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Abstract. Online advertising is the main source of revenue for many
Internet firms. A central component of online advertising is the under-
lying mechanism that selects and prices the winning ads for a given ad
slot. In this paper we study designing a mechanism for the Combinato-
rial Auction with Identical Items (CAII) in which we are interested in
selling k identical items to a group of bidders each demanding a certain
number of items between 1 and k. CAII generalizes important online
advertising scenarios such as image-text and video-pod auctions [5]. In
image-text auction we want to fill an advertising slot on a publisher’s
web page with either k text-ads or a single image-ad and in video-pod
auction we want to fill an advertising break of k seconds with video-ads
of possibly different durations.
Our goal is to design truthful mechanisms that satisfy Revenue Mono-
tonicity (RM). RM is a natural constraint which states that the revenue
of a mechanism should not decrease if the number of participants in-
creases or if a participant increases her bid.
In a recent work Goel and Khani [5], it was argued that RM is a de-
sired property to have for smooth functioning of a firm. Since popular
mechanisms like VCG are not revenue-monotone, they introduced the
notion of Price of Revenue Monotonicity (PoRM) to capture the loss
in social welfare of a revenue-monotone mechanism. Goel and Khani [5]
showed that no deterministic RM mechanism can attain PoRM of less
than ln(k) for CAII, i.e., no deterministic mechanism can attain more
than 1

ln(k)
fraction of the maximum social welfare. Goel and Khani [5]

also design a mechanism with PoRM of O(ln2(k)) for CAII.
In this paper, we seek to overcome the impossibility result of Goel and
Khani [5] for deterministic mechanisms by using the power of random-
ization. We show that by using randomization, one can attain a con-
stant PoRM. In particular, we design a randomized RM mechanism
with PoRM of 3 for CAII.
Finally we study Multi-group Combinatorial Auction with Identical Items
(MCAII) which is an important generalization of CAII. In MCAII the
bidders are partitioned into multiple groups and the set of winners should
be from a single group. The motivation for MCAII is from online advertis-
ing scenarios where, for instance, the set of selected ads may be required

? supported in part by NSF CAREER award 1053605, ONR YIP award
N000141110662, DARPA/AFRL award FA8650-11-1-7162.

ar
X

iv
:1

50
7.

00
13

0v
1 

 [
cs

.G
T

] 
 1

 J
ul

 2
01

5

gagangoel@google.com
hajiagha@cs.umd.edu
khani@cs.umd.edu


to have the same format. We give a randomized mechanism which satis-
fies RM and IC and has PoRM of O(ln k). This is in contrast to log2(k)
deterministic mechanism that follows from [5].

1 Introduction

Many Internet firms including search engines, social networks, and online pub-
lishers rely on online advertising revenue for their business; thus, making online
advertising an essential part of the Internet. Online advertising consists of show-
ing a few ads to a user when she accesses a web-page from a publisher’s domain.
The advertising can happen in different formats such as text-ads, image-ads,
video-ads, or a hybrid of them.

A key component in online advertising is a mechanism which selects and
prices the set of winning ads. In this paper we study the design of mechanisms
for Combinatorial Auction with Identical Items (CAII). In CAII we want to sell
k identical items to a group of bidders; each demand a number of items from
{1, . . . , k} and has a single-parameter valuation for obtaining them. Although
CAII is a well-motivated model on its own, we note that a few important adver-
tising scenarios such as image-text and video-pod auctions can be modeled by
CAII. In image-text auction we want to fill an advertising box on a publisher’s
web-page with either one image-ad or k text-ads. We note that a large portion
of Google AdSense’s revenue is from this auction. Image-text auction is a spe-
cial case of CAII where participants either demand only one item (text-ads) or
all k items (image-ads). In video-pod auction there is an advertising break of
k seconds which should be filled with video-ads each with certain duration and
valuation.

When designing a mechanism, typically one focusses on attaining incentive-
compatibility, and maximizing social welfare and/or revenue. In a recent work,
Goel and Khani [5] argue that the mechanisms for online advertising should
satisfy an additional property of revenue-monotonicity. Revenue-monotonicity
is a natural property which states that the revenue of a mechanism should not
decrease as the number of bidders increase or if the bidders increase their bids.
The motivation is that any online firm typically has a large sales team to attract
more bidders on their inventory or they invest in new technologies to make bids
more attractive. The typical reasoning is that more bidders (or higher bids)
lead to more competition which should lead to higher prices. However, lack
of revenue-monotonicity of a mechanism is conflicting with this intuitive and
natural reasoning process, and can create significant confusion from a strategic
decision-making point of view.

Even though Revenue Monotonicity (RM) seems very natural, we note that
majority of the well-known mechanisms do not satisfy this property [11, 12, 5].
For example the famous Vickrey-Clarke-Groves (VCG) mechanism fails to satisfy
RM as adding one more bidder might decreases the revenue to zero. To see this,
consider two identical items to be sold to two bidders. One wants one item with
a bid 2, and the other one wants both items with a bid 2. In this case the
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revenue of VCG mechanism is 2 (for a proof, see for instance [10, Chapter 9]).
Now suppose we add one more bidder who wants one item with a bid of 2. In
this case the revenue of VCG goes down to 0!

It is known that if we require mechanisms to satisfy both RM and IC, not
only the mechanism cannot get the maximum social welfare but it can also not
achieve Pareto-optimality in social welfare [12]. In light of this, [5] introduced
the notion of Price of Revenue Monotonicity (PoRM) to capture the loss in
social welfare for RM mechanisms. Here a mechanism has PoRM of α if its
social welfare is at least 1

α fraction of the maximum social welfare in any type
profile of participants. It is shown that, under a mild condition, the PoRM of
any deterministic mechanism for the CAII problem is at least ln(k), i.e., no
deterministic mechanism can obtain more than 1

ln(k) fraction of the maximum

social welfare [5]. In fact this impossibility result holds even for the case when
participants demand either all the items or only one item. On the positive side,
[5] give a deterministic mechanism with PoRM of O(ln2(k)) for CAII. We note
that satisfying RM is hard especially since it is an across instance constraint.

