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Abstract. A prevalent market structure in the Internet economy consists of
buyers and sellers connected by a platform (such as Amazon or eBay) that acts
as an intermediary and keeps a share of the revenue of each transaction. While
the optimal mechanism that maximizes the intermediary’s profit in such a setting
may be quite complicated, the mechanisms observed in reality are generally much
simpler, e.g., applying an affine function to the price of the transaction as the
intermediary’s fee. Loertscher and Niedermayer [8, 9] initiated the study of such
fee-setting mechanisms in two-sided markets, and we continue this investigation
by addressing the question of when an affine fee schedule is approximately opti-
mal for worst-case seller distribution. On one hand our work supplies non-trivial
sufficient conditions on the buyer side (i.e. linearity of marginal revenue function,
or MHR property of value and value minus cost distributions) under which an
affine fee schedule can obtain a constant fraction of the intermediary’s optimal
profit for all seller distributions. On the other hand we complement our result
by showing that proper affine fee-setting mechanisms (e.g. those used in eBay
and Amazon selling plans) are unable to extract a constant fraction of optimal
profit in the worst-case seller distribution. As subsidiary results we also show
there exists a constant gap between maximum surplus and maximum revenue
under the aforementioned conditions. Most of the mechanisms that we propose
are also prior-independent with respect to the seller, which signifies the practical
implications of our result.

1 Introduction

A prevalent market structure in the Internet economy consists of buyers and sellers
connected by a platform (such as Amazon or eBay) that acts as an intermediary and
keeps a share of the revenue each time a buyer makes a purchase from a seller. What
mechanism should the intermediary use to maximize its profit? In cases the optimal
mechanism is unacceptably complicated, can simpler mechanisms closely approximate
the profit of the optimal mechanism? We approach these questions using the framework
of Bayesian mechanism design and worst-case approximation guarantees.

To motivate our investigation it is instructive to consider the transaction fees that
are commonly used by intermediaries in reality. For example, when an item is sold on
eBay using a fixed price listing (as opposed to an auction), the seller is charged a fee of
0.3 + 0.1P , where P is the total amount of the sale in dollars1. Amazon uses a similar
pricing rule for individual sellers, which is 0.99+αP , where α is a real number determined
by the category of the product, typically ranging from 8% to 15% 2. Generalizing these
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1 See http://pages.ebay.com/help/sell/fees.html
2 See http://services.amazon.com/selling/pricing.htm
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examples, we say that a fee-setting mechanism is one in which the intermediary names a
function w(·), the seller names a price P , and the buyer chooses whether or not to take
the item at price P . If the transaction takes place, then the intermediary keeps w(P )
and pays P −w(P ) to the seller. Otherwise, no money changes hands. We refer to w as
the fee schedule of the mechanism. We say that w is affine if it can be represented in
the form w = (1 − α)P + β for some constants α, β, and we say that an affine schedule
w(P ) = (1 − α)P + β is proper if α ∈ [0, 1], β ≥ 0. Note that the fee schedule used by
eBay and Amazon (and many other intermediaries, for example real estate brokers) are
affine and proper.

Loertscher and Niedermayer [8, 9] initiated the study of fee-setting mechanisms in
two-sided markets. They showed that if it is possible for the intermediary to choose
a mechanism that implements a given allocation rule in Bayes-Nash equilibrium, then
there is a fee-setting mechanism that does so. They also provided necessary and suf-
ficient conditions for the intermediary’s optimal mechanism to be implemented by an
affine fee-setting mechanism. The necessary and sufficient condition discovered by Lo-
ertscher and Niedermayer [8, 9] requires the seller’s cost to be drawn from a generalized
Pareto distribution (see Definition 1 below). Using results from extreme value theory,
they show that in the limit as only the sellers with lowest cost and the buyers with high-
est value enter the market, the conditional distribution of the seller’s cost (conditional
on entering the market) approaches a generalized Pareto distribution, thus providing
a partial justification for the prevalence of affine fee-setting mechanisms in two-sided
markets.

Our work draws inspiration from the aforementioned work of Loertscher and Nieder-
mayer [8, 9] and seeks a different type of justification for affine fee-setting mechanisms
by asking the question, “When are affine fee-setting mechanisms approximately opti-
mal?” Our results pertain to the case when the buyer’s virtual valuation function is
affine, which is the characterization of generalized Pareto distributions, in ex-post IR
setting. We first show that a specific choice of seller prior-independent affine fee schedule
w(P ) = P − φB(P ) is ex-post IR for every possible seller’s distribution, where prior-
independent means the fee schedule only depends on the buyer’s value distribution but
not on the seller’s cost distribution. Moreover, this affine fee schedule also achieves
a constant-approximation to the maximum surplus — and hence, also, a constant-
approximation to the optimal revenue. The approximation factor depends on the ex-
ponent of the buyer’s generalized power distribution but it is no more than 4 comparing
to optimal intermediary’s profit when the buyer’s PDF is monotone. Our results com-
plement the results of Loertscher and Niedermayer [8, 9] in the sense that combined
with their results, we show that if either of the buyer side or the seller side has affine
virtual valuation function, and the other side follows regular distributions, then the best
affine fee schedule guarantees either optimal or near optimal revenue, which provides
explanation for the phenomenon that affine fee schedule is widely used in the daily life.

Our second main result explores the setting that the difference between the values
of the seller and the buyer follows MHR distribution, which indicates that the surplus
and revenue are constant approximation to each other. Under this assumption, we may
further extend the buyer’s distribution to MHR distributions, and still get constant
approximation ratio with constant (and hence affine) fee schedule.

Intriguingly, without proper MHR assumptions the ex-post IR affine fee schedule in
the aforementioned approximation result is not proper; in contrast to intermediaries in
typical two-sided markets in practice, the intermediary in our approximation result may
charge a transaction fee which is a decreasing function of the seller’s price. Our third
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main result shows that this reliance on improper affine fee schedules is unavoidable:
even when the buyer’s value is assumed to be uniformly distributed on [0, 1], there exist
seller cost distributions for which no proper affine fee-setting mechanism can achieve a
constant-approximation to the optimal revenue.

In the special case that the buyer’s distribution is uniform [0, 1], we propose an
improved mechanism, which gives 3-approximation fee-setting mechanism to the optimal
revenue. We also prove that if one needs a prior independent affine fee schedule when
the buyer’s distribution is uniform [0, 1], then α− β = 1 is necessary. Moreover, among
all the prior independent affine fee schedule, w(P ) = 1−P gets the best approximation
ratio 8 comparing to maximum surplus. From this perspective, our proposed affine fee
schedule is optimal. Finally, our proof techniques reveal the fact that there exists a
constant gap between optimal revenue and maximum surplus when buyer’s distribution
is generalized Pareto distribution as a side dish.

The primary source of difficulty in proving these results is that fee-setting mechanisms
are not Bayes-Nash incentive compatible (BNIC). Thus, deriving a revenue guarantee for
the intermediary requires first solving for the Bayes-Nash equilibrium of the mechanism.
Our paper adopts the approach introduced by Loertscher and Niedermayer [8, 9] for
deriving the Bayes-Nash equilibrium. The technical heart of our paper lies in some
surprising connections between the affine fee schedule, Bayes-Nash equilibrium payment
function, and the cumulative hazard rate function. These connections are non-trivial,
which make the proof succinct while the results are still general. Starting from that, we
got expressions of the three quantities of interest — the maximum surplus, the optimal
revenue, and the affine fee-setting mechanism’s revenue — in a closely related form.
Then, leveraging our assumption that the buyer’s virtual value function is affine, we are
able to choose an affine fee schedule to approximate the optimal revenue.

1.1 Related Work

Myerson and Satterthwaite [11] showed that for one seller one buyer setting, if there
is no intermediary between them, then no incentive-compatible individually rational
mechanism can produce post efficient outcome, where post efficient outcome means the
trade should take place whenever the buyer’s value is larger than the seller’s cost. Based
on this impossibility result, they also considered the case that intermediary is allowed,
and both the seller and the buyer can trade with the intermediary only.

Deng et al. [3] studied the double auction, in which the intermediary designs mech-
anism for the buyers and the sellers to extract maximum revenue. In the paper, they
provided optimal or near-optimal mechanisms for both single dimensional and multi-
dimensional environments with continuous or discrete distributions. Jain and Wilkens
[7] studied the same problem with single unit-demand buyer and multiple sellers, and
gave a characterization for the optimal solution in this setting. Since the optimal mech-
anism is generally hard to implement, they also proposed several approximation mecha-
nisms, including picking the best item and sell, or using anonymous virtual reserve price
combined with greedy algorithm.

Contract problem has a similar setting as the intermediary problem: the principle
(intermediary) proposed a contract (w(·) function) to the agent (the seller), and the
agent will choose his action and get a output (P payment), and then give the principle
w(P ), keep P − c as its utility. Previously, researchers have found evidence showing that
linear contract is powerful in this setting. Pal et al. [12] studied linear contract problem,
and found that linear contracts are common in practice not only because the simplicity,
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but also due to the fact that the optimal linear contract guarantees at least 90% of
the fully optimal contract in the canonical moral hazard setting. Carroll [2] proved that
under mild assumptions, the optimal contract is actually linear.

