copies of a valuation with value 4 ... and a single copy of a valuation with value
H). The point is that due to symmetry, it can be shown that, just like in the corresponding single
dimensional case, Rev(B) is constant (despite the expected value being O(logH)). This is proven
formally in lemma 5.3 below.

Taking the point of view of B being a random choice of a valuation from the multi-set V , we will
now construct our distribution D as being a uniform choice over a random subset V ′ of V , where

12



V ′ is of size |V ′| = K = 2m/100. We will now be able to provide two estimates. On one hand, since
V ′ is a random sample from V , we expect that every fixed mechanism will extract approximately
the same revenue from D as from B. This can be shown to hold, w.h.p., simultaneously for all
mechanisms in a small enough family and thus all mechanisms with sub-exponential complexity
can only extract constant revenue. On the other hand, as V ′ is sparse, w.h.p. it does not contain
two valuations whose subsets have a large intersection. This will suffice for extracting at east half
of the expected value as revenue, an expected value that is O(logH). Lemma 5.4 below proves the
former fact and lemma 5.6 below proves the latter.

Lemma 5.3. Let B denote the distribution above then Rev(B) ≤ 2.

Proof. We will prove this by reduction the the single dimensional case where Myerson’s theorem
can be used. Let us define the single dimensional distribution G that gives value 2x with probability
2−x for x ∈ {1... logH}. The claim is that Rev(B) ≤ Rev(G) ≤ 2. Since G is single dimensional, the
second inequality follows from Myerson’s result stating that a single price mechanism maximizes
revenue, as it is easy to verify that every possible single price gives revenue of at most 2.

To prove the first claim we will build a single-parameter mechanism for G with the same revenue
as a given multidimensional one for B. Given a value 2x distributed as in G, our mechanism chooses
a random subset S of size k and constructs a valuation v by combining the given single-parameter
value with this set, so now v is distributed according to B. We run the mechanism that was given
to us for B and when it returns an lottery a = a(v), we sell the item in the single parameter auction
with probability

∑
j∈S aj , asking for the same payment as asked for the lottery a in the B-auction.

Now notice that the same outcome that maximizes utility for v also maximizes utility for the single
parameter buyer.

Lemma 5.4. Let M be the set of mechanisms with complexity at most 2m/400 and choose the
distribution D as described above then, w.h.p., Rev(M,D) ≤ 3].

Proof. Since there are at most 22
m/400

mechanisms in M, this follows from the following lemma
and the union bound.

Lemma 5.5. Fix some mechanism M and choose the distribution D as described above then
Pr[Rev(M,D) > 3] ≤ exp(−K/H2) ≤ 2−2m/300

.

Proof. Let rM (v) denote the revenue that mechanism M extracts on valuation v. By definition
Rev(M,B) = Ev∈V rM (v) while Rev(M,D) = Ev∈V ′rM (v) (where the distribution is uniform over
the multi-sets V and V ′ respectively). Lemma 5.3 bounded the former: Rev(M,B) ≤ 2. Since we
are choosing V ′ to be a random multi-set of size K and since for all v we have 0 ≤ rM (v) ≤ H then
we can use Chernoff bounds to bound the probability that the expectation of rM (v) over the sample
V ′ is larger than its expectation over the population V to be Pr[|Ev∈V ′rM (v)−Ev∈V rM (v)| > 1] ≤
exp(−K/H2).

Lemma 5.6. Choose the distribution D as described above then, w.h.p, Rev(D) ≥ logH/2.

Proof. We will use the following property that holds, w.h.p., for V ′: for every two different valua-
tions in V ′ the sets of items S and T associated with them satisfy |S ∩ T | < m/6. The reason that
this property holds is that for any fixed T , since S is a random set of size m/3 the probability that
|S ∩ T |/|T | ≥ 1/2 is exp(−|T |) ≤ 2−m/40. Now we can take a union bound over all K2 = 2m/50

possible pairs of S and T .
Using this property of D here is a mechanism that extracts as revenue at least half of the

expected value of v, i.e. at least (logH)/2 revenue: we have a menu entry for each element
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v ∈ V ′. For v that gives value 2z to the set S, this entry will offer every item in S with probability
1/|S| = 3/m, and will ask for payment of 2z−1 for this lottery. Clearly if v chooses this entry it
gets net utility of exactly 2z−1, we need to show that the net utility from any other menu entry
is less than this. Observe that v’s value from a menu entry that corresponds to a set T is exactly
2z · |S ∩ T |/|T | which due to our property is bounded from above by 2z−1.