This work is motivated by the desire to design better mechanisms for CAII.
However, the above impossibility result of [5] is a bottleneck towards this goal.
To overcome this, in this paper, we resort to randomized mechanisms. We say a
randomized mechanism satisfies RM if it satisfies RM in expectation4. Similarly,
a randomized mechanism has PoRM of α if its expected social welfare is not
less than 1

α fraction of the maximum social welfare. We significantly improve the
performance by designing a randomized mechanism with a constant PoRM. In
particular, our randomized mechanism achieves a PoRM of 3.

Finally, we study Multi-group Combinatorial Auction with Identical Items
(MCAII) that generalizes CAII. In MCAII bidders are partitioned into multiple
groups and the set of winners has to be only from one group. The motivation
is that the publisher sometimes require the ads to be of same format or size for
a given ad slot. We design a randomized mechanism for MCAII that satisfies
IC and RM with PoRM O(log k). An easy corollary of [5] gives a deterministic
mechanism with a PoRM O(log2 k).

2 Related Works

Goel and Khani [5] show that RM is a desirable property for web-centeric com-
panies and consider designing mechanisms which satisfy both RM and IC. They
introduced the notion of PoRM and study CAII and a special case of it - namely,
image-text auction. They [5] give a deterministic mechanism with PoRM of ln(k)
and prove that no mechanism which satisfies RM and IC can obtain PoRM of
better than ln(k) under the following two mild conditions. The first condition
is anonymity which states that the outcome shouldn’t depend on the identities
of the bidders but their type profile. The second condition is independence of

4 Since in a typical online advertising setting, there is a large number of auctions being
run everyday, we get sharp concentration bounds.
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irrelevant alternatives which states that decreasing the bid of any losing par-
ticipant should not hurt a winning participant. Goel and Khani [5] also give a
deterministic mechanism for CAII with PoRM of O(ln2(k)) that satisfies IC
and RM.

Rastegari et al. [12] show that for combinatorial auctions, no deterministic
mechanism that satisfies RM and IC can get weak maximality. A mechanism is
Weakly Maximal (WM) if it chooses an allocation which cannot be augmented
to make a losing participant a winner without hurting a winning participant.
Rastegari et al. [11] study randomized mechanisms for combinatorial auctions
which satisfy RM and IC. Note that a simple mechanism which chooses a max-
imal allocation uniformly at random ignoring the valuations of bidders satisfies
RM, IC, and WM. Rastegari et al. [11] add another constraint that a mechanism
has to also satisfy Consumer Sovereignty (CS) which means that if a bidder in-
creases her bid high enough, she can win her desired items. Now a new issue is
that there is no randomized mechanism which satisfies RM, IC, WM, and CS
[11]. In order to avoid this issue they relax CS constraint as follows. For each
participant i there has to be λ different valuations v1 > v2 > ... > vλ such that
for j ∈ {1, . . . , λ}, we have wi(vj) > wi(vj+1) + σ where wi is the probability
of winning for participant i and σ > 0. Roughly speaking relaxed CS constraint
means that if participant i increases her bid from zero to infinity she sees at least
λ jumps of length σ in her winning probability. The idea of their mechanism is
that for each participant i they find λ constant values ci,1 > ci,2 > ... > ci,λ
such that regardless of valuations of the other bidders; if the bid of bidder i is
between ci,j and ci,j+1 then her winning probability is at least j ∗ σ. In order to
find the constants for each participant they solve a LP whose constraints force
RM, IC, Relaxed CS, and WM. As you may notice although this mechanism
achieves WM, RM and relaxed CM, but can do very poorly in terms of PoRM.
For example suppose you have n participants and each of them wants all items.
The valuation of each participant i is bigger than its highest constant ci,1. In this
case all the participants can win with probability at most 1/n. Now suppose that
the valuation of one of the participants is infinity. She still wins with probability
1/n which shows that the PoRM of their mechanism is at least n.

Dughmi et al. [4] show that VCG is revenue monotone if and only if the
feasible subsets of winners form a matroid. Ausubel and Milgrom [1] show that
if valuations of bidders satisfy bidder-submodularity then VCG satisfies RM. Here
valuations satisfy bidders submodularity if and only if for any bidder i and any
two sets of bidders S, S′ with S ⊆ S′ we have welfare(S∪{i})−welfare(S) ≥
welfare(S′ ∪ {i})−welfare(S′), where welfare(S) is the maximum social
welfare achievable using only bidders in S. Note that we can restrict the set of
possible allocations in a way such that bidder-submodularity holds. Then we can
use VCG on this restricted set of allocations and hence achieve RM. However
we can show that it is not possible to get a mechanism with PoRM better than
Ω(k) by using the mentioned tool.

Ausubel and Milgrom [1] design a mechanism which is in the core of the ex-
change economy for combinatorial auctions. A mechanism is in the core if there is
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no subset of participants including the seller which can collude and trade among
each other such that all of them benefit more than the result of the mechanism.
Day and Milgrom [3] show that a core-selecting mechanism which selects an al-
location that minimizes the seller’s revenue satisfies RM given bidders follow so
called best-response truncation strategy. Therefore, the mechanism of [1] satisfies
RM if it selects an allocation that minimizes the seller’s revenue and the partic-
ipants follow best-response strategy, however, this mechanism does not satisfy
IC.

Another line of related works is around characterizing incentive compatible
mechanisms. The classic result of Roberts [13] tells that affine maximizers are the
only social choice functions which can be implemented using mechanisms that
satisfy IC when bidders have unrestricted quasi-linear valuations. Subsequent
works study some restricted cases, see e.g. [14, 8, 2, 15].

There is also a large body of research around designing mechanisms with
good bounds on the revenue. In the single parameter Bayesian setting Myerson
[9] designs a mechanism which achieves the optimal expected revenue. [6, 7]
consider optimizing revenue in prior-free settings (see e.g. [10] for a survey on
this).