Simple mechanisms and their approximation ratios to the corresponding optimal
mechanisms have been an important research topic in the literature. For example, Bulow
and Klemperer [1] showed that in the i.i.d., regular, single dimensional setting, second
price auction with n+ 1 bidder will give more revenue than the optimal auction with n
bidders. Hartline and Roughgarden [6] investigated the single dimensional setting where
bidders have independent valuations, and showed that VCG with anonymous reserve
price can achieve 4-approximation to the optimal revenue. Dhangwatnotai et al. [4]
considered the auctions that are prior-independent, in the sense that the auction will
achieve good approximation to the optimal revenue while the specific value distributions
of the bidders are not used in the auction.

2 Preliminaries

In this paper we consider the problem of single-item trade, in which a profit-maximizing
broker mediates the exchange between a buyer and a seller. In particular, we follow
the Bayesian mechanism design approach wherein a Bayesian designer looks to find the
trade mechanism with the maximum possible revenue in expectation over the distri-
butions from which the preferences of the buyer and seller are drawn. We assume the
preferences of buyer and seller are private values drawn from product distributions,
which are common knowledge.

2.1 Setting, notations, solution concepts, and basics

We assume the reader is familiar with the general model of single dimensional mechanism
design for risk neutral agents, including the definitions of incentive compatibility and
individual rationality, basics of Bayesian mechanism design, and adapting these concepts
to the exchange setting (see Appendix A). Still, it is worth identifying a few aspects of
our notations and terminology.

Suppose the seller S has a private cost c and the buyer B has a private value v
for the item. We use F (and f) to denote the CDF(and PDF) of v, and G (and g) to
denote the CDF (and PDF) of c. Unless stated otherwise, we assume the support of f
is [0, v] and the support of g is [0, c]. We define the marginal revenue functions (a.k.a.

virtual preferences) of seller and buyer as follows. Let φS(c) , c + G(c)
g(c) be defined as

the virtual cost of the seller and φB(v) , v − 1−F (v)
f(v) be defined as the virtual value of

the buyer. We also define buyer’s hazard rate, hB(v) ,
f(v)

1−F (v) , and cumulative hazard

rate, HB(v) ,
∫ v

0
hB(z)dz. It can be easily shown that 1 − F (v) = e−HB(v), which is a

famous property of cumulative hazard rate.

We say a buyer (or a seller) is buyer-regular (or seller-regular) if φB(v) (or φS(c)) is
monotone non-decreasing. A buyer’s distribution is said to be MHR (monotone hazard
rate) if hB(v) is monotone non-decreasing (or equivalentlyHB(v) is convex). For a regular
buyer v, monopoly price is defined to be ηv = φ−1

B (0) (i.e. if v ≥ ηv virtual value is non-

negative). Moreover, monopoly revenue Rv
η , ηv(1−F (ηv)) is the expected revenue one

gets by posting ηv to a buyer with value v.
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2.2 Characterization of distributions with affine virtual value/cost

A critical constraint throughout this paper, which is appearing in different forms in
many of our results and background results on this subject, is when the buyer or seller
has an affine virtual preference, i.e. when φS(c) = xc + y or when φB(v) = xv − y for
x, y ∈ R. We now characterize the buyer distributions and seller distributions with the
above property as follows.

Definition 1. A generalized Pareto distribution F with parameters µ, λ, and ξ, where
µ, λ, ξ ∈ R, λ > 0 and ξ ≥ 0, is defined by the following cumulative density function.

F (x) =

{

1− (1− ξλ(x − µ))
1
ξ if ξ > 0

1− eλ(x−µ) if ξ = 0

and the support is bounded and equal to [µ, µ + 1
ξλ ] if ξ > 0, and is unbounded and

equal to [µ,+∞) if ξ = 0. When ξ > 0 we refer to the distribution as generalized power
distribution and when ξ = 0 we refer to it as generalized exponential distribution.

It is worth mentioning that the family of Pareto distributions are skewed, heavy-tailed
distributions that are sometimes used to model the distributions of incomes and other
financial variables. For the cost of the seller, we define a similar distribution as follows.

Definition 2. The seller with cost c has a reverse-generalized Pareto distribution with
parameters µ, λ, and ξ if −c is a random variable drawn from a generalized Pareto
distribution with parameters µ, λ and ξ.

For generalized Pareto distribution family, one can easily prove the following corollary
by definition.

Corollary 1. If v is drawn from a generalized Pareto distribution with parameters µ, λ,
and ξ, then φB(v) = (1+ ξ)v− ( 1λ − ξµ). If c is drawn from a reverse-generalized Pareto
distribution with parameters µ, λ, and ξ, then φS(c) = (1 + ξ)c+ ( 1λ + ξµ).

We can also prove that the inverse is true, i.e. affine virtual preferences implies the
generalized Pareto distribution (To prove this lemma, simply solve the corresponding
differential equations coming from the definitions, which we omit here)

Lemma 1. A buyer (or seller) has affine virtual value (or cost) only if its value (or
cost) is drawn from a generalized Pareto distribution (or reverse-generalized Pareto dis-
tribution).

3 Background results

In this section, we investigate a class of mechanisms known as fee-setting, introduced
first by Loertscher and Niedermayer [8]. In these mechanisms, the intermediary asks the
seller to bid her preferred price. If a buyer is willing to buy the item with this price, the
intermediary takes a share of the trade money and gives the rest to the seller. Fee-setting
mechanisms are simple, intuitive, easy to implement and more robust compared with
Myerson’s optimal mechanism.
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3.1 Fee-setting exchange mechanisms

We first define a fee-setting mechanism as follows.

Definition 3. A a fee-setting mechanism with common knowledge fee schedule w(.) :
R → R is an indirect mechanism for single buyer single seller exchange that runs the
following steps subsequently:

– Trader asks the seller to bid its desired price P ,
– Trader then posts the price P for the buyer,
– If v < P then the trade doesn’t happen and all the payments will be zero.
– If v ≥ P then the item will be traded, trader charges the buyer P , keeps its share of

the trade w(P ), and pays P − w(P ) to the seller.

We now define affine fee setting exchange mechanisms formally below.

Definition 4. An affine fee setting exchange mechanism with parameters α and β is a
fee-setting mechanism with affine fee schedule w(P ) , (1 − α)P + β, α, β ∈ R.

In this paper, we refer to an affine exchange fee mechanism with parameters α and β as
APX(α, β). We also define Rev-APX(α, β) to be the revenue of APX(α, β) when strategy
profile of agents is a BNE (As we will discuss below, for affine exchange mechanisms
there is a unique BNE under the regularity assumption). Moreover, OPT-Rev is defined
to be the revenue of optimal Myerson mechanism, and OPT-Surplus to be the surplus
of VCG mechanism.

3.2 Characterization of BNE strategy of the seller

By a standard argument similar to those used in the Bayes-Nash equilibrium char-
acterization of single dimension mechanism [10] one can characterize the BNE of the
fee-setting mechanism. More formally, we have the following theorem, proved in [8], that
characterizes the BNE of the fee-setting mechanisms.

Theorem 1. [8] Consider a fee-setting mechanism with differentiable fee-setting w(.),
then P : [0, c] → R

+ is a BNE strategy of the seller if and only if:

– P (c) is monotone non-decreasing with respect to c.

– P (c) satisfies φB(P (c)) = P (c)− P (c)−w(P (c))−c

1− ∂w
∂p

(P (c))
.

Although the characterization in Theorem 1 is indirect, it has many nice implications
in the special case of fee-settings mechanisms with affine fee schedule.

Corollary 2. Suppose in an exchange setting seller is regular. Then for an affine fee-
setting mechanism with fee schedule w(P ) = (1 − α)P + β, P (c) = φ−1

B ( c+β
α ) is the

unique BNE strategy of seller.

Proof. From Theorem 1 we know in any BNE, we have

φB(P (c)) = P (c)− P (c)− w(P (c)) − c

1− ∂w
∂p (P (c))

= P (c)− αP (c) + β + c

1− (1− α)
=

c+ β

α

and as buyer is regular, φB is invertible, so in any BNE P (c) = φ−1
B ( c+β

α ).
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3.3 Optimality of affine and non-affine fee-setting mechanisms

Considering the class of fee-setting mechanisms, one important question is how well these
mechanisms can perform comparing to Myerson’s optimal mechanism. Loertscher and
Niedermayer [8, 9] showed that with a proper choice of function w(P ) (not necessarily
affine) one can design a fee-setting mechanism that extracts the same revenue in expec-
tation as in Myerson’s optimal mechanism. While this result is surprising by itself, they
also could show that optimal fee-setting mechanism will be affine when seller’s cost is
drawn form a reverse-generalized Pareto distribution as in Definition 2 (in other words,
when the seller’s virtual cost is affine). For more details on this result and a simple proof
using revenue equivalence theorem [10], see Appendix B.