6 Computational Complexity

In this section, we examine the computational complexity of the algorithmic task associated with
Proposition 1.1 when valuations lie in [1,H]m. We restrict our attention to the menu-complexity
model. The computational bottleneck is Step 2 of the algorithm, which computes a C-menu maxi-
mizing revenue for the uniform distribution over samples. Specifically, step 2 of the algorithm re-
quires the solution of the following optimization problem MAXREV . An instance of MAXREV is
given by an integer C and a sample X = {v1, . . . , vn} ⊆ [1,H]m. Feasible solutions of MAXREV
are menus with at most C entries, and the objective is to maximize revenue for a buyer drawn
uniformly from X. We leave essentially open the exact computational complexity of approximating
MAXREV , yet make some progress by showing the problem APX-hard.

Theorem 6.1. (repeating 1.5 on p. 5) MAXREV (X,C) in NP-hard to approximate to within
any factor better than 1− 1

e
H−1
H , even for valuations in {1,H}m.

Proof. We reduce from a promise problem related to the NP-hard optimization problem max cover.
For convenience, we use the equivalent hitting set formulation of max cover. The input to this
problem is a family S = {S1, . . . , Sn} of subsets of [m], and an integer k, and the outputs is a
“hitting set” T ⊆ [m] of size at most k maximizing the number of sets S ∈ S with which T has a
non-empty intersection — we say those sets S are “hit” by T . We use the fact that it is NP-hard
to distinguish between instances of hitting set in which the optimal solution hits all sets in S, and
instances in which the optimal solution hits less than a 1− 1

e + ǫ fraction of the sets in S, for any
constant ǫ > 0 (see Feige [13]).

Given an instance (S, k) of hitting set, we produce an instance (X,C) of MAXREV as follows.
We let C = k, and for each Si ∈ S we include a valuation vi ∈ X such that vi(j) = H for j ∈ Si,
and vi(j) = 1 otherwise. If there is a hitting set T of size k which hits every Si ∈ S, then the
item-pricing C-menu {(ej ,H) : j ∈ T}, which prices every item j ∈ T at H, generates a revenue of
H from every valuation vi ∈ X. On the other hand, we show that if there is a C-menu with average
revenue at least R = H− (1e − ǫ)(H − 1) over X, then there is a hitting set of size k hitting at least
a R−1

H−1 = 1− 1
e + ǫ fraction of the sets in S. Consider such a C-menu M = {(x1, p1), . . . , (xC , pC)},

and draw an item jt from each lottery xt in M .10 Let T = {j1, . . . , jC} be the resulting random
hitting set of size ≤ C = k. It suffices to show that T hits at least an R−1

H−1 fraction of the sets in S
in expectation. The following calculation completes the proof.

10Since our lotteries are partial — i.e.
∑

j xt(j) ≤ 1 — some of the items jt may be the “null” item.
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R =
n

avg
i=1

Rev(M,vi)

≤ n
avg
i=1

C
max
t=1

vi · xt ( by individual rationality )

=
n

avg
i=1

C
max
t=1

[H · xt(Si) + 1 · xt([m] \ Si)] ( xt(S) denotes
∑

j∈S xt(j) )

≤ n
avg
i=1

C
max
t=1

[H · xt(Si) + 1− xt(Si)] ( because
∑

j xt(j) ≤ 1 )

= 1 + (H − 1)
n

avg
i=1

C
max
t=1

xt(Si)

= 1 + (H − 1)
n

avg
i=1

C
max
t=1

Pr[jt ∈ Si] ( because jt ∼ xt )

≤ 1 + (H − 1)
n

avg
i=1

Pr[T ∩ Si 6= ∅]

The reader might have noticed that step 2 of the ‘Sample-and-Optimize’ algorithm template,
requiring the solution of an instance of MAXREV , is too restrictive as stated. An auctioneer
may constrain the complexity of his sought mechanism either because it is believed that such a
mechanism is approximately optimal 11, or because computational and/or practical considerations
limit the auctioneer to only “simple” mechanisms. In both cases, it is perhaps more natural to
seek a bicriteria guarantee: a mechanism of complexity polynomial in C, m, and logH which
nevertheless approximates the revenue of the best mechanism of complexity C.

To illustrate this idea, consider the following variant of the ‘Sample-and-Optimize’ algorithm
with step 2 replaced by its bicriteria version:

1. Sample t = poly1(C,m, ǫ−1,H) samples from D;

2. Find an auction of complexity at most poly2(C,m, ǫ−1, logH) that approximates the optimal
auction of complexity C on the t samples;

Using the same idea in the proof of Prop 1.1, we can see that, in order to avoid over-fitting for
auctions of complexity at most poly2(C,m, ǫ−1, logH), a sample size of poly1(C,m, ǫ−1,H) suffices,
as long as poly1 is a somewhat larger polynomial than poly2. So with an α-approximation for the
bicriteria MAXREV problem, we have an efficient α-approximation algorithm in the black-box
model. We leave the approximability of this bicriteria variant of MAXREV as an open question.
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