3 Our Results and Overview of Techniques

To give intuition about our approach, we first start with ideas that will not work
but are potentially good candidates. To keep the explanation easier let us focus
on deterministic mechanisms. Note that the payment of each participant in a
deterministic mechanism which satisfies IC is her critical value, i.e., the minimum
valuation for which she still remains a winner. Assume that all participants
demand only one item. In this case we can simply give all the items to the
highest k bidders, which sets the critical value (the payment) of each winner to
the valuation of the (k + 1)th highest bidder. If we add one more participant
the valuation of the (k + 1)th highest bidder increases, therefore, the payment
of each winner increases and hence the mechanism satisfies RM.

Now assume we have two types of bidders: A bidder of type A who demand
all k items, and a bidder of type B who demands a single item. This scenario is
equivalent to the image-text auction for which there is a lower-bound of ln(k)
for the PoRM of deterministic mechanisms [5]. However using randomization
we can simply get a PoRM of 2. Flip a coin and with probability half give all
items to the highest type A bidder and with probability half give k items to the
k highest bidders of type B. Here, the expected social welfare is at least half
of the maximum social welfare. Note that when the coin flip selects bidders of
type A the auction simply transforms to the second price auction of selling one
package of items which has RM. When it selects bidders of type B the auction
transforms to the case when all bidders demand one item which we explained
earlier and has RM. Therefore, the expected revenue is monotone and hence the
mechanism satisfies RM. Expanding the above idea we can partition the bidders
into log(k) groups such that the bidders of each group i ∈ log(k) has demand in
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[2i, 2i+1). Then, we randomly select one group and choose the winners from the
selected group. However, this partitioning approach does not lead to a PoRM
better than log(k).

As a second approach instead of partitioning the bidders and sort them by
their valuation, we can sort them according to their Price Per Item (ppi) which is
the valuation of a participant divided by the number of items she demands. Now
consider a simple greedy algorithm as follows. Start from the top of the sorted
list of bidders and at each step do the following. If the number of remaining
items is enough to serve the current bidder give the items to the bidder and
proceed; otherwise stop. Let us call the bidder at which the greedy algorithm
stops the runner-up bidder. Note that the runner-up bidder has the largest ppi
among the loser bidders and let p be her ppi. If each of the winner participant
had ppi less than p then she could not win. Therefore, the critical value of each
winner participant is her demand multiplied by p. Although value p increases
if we add more bidders, the number of items sold might decrease. For example
consider the case when the bidder with the highest ppi demands all k items. In
this scenario she wins all items and pays k multiplied by the ppi of the runner-
up bidder. Now if we add one more bidder whose ppi is more than the highest
bidder but demands only one item; the new bidder wins and we sell only one
item. This potentially decreases the revenue of the greedy mechanism.

For our mechanism we use a combination of the above ideas and an extra
interesting technique. We partition the bidders into two groups: high-demand
bidders who demand more than k/2 items, and low-demand bidders who demand
less than or equal to k/2 items. With probability 1/3 the winner is a high-demand
bidder with the largest valuation. Similar to the partitioning approach the critical
value of the winner is the second largest valuation of the high-demand bidders
which can only increase if we add more bidders. With probability 2/3 we do
the following with the low-demand bidders. First we run the greedy algorithm
over the low-demand bidders and find the runner-up bidder. The important
observation here is that because there is no high-demand bidder, sum of winners’
demands (A) is larger than k/2. Therefore we are sure that we sell at least k/2
items where the price of each item is the ppi of the runner-up bidder. Now

we select each winner of the greedy algorithm with probability k/2
A as the true

winner of our mechanism. This random selection makes sure that the expected
number of sold items is exactly k/2. The exact number k/2 is important since the
expected revenue of the mechanism is k/2 multiplied by the ppi of the runner-up
bidder. Therefore as the ppi of the runner-up bidder increases if we add more
bidders the expected revenue is monotone.

Now we explain ideas used to design our mechanism for MCAII. We first note
that as a corollary of the result of [5], we get a deterministic mechanism with a
PoRM of log2(n). In our mechanism, we assign a value to each group and use
it as the criterion in order to select the winner group. Note that a simple value
that can be assigned to each group is the maximum social welfare obtainable
by the group. However, this way we cannot guarantee RM. Because suppose
participant i(g) of group G(g) increases her bid high enough which guarantees
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that G(g) wins against all other groups no matter what are the valuations of the
other participants of G(g). Therefore, the critical values of the other members
of G(g) decreases as i(g) increases her bid and hence can decrease the revenue of
the mechanism.

We refer to our assigned value to each group as the Maximum Possible Rev-
enue of the Group (mprg). As name mprg suggests, it shows the maximum
revenue we can obtain from each group without the fear of violating RM. For

each j ∈ {1, . . . , k} and group G(g), let u
(g)
j be the maximum price can be set for

a single item so that we can sell at least j items to low-demand bidders of group

G(g). More formally, u
(g)
j is the maximum value where the sum of demands of

low-demand bidders whose ppi is larger than u
(g)
j in group G(g) is at least j.

The mprg of group G(g) is max(V (g),maxj∈{1,...,k/2} j · u(g)j ) where V (g) is the
highest valuation of high-demand bidders. Intuitively, mprg either sells items to
high-demand bidders and obtains revenue of at most V (g) or sells items to low-
demand bidders in which we can sell a number of items between 1 and k/2. We
select a group with the highest mprg and choose the winners from this group.
We are able to show that we can obtain a revenue of at least the second highest
mprg. We prove that our mechanism satisfies RM by showing that the second
highest mprg increases if we add more bidders.