4 Main results

As can be seen from the discussion in the last section, Loertscher and Niedermayer [8]
initiated the study of affine fee-setting mechanisms in two-sided markets and identified
necessary and sufficient conditions for the intermediary’s optimal fee schedule to be
affine for worst-case buyer distribution. In this section, we continue this investigation
by addressing the question of when an affine fee schedule is optimal or approximately
optimal for worst-case seller distribution. By simulation, one can show that there exists a
pair of seller and buyer distributions for which the best affine mechanism is not optimal
(for example see [8]). However, in those cases, we may still be able to get constant
approximations to maximum intermediary profit with affine fee-settings. We have three
main results following this line of thought.

As our first result, intuitively when at least one side of the bilateral market has some
linear behaviors it might be possible for the mechanism designer to extract optimal or
approximately optimal revenue from the buyer and seller using affine fee-settings. Under
this condition, we propose improper fee-setting mechanisms that can extract constant
approximations to optimal revenue. More formally:

Main Result 1 If the buyer has affine virtual value, under some mild assump-
tions, the affine fee-setting mechanism w(P ) = P − φB(P ) extracts a constant
approximation of optimal intermediary’s revenue in expectation for any seller-
regular distributions. Moreover, optimal intermediary’s revenue and maximum
surplus are in constant approximation of each other in expectation.

As the second result, when surplus and revenue are in constant approximation of
each other (for example when the distributions involved in the trade are not heavy-
tailed) posting a proper price for the buyer can always extract constant approximations
to optimal surplus, and hence optimal revenue, and seller’s cost will not be an important
issue. More formally:

Main Result 2 If the random variables v (buyer’s value) and v − c (difference
of buyer’s value and seller’s cost) are MHR, the constant fee-setting mechanism
w(P ) = ηv−c extracts constant approximations to optimal intermediary’s revenue
in expectation for any seller distributions, in which ηv−c is the monopoly price
for the random variable v−c (ηv−c = φ−1

v−c(0)). Moreover, optimal intermediary’s
revenue and maximum surplus are in constant approximation of each other in
expectation.
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As the final result, we show that a mechanism designer who tries to get constant
approximation to optimal revenue for all seller’s distribution (especially for heavy-tailed
distributions), cannot avoid using the improper fee-setting mechanisms. Formally:

Main Result 3 Even when the buyer’s value is drawn from unif [0, 1], there
exists seller cost distributions for which no proper affine fee-setting mechanism
can achieve a constant-approximation to the optimal intermediary’s revenue.

In the next Section, we first provide a proof sketch for our first main result, and then
for the special case when buyer’s value is uniform we propose an improved fee-setting
mechanism accompanied by a refined analysis, which gives us a better approximation
ratio. Then in Section 4.3 we sketch the proof of second main result. Finally in Section 5
we elaborate on our third inapproximability result.

4.1 Approximations for affine buyer’s virtual value

Suppose buyer’s virtual value is affine, i.e. φB(v) = αv − β,3 and now look at the affine
fee-setting mechanism w(P ) = P −φB = (1−α)P +β. We start by proving the following
properties of this mechanism, which also show the mechanism is ex-post IR for seller,
buyer and trader (and hence no party regrets attending the trade).

Lemma 2. If φB(v) = αv − β and P (c) is the BNE strategy of seller, then affine fee-
setting mechanism w(P ) = P − φB(P ) = (1− α)P + β has the following properties:

(a) ∀c : w(φB(P )) = αw(P ) and φB(φB(P )) = c.
(b) Ex-post utilities of seller and trader are always non-negative.

(c) ∀v : e−HB(v) = (w(v)
β )

1
α−1 , when α 6= 1.

Proof. To prove (a) we have w(φB(P )) = (1−α)(αP−β)+β = α((1−α)P+β) = αw(P ).
Moreover, due to Corollary 2, φB(P ) = c+β

α and hence c = αφB(P ) − β = φB(φB(P )).
To prove (b), note that utility of trader is equal to w(P ) = P − φB(P ) ≥ 0, due to
properties of virtual value. Also, seller’s ex-post utility when trade happens is equal to
P − w(P ) − c = φB(P ) − c ≥ φB(φB(P )) − c = 0, due to property (a). To prove (c) we
have hB(v) = (v−φB(v))

−1 = (w(v))−1. Now, the following calculation finds cumulative
hazard rate HB(v) which completes the proof of (c).

HB(v) =

∫ v

0

hB(z)dz =
ln(w(v))

1− α
− ln(w(0))

1− α
=

ln(w(v)
β )

1− α
⊓⊔

Now, using the above properties we prove one can extract a constant portion of
optimal revenue and optimal surplus by the above mechanism. The intuition behind the
proof is as follows. Look at the special case when the buyer’s distribution is uniform on
[0, 1]. Then the fee schedule that we propose is w(P ) = 1 − P . At the first glance this
appears counterintuitive: as a seller, if you ask for a higher price then the broker gets
less money from you. But the seller needs to take a trade-off when setting the price: if
the seller picks P = 1, which minimizes the broker’s fee as w(1) = 0, then the chance of
finding a buyer with this price will be zero, which produces zero utility to the seller. So
the seller needs to find a balanced price, at which the chance of finding a buyer is large,
and the fee paid to the intermediary is reasonable as well. In other words, the seller is
buying “chance of trade” from the intermediary by paying 1−P to it. We formalize this
argument by the following theorem. (Figure 1 presents a geometric proof sketch.)

3 Note that due to Corollary 1 and Lemma 1, v is drawn from a generalized Pareto distribution,
and hence α should be in [1,∞).
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P0 1

w(P )

1

w(P ) = 1 − P

P (c)

w(P (c))

φ(P (c))

2w(P (c))

φ(φ(P (c)))

4w(P (c))

FDB H

A

C

E G

SEFGH = APX
SCDH ≥ OPT

2

SABH = Surplus

APX

Fig. 1. In this figure, buyer value is unif [0, 1] and w(P ) = 1− P . This fee-setting mechanism
(APX) extracts 1

4
fraction of optimal revenue (OPT) and 1

8
fraction of optimal surplus (Surplus)

in expectation, which can be seen by comparing the area of corresponding regions.

Theorem 2. Suppose buyer’s virtual value is affine: φB(v) = αv − β for some α ≥ 1.

Then the revenue of affine fee-setting mechanism w(P ) = P−φB(P ) is α
1

α−1−approximation

to optimal revenue and α
α+1
α−1−approximation to optimal surplus in expectation.

Proof. Suppose P (c) is seller’s BNE strategy. We first find an equivalent expression for
the expectation of revenue of the fee-setting mechanism w(P ) = P−φB(P ) = (1−α)P+β
(i.e. APX(α, β)) conditioned on a fixed cost c for the seller. For a fixed c, trade happens
if buyer’s value is at least equal to the posted price, i.e. if v ≥ P (c). In this case, trader
gets its share w(P ) and returns the rest to the seller. So,

E{Rev-APX|c} = E{w(P )1{v ≥ P}|c} = w(P )(1−F (P )) = w(P )e−HB(P ) (i)
=

w(P )
α

α−1

β
1

α−1

,

where equality (i) is due to property (c) in Lemma 2. Basically, the conditional revenue
of APX is the measured area under a rectangle with width equal to w(P ) and length
equal to the interval {v : v ≥ P}, when we use the distribution of buyer’s value as
the measure function. For the special case of uniform distribution, this corresponds to
normal area of this rectangle, as can be seen in Figure 1. For the optimal revenue, we
try to obtain a similar upper-bound. From Myerson’s theory of optimal mechanisms, we
know E{OPT-Rev|c} = E{(φB(v)− φS(c))1{φB(v) ≥ φS(c)}|c}. By plugging in buyer’s
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affine virtual function φB(v) = αv − β in this expression, we have:

E{OPT-Rev|c} = E {(αv − β − φS(c))1{αv − β ≥ φS(c)}|c}

= αE

{

(v − φS(c) + β

α
)1{v ≥ φS(c) + β

α
}|c
}

(i)
= αE

{

1

hB(v)
1{v ≥ φS(c) + β

α
}|c
}

(ii)

≤ αE

{

1

hB(v)
1{v ≥ φB(P )}|c

}

(iii)
= αE {w(v)1{v ≥ φB(P )}|c} ,

where equality (i) is true because for any x, E{(v − x)1{v ≥ x}} =
∫

t≥x(1− F (t))dt =

E{ 1
h(v)1{v ≥ x}}, (ii) is true because φS(c)+β

α ≥ c+β
α = P (c), and (iii) is true because

w(v) = v − φB(v) =
1

hB(v) . The last upper-bound on the conditional revenue of optimal

Myerson divided by α is the measured area under the curve w(v) in the interval {v : v ≥
φB(P )}, when we use the distribution of buyer’s value as the measure function. For the
special case of uniform distribution, this corresponds to normal area under the curve,
as can be seen in Figure 1. One can calculate this term by taking the integral of an

affine function and show this is equal to α
1

α−1E{Rev-APX|c}, which gives us the desired
approximation factor (see Appendix C). Here we take a different approach which results
in a slightly weaker approximation factor, but is more intuitive. w(v) is non-increasing
(as α ≥ 1) and hence w(v) ≤ w(φB(P )) in the region {v : v ≥ φB(p)}. So, we can
upper-bound the conditional expectation of optimal revenue further by

E{OPT-Rev|c} ≤ αw(φB(P ))(1 − F (φB(P ))) = αw(φB(P ))e−HB(w(φB(P )))

(i)
= α

w(φB(P ))
α

α−1

β
1

α−1

(ii)
= α

α
α−1E{Rev-APX|c},

in which (i) is true due to property (c) in Lemma 2, and (ii) is true because w(φB(P )) =
αw(P ) based on property (a) in Lemma 2. Taking expectation with respect to c will
prove the desired approximation factor with respect to optimal revenue.