We show that the mprg of each group is at least 1/ ln(k) fraction of the
maximum social welfare obtainable by the group. Therefore, as we select the
winning group using the mprgs of groups, the PoRM of our mechanism is
O(ln(k)). We provide evidence that indeed the mprg of each group is the closest
value to its social welfare that can be safely used for selecting the winning group
without violating RM. Moreover, any randomization over the groups for selecting
the winning one according to mprg cannot improve the PoRM factor.

4 Preliminary

Let assume we have a set of n bidders {1, . . . , n} and a set of k identical items.
Let type profile θ be a vector containing the type of each bidder i which we show
by θi. Here θi is pair (di, vi) ∈ [k] × R+ where di is the number of items she
demands and vi shows her valuation for getting di items. Here we assume the
demands are publicly known because in our scenario they represent the length
of video-ads stored in database while the valuations are private to bidders.

Note that having higher valuation does not necessarily mean that the bidder
is more desirable to the seller as she might have a large demand. We define Price
Per Item (ppi) of bidder i to be vi

di
which we use in our mechanism to compare

bidders.
We show a randomized mechanism (M) by pair (w, p) where wi(θ) shows

the winning probability of bidder i in type profile θ and pi(θ) is her expected
payment.

We use the following Theorem in this paper frequently which is a well-known
characteristic of the truthful randomized mechanisms in the single parameter
model (see e.g.[10]).
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Theorem 1. Randomized mechanism M = (w, p) is truthful if and only if for
any type profile θ and any bidder i with type (di, vi) the followings hold.

1. Function wi ((di, vi), θ−i) is weakly monotone in vi.
2. pi(θ) = vi · wi(θ)−

∫ vi
0
wi ((di, t), θ−i) dt

5 Combinatorial Auction with Identical Items

We build a randomized mechanism (M = (w, p)) satisfying revenue monotonicity
and incentive compatibility such that PoRM(M) is equal to 3.

We call a bidder high-demand bidder if her demand is greater than bk/2c
otherwise we refer it as low-demand bidder. MechanismM partitions the bidders
into two groups of low-demand and high-demand bidders and with probability
1/3 selects the winning set from the high-demand bidders and with probability
2/3 from the low-demand bidders.

We will see that mechanism M favors high-demand bidders with larger val-
uations and favors low-demand-bidders with larger ppis while breaking the ties
by the index number of the bidders.

Definition 1. We call low-demand bidder l1 is more valuable than low-demand
bidder l2 and show it by (l1 � l2) if ppil1 > ppil2 ∨ (ppil1 = ppil2 ∧ l1 < l2).
Similarly we call high-demand bidder h1 is more valuable than high-demand
bidder h2 and show it by (h1 � h2) if vh1

> vh2
∨ (vh1

= vh2
∧ h1 < h2).

Let’s assume that there are ` low-demand bidders and h high-demand bid-
ders. By adding some dummy bidders with demand 1 and valuation zero we
assume that the sum of demands of low-demand bidders is always greater than
k. Without loss of generality we assume that the first ` bidders are low-demand
bidders and i � i + 1 for any i ∈ [` − 1] (the ppis of the low-demand bidders
decreases by their index) and the remaining h bidders are high-demand-bidders
while i � i+ 1 for any i ∈ {`+ 1, . . . n− 1} (the valuations of the high-demand
bidders decreases by their index).

Definition 2. We call low-demand bidder r the runner-up bidder if r is the
smallest value in set [`] for which

∑r
i=1 di ≥ k.

Later we will see that the runner-up bidder is the bidder with the largest ppi
and smallest index number who has zero probability of winning. We simply refer
to the runner-up bidder as r.

We define A to be
∑r−1
i=1 di which is the sum of demands of low-demand

bidders that have ppis greater than or equal to that of r and have positive
probability of winning (see Fig 1).

Observation 1 We have dk/2e ≤ A < k.

Proof. Inequality A < k is the direct result of the way we select runner-up bidder
r. Inequality dk2 e ≤ A follows from the fact that

∑r
i di ≥ k and the demand of

the runner-up bidder is less than or equal to bk2 c by definition of low-demand
bidders. ut
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k

runner-up bidder
v1

A

v2 . . . vr−1

Fig. 1. Each rectangle corresponds to a bidder where the height, width, and area
represent ppi, demand, and valuation of the bidder respectively. The dark rectangle
corresponds to the runner-up bidder whose demand crosses the value k.

Now we are ready to precisely define how M selects and charges the set of
winners. With probability 1/3M selects the most valuable high-demand bidder
(which is the high-demand bidder with largest valuation breaking the ties by
index). Therefore, the winning bidder in this case is ` + 1 and she pays v`+2

which is the second highest valuation among high-demand bidders. Therefore
her expected payment is pM`+1(θ) = v`+2

3 .
If we did not select the largest high-demand bidder then mechanismM uni-

formly at random selects the winner set from the first r− 1 low-demand bidders

where the probability of selecting each bidder i ∈ [r − 1] is dk/2eA . In this case if
bidder i gets selected she has to pay di · ppir. Therefore, her expected payment

is pMi (θ) = 2dk/2e
3A · di · ppir since with probability 2/3 we select low-demand-

bidders and with probability dk/2eA bidder i gets selected. The probability dk/2eA is
selected in a way such that if the low-demand bidders win, the expected number
of allocated items is dk/2e since the sum of demands of the first r−1 low-demand

bidders is A and each of them gets selected with probability dk/2eA .
In summary the expected payments of the bidders in mechanism M is the

following.

pMi (θ) =


0 `+ 1 < i
v`+2

3 i = `+ 1

0 r ≤ i ≤ `
2dk/2e
3A · di · ppir 1 ≤ i < r

(1)

In the following first we prove that the allocation function ofM is monotone
and then we show that the unique expected payments of the winners calculated
using Theorem 1 is equal to the expected payment of mechanismM which proves
that M truthful.

Observation 2 wi ((di, vi), θ−i) is monotone in vi.

Proof. If bidder i is a high-demand bidder then clearly increasing her bid just
increases her chance to be the high-demand bidder with the largest valuation
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and hence win with probability 1/3. If bidder i is a low-demand bidder then
increasing her bid just increases her ppi and hence can help her to go over the

ppi of the runner-up bidder and win with probability
2d k2 e
3·A . ut

The following lemma shows the expected payment of each winner.

Lemma 1. The truthful expected payment of bidder i (pi(θ)) calculated by Con-
dition 2 of Theorem 1 is the following.

pi(θ) =


0 `+ 1 < i
v`+2

3 i = `+ 1

0 r ≤ i ≤ `
2dk/2e
3A · di · ppir 1 ≤ i < r

(2)

Proof. Remember that the first ` bidders are low-demand bidders which have
non-decreasing ppis, r is the low-demand runner-up bidder, and finally among
high-demand bidders, bidder `+ 1 has the largest valuation and bidder `+ 2 has
the second largest valuation.

The probability of winning for bidder i when ` + 1 < i is zero since she is
a high-demand bidder who either does not have the highest valuation or has
the highest valuation but has larger index number (see Definition 1). Because
function wi is monotone we conclude that wi ((di, t), θ−i) is equal to zero for any
t ≤ vi. Hence by calculating the formula in Condition 2 of Theorem 1 we get
pi(θ) = 0.

We calculate the truthful expected payment of bidder ` + 1 by using the
formula in Condition 2 of Theorem 1.

p`+1(θ) = v`+1 · w`+1(θ)−
∫ v`+1

0

w`+1 ((d`+1, t), θ−`+1) dt

=
1

3
v`+1 −

∫ v`+1

0

w`+1 ((d`+1, t), θ−`+1) dt

=
1

3
v`+1 −

∫ v`+2

0

w`+1 ((d`+1, t), θ−`+1) dt−
∫ v`+1

v`+2

w`+1 ((d`+1, t), θ−`+1) dt

=
1

3
v`+1 −

∫ v`+1

v`+2

w`+1 ((d`+1, t), θ−`+1) dt

=
1

3
v`+1 −

1

3
(v`+1 − v`+2)

=
v`+2

3

The first equality is Condition 2 of Theorem 1, the second equality follows from
the fact that probability of winning for bidder `+1 (w`+1(θ)) is 1/3, the third one
is breaking the domain of integration, the forth and fifth equalities are followed
by noting that probability of winning for bidder ` + 1 is zero if his valuation is
less than v`+2 and is 1/3 if his valuation is greater than or equal to v`+2.
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The probability of winning for bidder i when r ≤ i ≤ ` is zero since she is a
low-demand bidder which has ppi less than or equal to ppir. Because function
wi is monotone we conclude that wi ((di, t), θ−i) is equal to zero for any t ≤ vi.
Hence by calculating the formula in Condition 2 of Theorem 1 we get pi(θ) = 0.

The only part remaining is to show that pi(θ) = 2dk/2e
3A ·di ·ppir for 1 ≤ i < r

using Condition 2 of Theorem 1. In order to calculate
∫ vi
0
wi ((di, t), θ−i) dt we

consider the curve of allocation function wi ((di, t), θ−i) when t increases from
zero to vi (see Fig 2).

ppir · di vi

2dk/2e
3A

Probability of winning

bid t

Fig. 2. The horizontal axis represents the bid of bidder i and the vertical axis shows
the probability of bidder i winning. As bidder i increases her bid; at the point when
her ppi is equal to the ppi of the runner-up bidder she gets allocated with probability
2dk/2e

3A
.

Observation 3 For any bidder 1 ≤ i < r allocation function wi ((di, t), θ−i) is

equal to zero when t < di · ppir and is equal to 2dk/2e
3A when t ≥ di · ppir.

Proof. Remember the runner-up bidder r has the smallest index for which
∑r
j=1 dj ≥

k. Mechanism M allocates all the low-demand bidders which have index less
than r (have ppis greater than or equal to the runner-up bidder) with proba-

bility 2dk/2e
3A . Therefore as far as t ≥ di · ppir bidder i is more valuable than

the runner-up bidder (see Definition 1) and wins with probability 2dk/2e
3A in type

profile ((di, t), θ−i).

Now assume that t < di ·ppir and θ′ = ((di, t), θ−i). Our objective is to show
that the probability of bidder i winning is zero for type profile θ′ and hence
finish the proof of the observation. Note that

∑r
j=1 dj ≥ k and in the new type

profile θ′ bidder i has ppi less than the ppis of all bidders j ∈ [r] where j 6= i
since t < di · ppir. In other words, bidder i is the least valuable bidder in [r]
(see Definition 1) while

∑r
j=1 dj ≥ k. Therefore, bidder i is either the runner-up

bidder in θ′ or has ppi less than the runner-up bidder (see Definition 2). Hence
has zero probability of winning. ut
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The following equalities shows the expected payment of bidder i for 1 ≤ i < r.

pi(θ) = vi · wi(θ)−
∫ vi

0

wi ((di, t), θ−i) dt

=
2dk/2e

3A
vi −

∫ vi

0

wi ((di, t), θ−i) dt

=
2dk/2e

3A
vi −

∫ di·ppir

0

wi ((di, t), θ−i) dt−
∫ vi

di·ppir
wi ((di, t), θ−i) dt

=
2dk/2e

3A
vi −

∫ vi

di·ppir
wi ((di, t), θ−i) dt

=
2dk/2e

3A
vi −

2dk/2e
3A

(vi − di · ppir)

=
2dk/2e

3A
(di · ppir)

The first equality is Condition 2 of Theorem 1, the second equality follows from

the fact that probability of winning for bidder i (wi(θ)) is 2dk/2e
3A , the third one

is breaking the domain of integration, the forth and fifth equalities are followed
from Observation 3. ut

Let revenue(M, θ) denotes the expected revenue of mechanism M in type
profile θ. We prove the following.

revenue(M, θ) =

n∑
i=1

pi(θ) definiton of revenue

=

r−1∑
i=1

pi(θ) +
∑̀
i=r

pi(θ) + p`+1(θ) +

n∑
i=`+2

pi(θ)

=

r−1∑
i=1

2dk/2e
3A

(di · ppir) +
v`+2

3
Lemma 1

=
2dk/2e

3A
· ppir ·

r−1∑
i=1

di +
v`+2

3

=
2dk/2e

3
· ppir +

v`+2

3
as A =

r−1∑
i=1

di

(3)

The following lemma proves that M is revenue monotone.