To compare the revenue of our fee-setting mechanism with the surplus, we use the
same machinery to find an expression for the expectation of maximum surplus for a
fixed c. Similar to the calculations for optimal revenue we have E{OPT-Surplus|c} =
E{(v − c)1{v ≥ c}|c} = E{ 1

hB(v)1{v ≥ c}|c} = E{w(v)1{v ≥ c}|c} = E{w(v)1{v ≥
φB(φB(P ))}|c}, where the last equality is true because φB(φB(P )) = c due to property
(a) in Lemma 2. Again, the conditional maximum surplus is the measured area under
the curve w(v) in the interval {v : v ≥ φB(φB(P ))}, when we use the distribution of
buyer’s value as the measure function. For the special case of uniform distribution, again
this corresponds to normal area under the curve, as can be seen in Figure 1. Now, again
one can either calculate this term by taking integral of an affine function and show this

is equal to α
α+1
α−1E{Rev-APX|c} (which gives us the desired approximation factor, see

Appendix C for the proof), or can use the following upper-bound for a slightly weaker
factor (but more intuitive).

E{OPT-Surplus|c}
(i)

≤ w(φB(φB(P )))(1 − F (φB(φB(P )))) = w(φB(φB(P )))e−HB(w(φB(φB(P ))))

=
w(φB(φB(P )))

α
α−1

β
1

α−1

(ii)
= α

2α
α−1E{Rev-APX|c},

where (i) is true because w(v) is non-increasing, and (ii) is true because by using prop-
erty (a) of Lemma 2 twice we have w(φB(φB(P ))) = αw(φB(P )) = α2w(P ). Taking
expectation with respect to c will complete the proof. ⊓⊔
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We are now ready to obtain approximation ratios for different cases of generalized
Pareto distributions, namely general power distributions and exponential distributions.
This is exactly the same class of distributions that Loertscher and Niedermayer [8, 9]
investigated.

Corollary 3 (Exponential distribution). Suppose F (v) = 1 − e−λv over [0,∞) for
λ > 0. Then revenue of APX(1, 1

λ) (i.e. fee-setting with w(P ) = 1
λ) is e2-approximation

to maximum surplus, and e-approximation to the optimal revenue in expectation.

Proof. This is the special case of Theorem 2 when φB(v) = v − 1−F (v)
f(v) = v − 1

λ . That

gives us α = 1, β = 1
λ . Following the fact that limα→1 α

1
α−1 = e and limα→1 α

α+1
α−1 = e2,

we prove the desired approximation factors. ⊓⊔

Corollary 4 (Power distributions). Suppose F (v) = 1 − (1 − v
v̄ )

a over the support
[0, v̄] for some a ≥ 1. Then the revenue of APX(a+1

a , v̄
a ) (i.e. fee-setting with w(P ) =

−1
a P + v̄

a) is 8−approximation to the maximum surplus, and 4−approximation to the
maximum revenue.

Proof. This is the special case of Theorem 2 when φB(v) = v − 1−F (v)
f(v) = a+1

a v − v̄
a . So

α = a+1
a , β = v̄

a . Note that as a ≥ 1, we have α ≤ 2. Following the fact that for α ≤ 2,

we have α
1

α−1 ≤ 4 and α
α+1
α−1 ≤ 8, we prove the desired approximation factors. ⊓⊔

4.2 Approximations for the uniform distribution

Uniform distribution on [0, 1] is a special case of power distributions, so based on the
results of the last section we can get approximation factors 4 and 8 with respect to
optimal revenue and surplus respectively. However, we propose a different fee-setting
mechanism that is 3−approximation with respect to optimal revenue in expectation.
Our technique is based on the “best of two” technique for designing approximation
algorithms, which picks the best of two mechanisms each performs well on some class of
input seller’s distribution. For the proof, see Appendix D.

Theorem 3. Suppose F = unif [0, 1]. Let y , min{φ−1
S (1), c}4. Then the mechanism

which is best of APX(2, 1) and APX(1, 1−y
2 ) in terms of revenue is 3-approximation to

optimal revenue in expectation.

Corollary 5. The best affine fee-setting mechanism is at least a 3-approximation to
optimal revenue expectation when F = unif [0, 1].

Proof. The best affine fee-setting mechanism has expected revenue at least as large as
both APX(2, 1) and APX(1, 1−y

2 ), and hence is a 3−approximation to the maximum
intermediary’s revenue.

4.3 Approximations for MHR distributions

In this section, we investigate the question of approximating surplus and revenue when
neither buyer’s virtual value nor seller’s virtual cost is affine, but instead we have some
proper distributional assumptions on the buyer and seller distributions. We look at the

4 We set φ−1
S (1) = +∞ when φS(1) = 1 doesn’t have a solution.
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setting that the difference between the values of the seller and the buyer follows MHR
distribution, which indicates that the surplus and revenue of an imaginary bidder with
value v−c are in constant approximation to each other. Moreover, we assume v is coming
from a MHR distribution and hence surplus approximation and revenue approximation
are equivalent for this bidder. It is important to mention that many distributions in
real economic exchange settings satisfy the following properties under independence
assumption of seller and buyer (like uniform, normal, exponential, and etc.). Now, under
these assumptions we get constant approximation ratio to both surplus and revenue in
expectation with a constant fee schedule. Formally we have the following theorem.

Theorem 4. Suppose buyer’s value v is MHR, and random variable v− c is also MHR.
Then a constant fee-schedule mechanism w(P ) = ηv−c is e2−approximation to optimal
surplus, and hence e2−approximation to optimal revenue in expectation, where ηv−c is
monopoly price of random variable v − c.

Proof. Let P (c) be the BNE strategy of seller. We know random variable v− c is MHR,
hence due to Lemma 4.18 in [5], monopoly revenue of v − c is an e−approximation to
maximum surplus of v − c in expectation. In other words,

Rv−c
η = ηv−cPr{v − c ≥ ηv−c} ≥ 1

e
E{(v − c)+} =

1

e
E{OPT-Surplus}.

Moreover, the expected revenue of fee-setting mechanism w(P ) is equal to APX-Rev =
ηv−cPr{v ≥ P (c)}. We claim E{APX-Rev} ≥ 1

eRηv−c
, which implies the desired approx-

imation bounds. In other words,

E{APX-Rev} ≥ 1

e
Rηv−c

≥ 1

e2
E{OPT-Surplus} ≥ 1

e2
E{OPT-Rev}.

To prove the claim, it is enough to show Pr{v ≥ P (c)} ≥ 1
ePr{v − c ≥ ηv−c}. Note that

from Corollary 2 we know φB(P ) = c+ ηv−c. Hence, conditioned on a fixed c we have

Pr{v − c ≥ ηv−c|c} = Pr{v ≥ c+ ηv−c|c} = 1− F (φB(P )) = e−HB(φB(P )) (1)

Now, note that HB(x) is convex (as v is MHR), so ∀x : HB(x) ≥ HB(P )+hB(P )(x−P ).
Let x = φB(P ), and hence

HB(φB(P )) ≥ HB(P ) + hB(P )(φB(P )− P ) = HB(P )− 1, (2)

where the last equality is true because φB(P ) = P − 1−F (P )
f(P ) = P − 1

hB(P ) . Combining

(1) and (2) we have

Pr{v − c ≥ ηv−c|c} ≤ ee−HB(P ) = e(1− F (P )) = ePr{v ≥ P |c}. (3)

By taking expectation from both sides of (3) with respect to c we prove what we claimed,
which completes the proof of theorem. ⊓⊔

5 Inapproximability results

In this section, we give two inapproximability results. The first one shows that the
proper fee schedules eBay and Amazon are currently using are not revenue-efficient, in
the sense that for unif[0, 1] buyer distribution no proper fee schedule can get constant
approximation to the optimal revenue for the worst case seller distribution. Meanwhile,
as we showed before, there is an improper fee-setting mechanism that always gets 4-
approximation to the optimal revenue. The second result shows that for unif[0, 1] buyer
distribution, APX(α, β) gives seller prior independent constant approximation to the
maximum surplus for worst-case seller distribution if and only if α− β = 1 and α 6= 1.
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5.1 Inapproximability result for proper fee schedule

First we investigate the question of how good proper fee schedule works. We define a
proper fee schedule as the following.

Definition 5. A proper fee schedule is an affine fee schedule with parameters α and β
such that 0 ≤ α ≤ 1 and β ≥ 0.

Then we give definitions on the approximability of proper fee schedule.

Definition 6. Proper fee schedule revenue gap RGF,G under buyer distribution F , and
seller distribution G is the ratio of the optimal revenue to the approximation revenue
using the best proper fee schedule.

Definition 7. Proper fee schedule surplus gap SGF,G under buyer distribution F , and
seller distribution G is the ratio of the maximum surplus to the approximation revenue
using the best proper fee schedule.

As a direct consequence of Corollary 4, we can say optimal revenue is 8−approximation
to optimal surplus in expectation. Hence, for the special case of unif[0,1] we have,

Corollary 6. If F is uniform distribution on [0, 1], then for any seller distribution G,
RGF,G ≥ 1

8SGF,G.

We now show the following theorem (proved in Appendix E), which shows that
RGF,G could be arbitrarily large even if the buyer distribution is as simple as the uni-
form [0, 1] distribution. At the same time, APX(2, 1) is 4-approximation to the optimal
revenue, which means proper fee schedule can be arbitrarily worse than APX(2, 1).

Theorem 5. When F is uniform distribution on [0, 1], for every constant d, there exists
a regular seller distribution G with RGF,G ≥ d.

Proof Sketch. Based on Corollary 6, it suffices to show that for every constant d, there
exists a regular seller distribution G with SGF,G ≥ d. Assume F is uniform distribution
on [0, 1]. Consider the following family of distributions with parameter δ (as in Figure2),

defined on the interval
[

0, 1−
√
δ
]

,

gδ(x) =
2δ

(1 − δ)(1− x)3
, Gδ(x) =

δ

1− δ

(

1

(1 − x)2
− 1

)

, x ∈
[

0, 1−
√
δ
]

. (4)

the rest of the proof shows that for any d > 0, ∃δ such that RGF,G ≥ d ⊓⊔

5.2 Inapproximability result for prior-independent approximation

For the setting of seller prior-independent, one might still expect the existence of other
constant approximations. However, we show our mechanism is the unique fee-setting
mechanism that can get constant seller prior-independent approximations to surplus.
More formally, we show that in the seller prior-independent setting when buyer’s value is
drawn from uniform [0, 1] distribution, w(P ) = (1−α)P+β gives constant approximation
to the surplus if and only if α− β = 1. The proof is provided in Appendix E.

Theorem 6. If the buyer’s distribution is uniform [0, 1], w(x) = (1−α)x+ β, where α
and β are parameters independent form the seller distribution, then the revenue obtained
using w is a constant approximation to the surplus for every possible seller’s distribution
if and only if α − β = 1 and α 6= 1. Moreover, when α = 2, β = 1, it achieves the best
approximation ratio 8.
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Fig. 2. Family of worst-case seller distributions used in Theorem 5

6 Extension to multi-buyers case

Some of our results can extend to multi-buyers case, when the buyers are regular and
i.i.d. In fact, if there are n buyers with regular i.i.d. values v1, v2, . . . , vn drawn from
distribution F , one can replace the pool of buyers with one effective buyer v = max

i
vi

and still get the same revenue in expectation for any fee-setting mechanisms and optimal
Myerson mechanism (because all buyers have the same non-decreasing virtual value
function), and also the same surplus in expectation for VCG mechanism. Now, using
the following lemma and the above reduction we can extend Theorem 4 to multi-buyers
case, whose proof is found in Appendix F.

Lemma 3. Suppose v1, v2, . . . , vn are i.i.d. random variables drawn from MHR distri-
bution F . Then v = max

i
vi is also MHR.

Now, by combining Lemma 3 and Theorem 4 we have the following direct corollary.

Corollary 7 (Multi-buyers setting). Suppose F is a MHR distribution and there are
n i.i.d. buyers whose values are drawn from F . Seller’s cost c is drawn from G and is
independent from all buyers. Moreover, assume the random variable max

i
vi− c is MHR.

Then the revenue of constant fee-setting mechanism w(P ) = ηmax
i

vi−c, where ηmax
i

vi−c

is the monopoly price for the distribution of max
i

vi− c, is e2−approximation to optimal

surplus and revenue in expectation.
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A Basics of mechanism design for exchange

In this section, we provide details of solution concepts and definitions used in this paper.
The provided details are following the normal trend of mechanism design literature, but
they have been adapted for the exchange setting.

Similar to the definition of allocations and payments in single dimensional mecha-
nism design framework, suppose xS ∈ {0, 1} and pS ∈ [0,∞) are seller’s allocation and
payment, and xB ∈ {0, 1} and pB ∈ [0,∞) are buyer’s allocation and payment. In the
context of exchange, feasible allocations are (xB, xS) = {(1, 1), (0, 0)}. We assume both
seller and buyer are risk-neutral, i.e. uS = pS − xsc and uB = xBv − pB are seller’s and
buyer’s utilities under allocations x = (xB, xS) and payments p = (pB, pS). We start by
defining an exchange mechanism when we have one seller and one buyer as follows.
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Definition 8. An exchange mechanism for 1-seller, 1-buyer is a tuple M = (AS ×
AB,x(.),p(.)), where x = (xS(.), xB(.)), and p = (pS(.), pB(.)). AS and AB are set
of mechanism actions of seller and buyer respectively, xS : AB × AS → {0, 1} and
xB : AB × AS → {0, 1} are seller’s allocation and buyer’s allocation respectively, and
pS : AS → [0,∞) and pB : AB → [0,∞) are seller’s payment and buyer’s pay-
ment respectively. Moreover, mechanism M and strategy profile (bB(.), bS(.)) where bB :
[0, v̄) → AB, bS : [0, c̄) → AS implement allocation rules xS(c, v) , xS(bS(c), bB(v)),
xB(c, v) , xB(bS(c), bB(v)), and payment rules pS(v, c) , pS(bS(c), bB(v)), pB(v, c) ,

pB(bS(c), bB(v)).

Definition 9. Suppose we have an exchange mechanism M and a strategy profile (bS , bB)
that implement allocation/payment rules (xS(v, c), xB(v, c)) and (pS(v, c), pB(v, c)) re-
spectively. Now, interim allocation rule (or interim payment rule) of an agent (either
seller or buyer) is defined as the expectation of the allocation rule (or payment rule)
of that agent conditioned on her private information (cost if seller, value if buyer). We
denote interim allocation/payment rules by (xS(c), xB(v)) and (pS(c), pB(v)) by a bit of
notation abuse (as allocation/payment rules use the same notation as interim alloca-
tion/payment rules but with different function inputs).

Bayesian mechanism design in general aims to define the rules of a game of incomplete
information, a.k.a. the mechanism, played by the agents in the environment. Mechanism
designer hopes that a solution of this game has desirable properties, in particular good
objective functions such as revenue of the mechanism or surplus of the agents. To analyze
the solution of the game, we need to look at the correct solution concept applicable to
our application. To do so, we first formalize the game which is played by seller and buyer,
and then we talk about solution concepts we use in this paper. As it can be seen from the
above definition, a strategy for an agent (buyer or seller) is a mapping from its type space
(i.e. value space of the buyer or cost space of the seller) to its corresponding mechanism’s
action space (AS for seller or AB for buyer). We now define a direct revelation exchange
mechanism.

Definition 10. A direct revelation exchange mechanism is a single-round, sealed bid
exchange mechanism which has action spaces equal to the corresponding type spaces
(i.e., the seller bids its cost for the item under trade and the buyer bids its value for that
item).

We now can define a Bayes-Nash Equilibrium strategy profile of an exchange mechanism
as follows.

Definition 11. A Bayes-Nash Equilibrium for an exchange mechanism M = (AS ×
AB,x(.),p(.)) under common prior F × G is a strategy profile (bB(.), bS(.)) where bB :
[0, v̄) → AB, bS : [0, c̄) → AS , and

− ∀v ∈ [0, v̄), ∀ b′B :

Ec{uB[xB(bB(v), bS(c)), pB(bB(v), bS(c))]} ≥ Ec{uB[xB(b
′
B(v), bS(c)), pB(b

′
B(v), bS(c))]}

− ∀c ∈ [0, c̄), ∀ b′S :

Ev{uS [xS(bB(v), bS(c)), pS(bB(v), bS(c))]} ≥ Ev{uS [xS(bB(v), b
′
S(c)), pS(bB(v), b

′
S(c))]}

Similar to the definition of BNE, we adapt the solution concepts of Bayesian Incentive
Compatibility (BIC), Dominant Strategy Incentive Compatibility (DSIC), Interim Indi-
vidual Rationality (Interim IR), and Ex-post Individual Rationality (Ex-post IR) to the
setting of exchange as follows.
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Definition 12. A direct revelation exchange mechanism M is BIC if truthful bidding
(i.e. seller bids her cost, buyer bids her value) is a BNE.