Lemma 2. The expected revenue of mechanism M does not decrease if we add
one more bidder or a bidder increases her bid.

12



Proof. The expected revenue of mechanism M is 2dk/2e
3 · ppir + v`+2

3 by Equa-
tion (3). Remember that v`+2 is the high-demand bidder with the second highest
valuation, therefore, if we add one more bidder or a bidder increases her bid this
value does not decrease. On the other hand ppir is the ppi of the runner-up
bidder (see Definition 2) which is the ppi of the first low-demand bidder that
crosses value k (see Fig 1) where the bidders are sorted according to their ppis.
The proof of the lemma follows by the fact that ppir also does not decrease as
we add one more bidder or a bidder increases her bid. ut

In the following lemma we prove that Price of Revenue Monotoncity (PoRM)
of M is 3 and finish this section.

Lemma 3. PoRM(M) = 3.

Proof. We prove the lemma by showing that the expected social welfare ofM in
type profile θ is at least 1

3 of the maximum social welfare (welfare(θ)). Let S
be an arbitrary subset of bidders which VCG selects and realizes the maximum
social welfare welfare(θ). Let L be the sum of valuations of low-demand bidders
in S and H be the sum of valuations of high-demand bidders in S. Therefore,
we have:

welfare(θ) = L+H (4)

There can be at most one high-demand bidders in S since they have demand
more than bk/2c. As v`+1 is the high-demand bidder with the largest valuation
we have the following.

v`+1 ≥ H (5)

We also have
r−1∑
i=1

vi ≥ L ·
A

k
(6)

since A =
∑r−1
i=1 di and the first r − 1 bidders have larger ppis than the rest as

they are sorted non-increasingly according to their ppis.
Remember that M selects bidder ` + 1 with probability 1/3 or selects each

of the first r − 1 low-demand bidders with probability 2dk/2e
3A . The following

equalities finishes the proof of the lemma.

E[welfare(M, θ)] =

r−1∑
i=1

2dk/2e
3A

· vi +
1

3
v`+1 definition of expected social welfare

=
2dk/2e

3A
·
r−1∑
i=1

vi +
1

3
v`+1

≥ 2dk/2e
3A

· L · A
K

+
1

3
H by Equation (5) and Equation (6)

≥ 1

3
L+

1

3
H algebra

=
1

3
welfare(θ) by Equation (4)
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A Multigroup Combinatorial Auction with Identical
Items

In this section we describe our Mechanism for Multigroup Combinatorial Auction
with identical items (mmca). We prove that mmca satisfies IC and RM while
has PoRM of at most O(log k).

In the following we define required notations to be used throughout this
section. Let’s assume we have m groups G(1), . . . , G(m). We always show the
group index of any variable within parenthesis in superscript. For group G(g)

let
(
D(g), V (g)

)
be the type of a high-demand bidder with the highest valuation,(

d
(g)
1 , v

(g)
1

)
,
(
d
(g)
2 , v

(g)
2

)
, . . . ,

(
d
(g)

n(g) , v
(g)

n(g)

)
be the types of low-demand bidders,

and ppi
(g)
i be the ppi of ith low-demand bidder. Without loss of generality, for

each group G(g) we assume that the number of low-demand bidders n(g) is larger

than k and ppi
(g)
1 ≥ ppi

(g)
2 ≥ . . . ≥ ppi

(g)

n(g) . The following defines the maximum
price per item with which we can sell at least j items to the low-demand bidders
of group G(g).

Definition 3 (jth-item value). For each j ∈ [k] we define jth-item value

(u
(g)
j ) of group G(g) to be equal to the valuation of ith low-demand bidder v

(g)
i

where i is the minimum number for which
∑i
t=1 d

(g)
t is greater than or equal to

j (see Fig 3).

k

v
(g)
1

v
(g)
2

. . .

v
(g)
r−1

1 2 j

u
(g)
j v

(g)
r

Fig. 3. Each rectangle corresponds to a low-demand bidder of group G(g) where the
height, width, and area represent ppi, demand, and valuation of the bidder respectively.
Here bidders are sorted according to their ppis and the valuation of the bidder who
crosses item j is the jth item-value.

We are interested in assigning a value to each group which represents how
much revenue can be obtained if we give the items to bidders of the group. Then,
we give the items to bidders of a group with the highest assigned value.

Definition 1 (mprg(g)) The Maximum Possible Revenue of Group G(g) (mprg(g))
is equal to

max(V (g), max
j∈[dk/2e]

j · u(g)j ).
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The intuition for mprg(g) is the following. The value j ·u(g)j is the maximum
revenue we can obtain if we sell exactly j items to low-demand bidders of group
G(g), see Definition 3. Note that number j is taken from the set [dk/2e] meaning
that we consider selling at most dk/2e items. This is because low-demand bidders
have different demands from the range [1..dk/2e], therefore, we can guarantee
selling at most dk/2e items without overselling the k items. In fact with random-
ization we make sure that we sell exactly dk/2e items in expectation. Finally we
take the maximum of the highest valuation of high-demand bidders (V (g)) and

value maxj∈[dk/2e] j · u(g)j .
The rest of this section is organized as follow. First, we describe the allocation

function of mmca. Second, we use Lemma 1 to derive the expected payments
of the winners which determines the revenue of mmca. Third, we show that the
revenue does not decrease if we add one more bidder or a bidder increases her
bid. Finally, we show that PoRM of mmca is at most O(log k).