Definition 13. An exchange mechanism M is Interim IR if neither buyer nor seller
get a negative revenue in expectation at the interim stage of the game, i.e. when they
know their private types.

Definition 14. An exchange mechanism M is Ex-post IR if neither buyer nor seller
get a negative revenue at the ex-post stage of the game, i.e. when all the private types
are revealed to all the players.

BelowWe look at the intermediary problem as a single dimensional mechanism design
framework, and characterize the optimal Myerson’s mechanism for single item exchange
problem. We implement this optimal revenue scheme using a more intuitive indirect
mechanism in Section 3.1. This second indirect mechanism will be the base-line of all of
our proposed simple mechanisms in this paper.

Theorem 7 (Myerson’s mechanism for exchange). Suppose both seller and buyer
are regular. Then the following direct BIC and Interim IR mechanism5, which is maxi-
mizing virtual surplus (, xBφB − xSφS), is revenue optimal in expectation.

– Solicit seller’s and buyer’s bids for their cost and value respectively. Let these bids
be (bS , bB).

– If φB(bB) ≥ φS(bS) the trade happens, o.w. no item will be transferred.

– If trade happens, then charge the buyer its critical price, i.e. τB = φ−1
B (φS(bS)), and

give the seller its critical price, i.e. τS = φ−1
S (φB(bB)). Otherwise, nobody will be

charged.

Other than the objective of revenue, another important benchmark in mechanism design
is surplus. Vickrey-Clarke-Groves (VCG) mechanism maximizes the surplus and satisfies
the strongest incentive compatibility and individual rationality solution concepts. We
adapt VCG mechanism to the setting of exchange as follows.

Theorem 8. The following DSIC and ex-post IR mechanism is maximizing the surplus:

– Solicit seller’s and buyer’s bids for their cost and value respectively. Let these bids
be (bS , bB).

– If bB ≥ bS the trade happens, o.w. no item will be transferred.

– If trade happens, then pay the seller the amount of bB and charge the buyer bS .

Finally, we need to define the notion of Prior-Independence with respect to seller
market or buyer market for exchange mechanisms.

Definition 15. An exchange mechanism M is known to be seller prior-independent with
respect to the seller if no seller distributional information is needed by the mechanism.

5 To be more precise, this mechanism is also Dominant Strategy Incentive Compatible (DSIC)
and Ex-post individual rational under no-positive transfer assumption.



18 Simple and Near-Optimal Mechanisms For Market Intermediation

B Implantation of Myerson’s optimal by fee-setting

One important question related to designing fee-setting mechanisms is whether they can
be optimal or not. The following theorem, proved first in [8], provides an answer to this
question. It states with a proper choice of function w(P ) one can design a fee-setting
mechanism that extracts the same revenue in expectation as in Myerson’s optimal mech-
anism. We provide a simple proof of this result using Revenue Equivalence theorem [10].

Theorem 9. [8] Consider an exchange setting with regular buyer/seller. Define P(c) ,
φ−1
B (φS(c)). Consider a fee-setting exchange mechanism with fee schedule w(P ) = P −

Ev{P−1(v)|v ≥ P}. Then:

– P (c) = P(c) and b(v) = v is a BNE of this mechanism.
– The interim allocation/payment rules are equal to those of Myerson’s optimal mech-

anism.

Proof. Suppose seller plays p(c) = P(c) = φ−1
B (φS(c)) and buyer plays b(v) = v. Now,

let (xS(v, c), xB(v, c)) be the interim allocation rule and (pS(v, c), pB(v, c)) the interim
payment rule of this mechanism under this strategy profile. Moreover, let (xM

S (v, c), xM
B (v, c))

and (pS(v, c), pB(v, c)) be the interim allocation rule and interim payment rule of Myer-
son’s optimal mechanism respectively (Note that we know Myerson’s is DSIC). In this
mechanism, trade happens when v ≥ φ−1

B (φS(c)) which is equivalent to φB(v) ≥ φS(c).
So both of our mechanism and Myerson’s optimal mechanism have the same allocation
rule for both buyer and seller, i.e. xB = xM

B = xS = xM
S = 1{φB(v) ≥ φS(c)}. As

in the Myerson’s mechanism the critical price of the buyer is τB = φ−1
B (φS(c)) and we

charge the buyer by P(c) if trade happens, the payment rule of buyers are the same
in both mechanism. For the interim payment rule of the seller in our mechanism we
have pS(c) = Ev{(p(c)− w(p(c))) 1{v ≥ p(c)}} = (p(c) − w(p(c)))(1 − F (p(c)). In the
Myerson’s mechanism, we have pMS (c) = Ev{τS(v)1{c ≤ τS(v)}} = Ev{P−1(v)|v ≥
p(c)}Prv{v ≥ p(c)} = (p(c) − w(p(c))(1 − F (p(c))) = pS(c). Hence both mechanisms
have the same interim allocation/payment rules. As Myerson’s mechanism is BIC, we
conclude that p(c) = P(c) and b(v) = v are also BNE of our mechanism due to revenue
equivalence theorem [10].

Corollary 8. The indirect fee-setting exchange mechanism with fee schedule w(P ) =
Ev{P−1(v)|v ≥ P} extracts the maximum revenue in expectation under BNE strategy
profile (P(c), v) for seller and buyer.

For the special case when the seller’s virtual cost is affine, there is an interesting
result due to Loertscher and Niedermayer [9] which shows the fee-setting mechanism
that implements the optimal Myerson is also affine. More formally, we have the following
theorem (modified a bit) due to Loertscher and Niedermayer [9].

Theorem 10. [9] Suppose the buyer is buyer-regular. Then the following are equivalent
statements:

– Cost of the seller is drawn from a reverse-generalized Pareto distribution with pa-
rameters µ, λ and ξ.

– An affine fee mechanism, i.e. with fee schedule w(P ) = (1−α)P +β where α = 1
1+ξ

and β = −
1
λ
+ξµ

1+ξ , is intermediary optimal for all buyer distributions.
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Remark 1. In principle, one can run the dual of a fee-setting mechanism by swapping
the roles of buyer and seller: mechanism asks the buyer for a price P and post the
price for the seller. If seller is willing to sell the item with price P , intermediary takes
w(P ) as its share and charges the buyer by w(P ) + P . Although guarantee bounds
for these mechanisms are equivalent to those of ordinary fee-settings, these fee-setting
mechanisms are often not used by online exchange platforms in reality, such as Amazon
or eBay. Hence, they are out of focus of this paper.

C Details of the proof of Theorem 2

Proof. We showed the following relations while sketching the proof of Theorem 2 in
Section 4.

E{Rev-APX|c} =
w(P )

α
α−1

β
1

α−1

(5)

E{OPT-Rev|c} ≤ αE {w(v)1{v ≥ φB(P )}|c} (6)

E{OPT-Surplus|c} = E{w(v)1{v ≥ φB(φB(P ))}|c} (7)

Now, we find equivalent expressions for upper-bounds in (5) and (6) as follows.

αE {w(v)1{v ≥ φB(P )}|c} = α

∫

t≥φB(P )

(1 − F (t))dt = α

∫

t≥φB(P )

(

w(t)

β

)
1

α−1

dt

=
1

αβ
1

α−1

w(φB(P ))
α

α−1 = α
1

α−1
w(P )

α
α−1

β
1

α−1

, (8)

where in the last equality we use the fact that w(φB(P )) = αw(P ), due to property (a)
in Lemma 2. Also, we have

αE {w(v)1{v ≥ φB(φB(P ))|c} = α

∫

t≥φB(φB(P ))

(1− F (t))dt = α

∫

t≥φB(φB(P ))

(

w(t)

β

)
1

α−1

dt

=
1

αβ
1

α−1

w(φB (φB(P )))
α

α−1 = α
α+1
α−1

w(P )
α

α−1

β
1

α−1

, (9)

where in the last equality we use the fact that w(φB(φB(P ))) = α2w(P ), due to property
(a) in Lemma 2. Comparing the above upper-bounds on optimal revenue and surplus
with the revenue of the affine fee-setting mechanism given in (5) completes the proof of
the desired approximation factors. ⊓⊔
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D Proof of Theorem 3

Proof. For uniform [0, 1] distribution, F (x) = x, f(x) = 1, φ(x) = 2x− 1. So α = 2, β =
1, P (c) = c+3

4 . We first derive an upperbound on OPT. We have

OPT =

∫ y

c=0

(

∫ 1

0.5+0.5φS(c)

(2v − 1− φS(c))dv

)

g(c)dc

=

∫ y

c=0

(

1− (0.5 + 0.5φS(c))
2 − 0.5(1 + φS(c))(0.5 − 0.5φS(c))

)

g(c)dc

=
1

4

∫ y

c=0

(

1− φS(c)
)2

g(c)dc =
1

4

∫ y

c=0

(

1− c− G(c)

g(c)

)2

g(c)dc

=
1

4

∫ y

c=0

(

1 + c2 +
G2(c)

g2(c)
− 2c− 2

G(c)

g(c)
+ 2c

G(c)

g(c)

)

g(c)dc

=
1

4

(

G(y) + y2G(y)− 2

∫ y

c=0

cG(c)dc− 2yG(y) + 2

∫ y

c=0

G(c)dc− 2

∫ y

c=0

cG(c)dc + 2

∫ y

c=0

G(c)dc

)

+
1

4

∫ y

c=0

(

G(c)

g(c)

)2

g(c)dc =
(1 − y)2G(y)

4
+

1

4

∫ y

c=0

(

G(c)

g(c)

)

G(c)dc

≤ (1− y)2G(y)

4
+

1

4

∫ y

c=0

(1− c)G(c)dc, (10)

where the last inequality comes from the fact that due to seller regularity, for c ∈
[0, y] : φS(c) ≤ 1 ⇒ G(c)

g(c) ≤ (1− c). Now we have

OPT ≤ (1− y)2G(y)

4
+

1

4

∫ y

c=0

(1− c)G(c)dc

=
(1− y)2G(y)

4
− 1

8
(1− c)2G(c)

∣

∣

c=y

c=0
+

1

8

∫ y

c=0

(1− c)2g(c)dc

=
(1− y)2G(y)

8
+

1

8

∫ y

c=0

(1− c)2g(c)dc. (11)

Let OPT1 ,
(1−y)2G(y)

8 and OPT2 , 1
8

∫ y

c=0
(1− c)

2
g(c). We now show Rev-APX(1, 1−y

2 ) ≥
OPT1 and Rev-APX(2, 1) ≥ OPT2

2 , and hence conclude the best of these two mecha-
nisms is always a 3-approximation to OPT. To show this, we look at the exact expression
for Rev-APX(α, β).

Rev-APX(α, β) = Ec,v{w(P (c)1{v ≥ P (c)}}

=

∫ α−β

c=0

(

(1− α)(c+ α) + β(1 + α)

2α

)(

α− c− β

2α

)

g(c)dc

=
1

4α2

∫ α−β

c=0

(

(1− α)(c + α) + β(1 + α)
)

(α− c− β) g(c)dc. (12)
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Now, we first find a lower bound for Rev-APX(1, 1−y
2 ). By applying integration by parts

and using the fact that G(.) is monotone non-decreasing we have

Rev-APX(1,
1− y

2
) =

1

4

∫
1+y
2

c=0

(1− y)

(

1 + y

2
− c

)

g(c)dc

=
1− y

4

((

1 + y

2
− c

)

G(c)
∣

∣

1+y
2

0

)

+
1− y

4

∫
1+y
2

c=0

G(c)dc

=
1− y

4

∫
1+y
2

c=0

G(c)dc ≥ 1− y

4

∫
1+y
2

c=y

G(c)dc ≥ 1− y

4

∫
1+y
2

c=y

G(y)dc

=
(1− y)2G(y)

8
= OPT1. (13)

Note that in the above calculation, y = min{φ−1
S (1), c} ≤ 1, as φS(1) ≥ 1, and hence

1+y
2 ≥ y. Based on the previous calculation, we know Rev-APX(2, 1) ≥ 1

16

∫ y

c=0(1 −
c)2g(c)dc = OPT2

2 , which completes the proof.

E Proof of inapproximibility results

Proof (Proof of Theorem 5). Consider the family of seller distributions proposed in (4).

First of all, for this family of distributions we have φS(c) = c+ Gδ(c)
gδ(c)

= c+
1

(1−x)2
−1

2
(1−x)3

=

1+x
2 − (1−x)3

2 is a non-decreasing function and hence seller is regular. Next step to prove
the theorem is coming up with an expression for maximum social surplus in terms of
parameter δ. We have,

Max-Surplusδ =
1

2
Ec

{

(1− c)2
}

=
δ

1− δ

∫ 1−
√
δ

0

(1 − c)2

(1 − c)3
dc =

δ

1− δ
ln

1√
δ
=

δ

2(1− δ)
ln

1

δ
.

Let α− β = 1− ǫ. Define ξ , max(
√
δ, ǫ). Based on (12), for every possible pair (α, β)

under the distribution Gδ, we have,

APXδ(α, α − 1 + ǫ) =
1

4α2
Ec

{(

(α− 1)(1− c) + ǫ(α+ 1)
)

(1− c− ǫ)+

}

(14)

=
1

4α2

∫ min(1−
√
δ,1−ǫ)

0

(

(α− 1)(1− c) + ǫ(α+ 1)
)

(1− c− ǫ) gδ(c)dc

=
α− 1

4α2

∫ 1−ξ

0

(1 − c)2gδ(c)dc+
ǫ

2α2

∫ 1−ξ

0

(1− c)gδ(c)dc−
ǫ2(α+ 1)

4α2

∫ 1−ξ

0

gδ(c)dc.

By plugging gδ(c) =
2δ

(1−δ)(1−c)3 for c ∈ [0, 1− ξ] and computing integrals we have

APXδ(α, α− 1 + ǫ) =
(α− 1)δ

2α2(1− δ)
ln

1

ξ
+

δǫ

α2(1− δ)

(1− ξ)

ξ
− ǫ2(α + 1)δ

4α2(1− δ)

(1 − ξ2)

ξ2
. (15)

Now we have the expressions for both Surplus and APXδ(α, β). Below we want to
show, if δ is small enough, SGF,G under Gδ can be arbitrarily large, which means for
every constant d, we can find a Gδ with SGF,G ≥ d. In order to prove this, for fixed δ
we discuss the possible values of (α, ǫ), and then compute the ratio of APXδ(α, β) to
Surplus. If the ratio goes to zero as δ goes to zero, the theorem is proved.

We now consider two cases:
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– Case 1 (ǫ ≤
√
δ): In this case we have ξ =

√
δ, and hence

APXδ(α, α − 1 + ǫ) =
(α− 1)δ

4α2(1 − δ)
ln

1

δ
+∆δ(ǫ), (16)

where ∆δ(ǫ) ,

√
δ(1−

√
δ)

α2(1−δ) ǫ − (α+1)
4α2 ǫ2. This function is quadratic with respect to

its argument and its maximum over the interval [0,
√
δ] happens at either ǫ∗ =

2
√
δ(1−

√
δ)

(α+1)(1−δ) or
√
δ. Now, we develop an upperbound on the ratio of APXδ(α, α−1+ǫ)

and Max-Surplus when ǫ ≤
√
δ as follows:

∀ǫ ∈ [0,
√
δ] :

APXδ(α, α− 1 + ǫ)

Max-Surplusδ
≤

√
δ(1−

√
δ)

α2(1−δ) ǫ

δ
2(1−δ) ln

1
δ

≤ 2(1−
√
δ)

α2 ln(1/δ)
, (17)

where the first inequality comes from the fact that α ≤ 1( hence (α−1)δ
4α2(1−δ) ln

1
δ ≤ 0),

and second inequality is due to ǫ ≤
√
δ. Now, we have two cases:

• If α ≥ 2 1−
√
δ

1−δ − 1, then ǫ∗ ≤
√
δ and hence the maximum of ∆(ǫ) happens at

ǫ = ǫ∗. In this case, using inequality (17) we have

∀ǫ ∈ [0,
√
δ] :

APXδ(α, α − 1 + ǫ)

Max-Surplusδ
≤ 2(1−

√
δ)

(

2 1−
√
δ

1−δ − 1
)2

ln(1/δ)

δ→0−→ 0, (18)

• If α < 2 1−
√
δ

1−δ − 1, then ǫ∗ >
√
δ and hence the maximum of ∆(ǫ) happens at

ǫ =
√
δ. In this case we have

∀ǫ ∈ [0,
√
δ] :

APXδ(α, α− 1 + ǫ)

Max-Surplusδ
≤ (α− 1)

2α2
+

∆(
√
δ)

δ
2(1−δ) ln

1
δ

=
(α− 1)

2α2
+

2(1−
√
δ)

α2 ln 1
δ

− (α+ 1)(1− δ)

2α2 ln 1
δ

. (19)

Suppose α∗(δ) be the α that maximizes the upperbound on revenue in (19). If

∀C > 0, ∃δC s.t. if δ ≤ δC then α∗(δ) ≥
(

C
ln 1

δ

)1/2

, then we would have

∀C > 0, ∀ǫ ∈
[

0,
√
δ
]

, δ ∈ [0, δC ] :
APXδ(α, α− 1 + ǫ)

Max-Surplusδ
≤ 2(1−

√
δ)

α∗(δ)2 ln 1
δ

≤ 2

C
.

(20)

As the above uppderbound holds for all C > 0, so the ratio goes to zero as δ
goes to zero.

Now, suppose ∃C0 s.t. ∀δ0, ∃δ < δ0 s.t. α∗(δ) <
(

C0

ln 1
δ

)1/2

. From (19) we have:

∀ǫ ∈
[

0,
√
δ
]

:
APXδ(α, α− 1 + ǫ)

Max-Surplusδ
≤ (α∗(δ)− 1)

2α∗(δ)2
+

2(1−
√
δ)

α∗(δ)2 ln 1
δ

≤ 1

2α∗(δ)2

(

4(1−
√
δ)

ln 1
δ

+

(

C0

ln 1
δ

)1/2

− 1

)

. (21)
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We can find arbitrarily small δ such that α∗(δ) <
(

C0

ln 1
δ

)1/2

, in which case this

upperbound is a negative number. Thus, we know the ratio can be arbitrarily
small.