Let Gg
∗

be the group with highest mprg, g∗ = arg maxg mprg
(g), and Gĝ be

the group with the second highest mprg. Mechanism mmca selects the winners
from group G(g∗). Let R be equal to mprgĝ. We think of R as a reserved value
such that we must obtain at least R revenue from group G(g∗). In the rest of this
section all the discussions are about group G(g∗) unless mentioned otherwise,
henceforth, we drop the group identifiers from variables.

Similar to Section 4, in the following, we define runner-up bidder to be the
low-demand bidder with highest ppi which cannot be a winner if we sort bidders
by their ppis (see Fig 4).

k

runner-up bidder

v1 A

v2

. . .

vr−1

1 2 j

uj

Fig. 4. Each rectangle corresponds to a low-demand bidder of group G(g∗) where the
height, width, and area represent ppi, demand, and valuation of the bidder respectively.
Here bidders are sorted according to their ppis and the low-demand bidder whose
demand crosses kth item is the runner-up bidder.

Definition 4 (runner-up bidder). We call low-demand bidder r the runner-
up bidder if r is the smallest number in set [n] for which

r∑
i=1

di ≥ k.
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Remember that R is equal to the second largest mprg of groups, V is the
largest valuation of high-demand bidders of the winning group G(g∗), and uj is
largest price of an item for which we can sell at least j items to low-demand
bidders of G(g∗) (see Definition 3). Note that as mprg = max(V,maxj∈[dk/2e] j ·
uj) of G(g∗) is larger than R we have either: (1) V > max(R,maxj∈[dk/2e] j · uj)
or (2) maxj∈[dk/2e] j · uj ≥ max(R, V ).

Case (1) is easy, if V > max(R,maxj∈[dk/2e] j ·uj) then the set of winners con-
tains only a high-demand bidder with valuation V breaking the ties arbitrarily. In
Case(2) let j∗ be the largest number from [dk/2e] such that j∗ ·uj∗ ≥ max(R, V ).
If j∗ is less than dk/2e then the set of winners is all low-demand bidders whose
ppi is greater than or equal to uj∗ . Otherwise if j∗ is equal to dk/2e then we
need to include all the low-demand bidders whose ppi is larger than or equal
to max(R, V )/dk/2e since, roughly speaking, their ppi is high enough to win
against both high-demand bidders and the group with second highest mprg.
Note that the sum of demands of such bidders might exceed dk/2e, therefore,
we need randomization to guarantee selling exactly dk/2e items in expectation.

Definition 5 (a and A). If dk/2e · udk/2e ≥ max(R, V ), we define a to be the
largest number in [r − 1] such that ppia ≥ max(R, V )/dk/2e, i.e., number a is
the smallest index in the set of all low-demand bidders that have index greater
than the runner-up bidder and have ppi larger than or equal to udk/2e. We also
define number A to be the sum of demands of the first a low-demand bidders,

i.e., A =
∑p
i=1 d

(g)
i .

Now we are ready to formally define the allocation function of mmca.

Definition 6 (Allocation Function of mmca).

1. If V > max(R,maxj∈[dk/2e] j · uj) then the set of winners contains only a
high-demand bidder with valuation V breaking the ties arbitrarily.

2. If j∗ is less than dk/2e then the set of winners is all low-demand bidders
whose ppi is greater than or equal to uj∗ .

3. If j∗ is equal to dk/2e then each of the first a low-demand bidder wins with

probability dk/2eA independently.

In the following lemma we calculate the critical values of winners using The-
orem 1.

Lemma 4. The critical values of winners are the following considering different
conditions of Definition 6.

1. If Condition 1 happens then the critical value of the winner is max(R,maxj∈[dk/2e] j·
uj , V2) where V2 is the second highest valuation of high-demand bidders.

2. If Condition 2 happens then the critical value of each winner i is di·(max(R, V )/j∗).

3. If Condition 3 happens then the critical value of each winner i is dk/2eA · di ·
max(ppir, (max(R, V )/dk/2e)).
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Proof. We consider all the three conditions separately.
Condition 1: We show that if the valuation V of the winner goes below

max(R,maxj∈[dk/2e] j · uj , V2) then player V cannot be a winner. If the value of
max(R,maxj∈[dk/2e] j · uj , V2) is equal to R then decreasing V to a value less
than R causes a group with the second highest mprg win and hence changes
player V to a loser participant. If it is equal to maxj∈[dk/2e] j ·uj then decreasing
V to a value less than maxj∈[dk/2e] j · uj causes low-demand bidders win and
hence changes player V to a loser participant. If it is equal to V2 then decreasing
V to a value less than V2 causes the high-demand bidder with valuation V2 win
and hence changes player V to a loser participant.

Condition 2: Remember that j∗ is the largest number from [dk/2e] such
that j∗ · uj∗ ≥ max(R, V ). Therefore if the valuation of any winner i goes
below di · (max(R, V )/j∗) then there exist no j in [dk/2e] such that j · uj is
larger than max(R, V ). Hence the winning set changes to either another group
if max(R, V ) = R or to high-demand bidders if max(R, V ) = V .

Condition 3: In this case we show that if the valuation of winner i goes
below di · max(ppir, (max(R, V )/dk/2e)) then she has zero probability of win-
ning and if it is larger than or equal to di ·max(ppir, (max(R, V )/dk/2e)) then

she has dk/2eA probability of winning. If the valuation of i is more than di ·
max(ppir, (max(R, V )/dk/2e)) then by the way we define the allocation func-

tion (see Definition 6) he has probability dk/2eA of winning otherwise her ppi is
less than max(ppir, (max(R, V )/dk/2e)). If ppi of i is less than ppir (the ppi of
the runner-up bidder) then she cannot be a winner since the sum of demands of
participants who have higher ppi than her is larger than k. If ppi of i is less than
max(R, V )/dk/2e then she cannot win because of the way we select winners in
the allocation function (Condition 3 of Definition 6). ut

Now we prove that mmca satisfies RM.

Lemma 5. If we add one more bidder or a bidder increases her bid the revenue
of mmca does not decrease.

Proof. Let x be the new participant or the participant who has increased her
bid. Let θ be the type profile before adding x and θ′ be the type profile after
adding x. We need to prove that revenue(mmca, θ′) ≥ revenue(mmca, θ).
First we prove that the revenue of mmca is between the mprg of the highest
group and the second highest group.

Observation 4 We have R ≤ revenue(mmca, θ) ≤ mprgg
∗
.

Proof. If Condition 1 of Definition 6 happens then the revenue of mmca is
max(R,maxj∈[dk/2e] j ·uj , V2) by Lemma 4. Note that in this case the revenue is
less than V and more than R and hence the proof of the observation follows.

If Condition 2 of Definition 6 happens then the revenue of mmca is max(R, V )
by Lemma 4 since we sell j∗ items. Note that in this case the revenue is less than
maxj∈[dk/2e] j·uj and more than R and hence the proof of the observation follows.

If Condition 3 of Definition 6 happens then the revenue of mmca is max(dk/2e·
ppir, R, V ) by Lemma 4 since we sell dk/2e items in expectation. Note that in
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this case the revenue is less than maxj∈[dk/2e] j · uj and more than R and hence
the proof of the observation follows. ut

By Observation 4 we know that the revenue of mmca is between mprg of the
highest group and mprg of the second highest group. Therefore if we add par-
ticipant x and the group with highest mprg changes then it means that the
revenue in θ′ is now mprg(g∗) and hence increases.

Now we assume that after adding x the winning group does not change. Here
we can check all the three cases that can happen in allocation function of mmca
(Definition 6) for new type profile θ′ and see that adding x can only increase the
revenue. ut

Now we prove that PoRM of mmca is at most O(ln k).

Lemma 6. PoRM(mmca) ≤ (2 + ln(k))

Proof. First we show that for any group g mprg of g is at least 1
2+ln(k) fraction

of the maximum social welfare obtainable by group g.

Observation 5 For any group G(g) we have mprg(g) ≥ 1
(2+ln(k)) ·welfare(G(g)).

Proof. Let set S contain bidders of G(g) which obtain the maximum social wel-
fare and T be equal to mprg(g). Note that set S can contain at most one high-
demand bidder since their demand is larger than dk/2e. Moreover, the valuation
of high-demand bidder of S cannot be more than T because otherwise mprg of
G(g) will be larger than T . Therefore the total social welfare of S from high-
demand bidders is at most T .

Now let us sort the low-demand bidders of S by their ppi and define value
uS,j to be the maximum price per item with which we can sell at least j items
to the low-demand bidders of S, similar to Definition 3. Note that for any j ∈
[dk/2e] we have uS,j ≤ T

j because otherwise mprg of G(g) will be larger than T .

Moreover for any j ∈ {dk/2e + 1, . . . , k} we have uS,j ≤ T
dk/2e because we sort

by ppi. Therefore the social welfare of S from low-demand bidders is at most∑dk/2e
j=1

T
j + dk/2e · T

dk/2e which is at most (1 + ln(k)) · T .

Set S can get social welfare of at most T from the high-demand bidders and
(1 + ln(k)) · T from low-demand bidders, therefore, the proof of the observation
follows. ut

Note that by the way we define the allocation function of mmca it always selects
a set of winners such that their expected social welfare is at least the mprg of
the winning group, see Definition 6. Since mmca selects a group with the highest
mprg as the winning group by Observation 5 we know that the maximum social
welfare cannot be more than (2 + ln(k)) times the highest mprg and hence the
proof of the lemma follows. ut

Now we provide evidence that no randomized algorithm can obtain PoRM
better than Ω(ln(k)). Note that an optimum randomized mechanism (M∗) has
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to first give a probability distribution to groups and pick the winning group
according to that distribution. Let’s assume p∗ be the function which maps each
group g to its probability of winning. Now we argue that p∗ cannot be dependent
to the social welfare of g otherwiseM∗ will not satisfy RM. Because, in this case
a bidder can increase her bid high enough so that probability p∗(g) goes to its
upper-limit which decrease the critical value of the other bidders and hence break
RM. We further argue that p∗ should be dependent to one factor of each group
which is the same across the group. For example if it is dependent to two factors
then increasing the first factor might remove the load from the second factor
and hence the second factor is free to go down without changing the probability.
If p∗ is dependent to only one factor then the best way to make it as close as

possible to social welfare is to define j · u(g)j (see Definition 3) for each group
similar to our mprg value assigned to each group. Therefore, we have evidence
that function p∗ can be dependent to a value which can be off from social welfare
by factor ln(k).

Now consider the simple case of image-text auction where we have two groups:
text-ads and image-ads. We want to assign the winning probabilities to each
group. Now suppose we are given two values a for image-ads and b for text-ads,
and also we know that social welfare of text-ads is either b or ln(k) · b. If we
pick each group with probability 1/2 and 1/2, the expected social welfare is 1/2
approximation to its max value. The question is can we do better by having a
more clever randomization.

We prove that no other randomization can give us a factor better than 1/2+
1/(2

√
ln(k)). Suppose the value of a is equal to X and the value of b is equal to

X/
√

ln k where the social welfare of text-ads can be X ·
√

ln(k). Now supposeM∗
gives the items to image-ads with probability F and to text-ads with probability
1− F . If the social welfare of text-ads is X/

√
ln(k), we get PoRM of F + (1−

F )/
√

ln(k) and if the social welfare of text-ads is X ·
√

ln(k), we get PoRM of

(1−F )+F/
√

ln(k). If we want to maximize the minimum of the two PoRMs we

have to set F to 1/2 which gives PoRM of 1/2 + 1/(2
√

ln(k)). Note that if the

number of groups increases to m then this factor changes to 1/m+1/(m
√

ln(k)),
therefore, the best way is to give probability one to the group with the best
assigned value and lose factor ln(k).
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