– Case 2 (ǫ >
√
δ): In this case we have ξ = ǫ, and hence

APXδ(α, α− 1 + ǫ) =
δ

(1− δ)4α2
γ(ǫ, α), (22)

where γ(ǫ, α) = 2(α − 1) ln 1
ǫ + 4(1 − ǫ) − (α + 1)(1 − ǫ2). We now investigate the

choice of ǫ that maximizes γ for a fixed α. We have

∂γ

∂ǫ
=

2(1− α)

ǫ
− 4 + 2(α+ 1)ǫ =

2

ǫ
(1− α− 2ǫ+ (α+ 1)ǫ2). (23)

Roots of ∂γ
∂ǫ , which are candidates for local extremum, are ǫ1 = 1 and ǫ2 = 1−α

1+α . We
know if ǫ ≥ 1, then the mechanism cannot get any revenue as the interval [1− ǫ, 0]
is outside of the support of the seller’s distribution. So, maximum of γ(α, ǫ) for any
fixed α over ǫ ∈ [

√
δ,∞] either happens at ǫ =

√
δ or ǫ = ǫ2. If maximum happens

at ǫ =
√
δ then the analysis will be the same as Case 1 and we are done. Otherwise,

assume maximum happens at ǫ = 1−α
1+α . We have

APXδ(α, α − 1 + ǫ)|ǫ= 1−α
1+α

Max-Surplusδ

=

δ
(1−δ)4α2 γ(α,

1−α
1+α )

δ
2(1−δ) ln

1
δ

=
1

2α2 ln 1
δ

(

2(α− 1) ln

(

1 + α

1− α

)

+
4α

α+ 1

)

≤ 1

α2 ln 1
δ

(

(α− 1) ln

(

1 +
2α

1− α

)

+ 2α

)

≤ 2α+ (α− 1) ln(1 + 2α)

α2 ln 1
δ

. (24)

Suppose α∗(δ) be the α that maximizes the upperbound on revenue in (24) for a par-
ticular δ. If ∀C > 0, ∃δC s.t. if δ ∈ [0, δC ] then α∗(δ) ≥ C

ln 1
δ

, using (24) we would

have

APXδ(α, α− 1 + ǫ)|ǫ= 1−α
1+α

Max-Surplusδ
≤ 1

α∗(δ) ln 1
δ

≤ 1

C
. (25)

Since C is arbitrary, we know the ratio goes to zero as δ goes to zero.
Now suppose ∃C0 s.t. ∀δ0, ∃δ < δ0 such that α∗(δ) < C0

ln 1
δ

. We now have

APXδ(α, α− 1 + ǫ)|ǫ= 1−α
1+α

Max-Surplusδ
≤ 2α∗(δ) + (α∗(δ)− 1) ln(1 + 2α∗(δ))

α∗(δ)2 ln 1
δ

(26)

δ→0≈ 2α∗(δ) + (α∗(δ)− 1)(2α∗(δ)− 2α∗(δ)2)

α∗(δ)2 ln 1
δ

=
4

ln 1
δ

δ→0→ 0. (27)

The third expression is obtained using Taylor expansion for ln(1 + x) at x = 0. When
δ goes to zero, we can always find a corresponding α∗(δ) going to zero ( ∀δ0, ∃δ <
δ0, α

∗(δ) < C0

ln 1
δ

). So we may ignore the o(α∗(δ)2). ⊓⊔



24 Simple and Near-Optimal Mechanisms For Market Intermediation

Proof (Proof of Theorem 6). The “if” direction has been proved in Corollary 4. The
proof of “only if” direction is as follows. First, notice that when buyer’s distribution is
uniform [0, 1], then φB(v) = 2v − 1, P (c) = c+β

2α + 1
2 . Assume that 1− ǫ = α− β. Since

P (c) ≤ 1, we have 1−ǫ = α−β ≥ c. First we compute Max-Surplus, and then Rev-APX,

Max-Surplus =

∫ 1

0

(
∫ 1

c

(1− v)dv

)

g(c)dc =

∫ 1

0

(1 − c)2

2
dG(c) =

∫ 1

0

G(c)(1 − c)dc,

Rev-APX(α, β) = Ev,c

{

w(P (c))1{v ≥ P (c)}
}

= Ec

{(

(1 − α)P (c) + β
)(

1− F (P (c))
)}

= Ec

{(

(1− α)

(

c+ β

2α
+

β

2

)

+ β

)

(

1− F (P (c))
)

}

= Ec

{(

(1− α)(c+ α) + (1 + α)(α − 1 + ǫ)

2α

)(

α− c− β

2α

)}

=
1

4α2

∫ 1−ǫ

0

(

(1− α)(c− 1) + (1 + α)ǫ
)

(1− ǫ− c)g(c)dc

=
1

4α2

(

(1− α)(c − 1) + (1 + α)ǫ
)

(1− ǫ− c)G(c)|1−ǫ
0 −

∫ 1−ǫ

0

G(c)
(

(1− α)(1 − ǫ− c)− (1− α)(c − 1)− (1 + α)ǫ
)

dc

=
−1

4α2

∫ 1−ǫ

0

G(c)
(

(1 − α)(1 − ǫ− c)− (1 − α)(c− 1)− (1 + α)ǫ)
)

dc

=
1

2α2

∫ 1−ǫ

0

G(c)
(

(α − 1)(1− c) + ǫ
)

dc

=
α− 1

2α2

∫ 1−ǫ

0

G(c)(1 − c)dc+
ǫ

2α2

∫ 1−ǫ

0

G(c)dc.

When ǫ = 0, which means α− β = 1, Rev-APX(α, β) is 2α2

α−1 approximation to Surplus.
When α = 2, it gets the maximum approximation ratio of 8. If ǫ > 0, then we may con-
sider a distribution G which is supported at (1−ǫ, 1], then we know Rev-APX(α, β) = 0,
while Max-Surplus is positive. So it could not approximate Max-Surplus in this distribu-
tion. If ǫ < 0, we consider two cases. If α ≥ 1, then we consider a distribution G which is

uniform on [1 + ǫ/2, 1], so we know
∫ 1−ǫ/2

0 G(c)(1− c)dc ≤ 0, so
∫ 1−ǫ

0 G(c)(1− c)dc ≤ 0,
which means Rev-APX(α, β) ≤ 0, but maximum surplus is positive. If α < 1, then since
α− β = 1− ǫ > 1, so β < 0. Consider the distribution G which is uniform on [0,−β/2],
then we know w(P (c)) = (1 − α)( c+β

2α + β
2 ) + β < 0, so the intermediary could extract

no revenue in this case. ⊓⊔

F Proof of Lemma 3

Proof. Let G(x) be the CDF of random variable v = max vi. We have G(x) = (F (x))n

and g(x) = nf(x)(F (x))(n−1). Let h̃ be the hazard rate of v, hence

h̃(x) =
g(x)

1−G(x)
= n

nf(x)(F (x))(n−1)

1− (F (x))n
= n

f(x)

1− F (x)

1
∑n−1

i=0 (1/F (x))i
(28)

which is non-decreasing as h(x) = f(x)
1−F (x) is non-decreasing and F (x) is non-decreasing.

⊓⊔
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G Conclusions and open questions

In this paper we studied the problem of simple affine fee-setting mechanisms versus op-
timal intermediary mechanisms in the setting of 1-seller 1-buyer exchange. Our result
complements the already existing result on optimality of affine fee-setting mechanisms
when seller has an affine virtual cost function. In fact, we showed that under some tech-
nical assumptions, if the buyer has affine virtual value function there exist an affine
fee-setting mechanism that extracts a constant approximation of optimal intermediary
profit. Moreover, we showed if buyer’s value is MHR and the difference between buyer’s
value and seller’s cost is MHR, then we get constant approximation to both surplus and
revenue by a constant fee-schedule mechanism. Next, we provided inapproximability re-
sults by showing that proper affine fee-setting mechanisms (e.g. those used in eBay and
Amazon selling plans) are unable to extract a constant fraction of optimal profit in the
worst-case seller distribution. As subsidiary results we also show there exists a constant
gap between maximum surplus and maximum revenue under the aforementioned condi-
tions. Most of the mechanisms that we propose are also prior-independent with respect
to the seller, which signifies the practical implications of our result.

There are many open questions left that might be interesting for future works on
this topic:

– Can we extend the results to the case where there are multiple sellers?
– As has been conjectured in [8], affine fee-setting mechanism seem to get a good

fraction of optimal revenue even under worst-case distributions of both buyer and
seller. Can the proof techniques provided in this paper be used to solve that problem?

– Can we generalize techniques provided in this paper to other exchange environments
such as multi-item environments?
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