Skip to main content

Analysis and Control of a 4-D Novel Hyperchaotic System

  • Chapter
  • First Online:
Book cover Chaos Modeling and Control Systems Design

Part of the book series: Studies in Computational Intelligence ((SCI,volume 581))

Abstract

Hyperchaotic systems are defined as chaotic systems with more than one positive Lyapunov exponent. Combined with one null Lyapunov exponent along the flow and one negative Lyapunov exponent to ensure boundedness of the solution, the minimal dimension for a continuous hyperchaotic system is four. The hyperchaotic systems are known to have important applications in secure communications and cryptosystems. First, this work describes an eleven-term 4-D novel hyperchaotic system with four quadratic nonlinearities. The qualitative properties of the novel hyperchaotic system are described in detail. The Lyapunov exponents of the system are obtained as \( L_{1} = 0.7781,L_{2} = 0.2299,L_{3} = 0 \) and \( L_{4} = - 12.5062 \). The maximal Lyapunov exponent of the system (MLE) is \( L_{1} = 0.7781 \). The Lyapunov dimension of the novel hyperchaotic system is obtained as \( D_{L} = 3.0806 \). Next, the work describes an adaptive controller design for the global chaos control of the novel hyperchaotic system. The main result for the adaptive controller design has been proved using Lyapunov stability theory. MATLAB simulations are described in detail for all the main results derived in this work for the eleven-term 4-D novel hyperchaotic system with four quadratic nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arneodo, A., Coullet, P., Tresser, C.: Possible new strange attractors with spiral structure. Common. Math. Phys. 79(4), 573–576 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Banerjee, T., Biswas, D., Sarkar, B.C.: Design of chaotic and hyperchaotic time-delayed electronic circuit. Bonfring Int. J. Power Syst. Integr Circuits 2(4), 13–17 (2012)

    Article  Google Scholar 

  3. Cai, G., Tan, Z.: Chaos synchronization of a new chaotic system via nonlinear control. J. Uncertain Syst. 1(3), 235–240 (2007)

    Google Scholar 

  4. Chen, A., Lu, J., Lü, J., Yu, S.: Generating hyperchaotic Lü attractor via state feedback control. Physica A: Stat. Mech. Appl. 364(C), 103–110 (2006)

    Article  Google Scholar 

  5. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9(7), 1465–1466 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, H.K., Lee, C.I.: Anti-control of chaos in rigid body motion. Chaos, Solitons Fractals 21(4), 957–965 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Das, S., Goswami, D., Chatterjee, S., Mukherjee, S.: Stability and chaos analysis of a novel swarm dynamics with applications to multi-agent systems. Eng. Appl. Artif. Intell. 30, 189–198 (2014)

    Article  Google Scholar 

  8. Elwakil, A.S., Kennedy, M.P.: Inductorless hyperchaos generator. Microelectron. J. 30(8), 739–743 (1999)

    Article  Google Scholar 

  9. Feki, M.: An adaptive chaos synchronization scheme applied to secure communication. Chaos, Solitons Fractals 18(1), 141–148 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gaspard, P.: Microscopic chaos and chemical reactions. Physica A 263(1–4), 315–328 (1999)

    Article  MathSciNet  Google Scholar 

  11. Gibson, W.T., Wilson, W.G.: Individual-based chaos: Extensions of the discrete logistic model. J. Theoreti. Biol. 339, 84–92 (2013)

    Article  MathSciNet  Google Scholar 

  12. Grygiel, K., Szlachetka, P.: Chaos and hyperchaos in coupled Kerr oscillators. Opt. Commun. 177(1–6), 425–431 (2000)

    Article  Google Scholar 

  13. Guégan, D.: Chaos in economics and finance. Annu. Rev. Control 33(1), 89–93 (2009)

    Article  Google Scholar 

  14. Huang, Y., Yang, X.S.: Hyperchaos and bifurcation in a new class of four-dimensional Hopfield neural networks. Neurocomputing 69(13–15), 1787–1795 (2006)

    Article  Google Scholar 

  15. Huang, X., Zhao, Z., Wang, Z., Li, Y.: Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing 94, 13–21 (2012)

    Article  Google Scholar 

  16. Jia, Q.: Hyperchaos generated from the Lorenz chaotic system and its control. Phys. Lett. A 366(3), 217–222 (2007)

    Article  MATH  Google Scholar 

  17. Kaslik, E., Sivasundaram, S.: Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw. 32, 245–256 (2012)

    Article  MATH  Google Scholar 

  18. Kengne, J., Chedjou, J.C., Kenne, G., Kyamakya, K.: Dynamical properties and chaos synchronization of improved Colpitts oscillators. Commun. Nonlinear Sci. Numer. Simul. 17(7), 2914–2923 (2012)

    Article  MathSciNet  Google Scholar 

  19. Khalil, H.K.: Nonlinear Systems. Prentice Hall, New Jersey (2001)

    Google Scholar 

  20. Kyriazis, M.: Applications of chaos theory to the molecular biology of aging. Exp. Gerontol. 26(6), 569–572 (1991)

    Article  Google Scholar 

  21. Li, C., Liao, X., Wong, K.: Lag synchronization of hyperchaos with application to secure communications. Chaos, Solitons Fractals 23(1), 183–193 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Li, C.-L., Xiong, J.-B., Li, W.: A new hyperchaotic system and its generalized synchronization. Optik—Int. J. Light Electron Opt. 125(1), 575–579 (2014)

    Article  MathSciNet  Google Scholar 

  23. Li, D.: A three-scroll chaotic attractor. Phys. Lett. A 372(4), 387–393 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Li, N., Pan, W., Yan, L., Luo, B., Zou, X.: Enhanced chaos synchronization and communication in cascade-coupled semiconductor ring lasers. Commun. Nonlinear Sci. Numer. Simul. 19(6), 1874–1883 (2014)

    Article  Google Scholar 

  25. Li, Q., Yang, X.S., Yang, F.: Hyperchaos in Hopfield-type neural networks. Neurocomputing 67(1–4), 275–280 (2004)

    Google Scholar 

  26. Li, X.: Modified projective synchronization of a new hyperchaotic system via nonlinear control. Commun. Theor. Phys. 52(2), 274–278 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lian, S., Chen, X.: Traceable content protection based on chaos and neural networks. Appl. Soft Comput. 11(7), 4293–4301 (2011)

    Article  Google Scholar 

  28. Liu, C., Liu, T., Liu, L., Liu, K.: A new chaotic attractor. Chaos, Solitions Fractals 22(5), 1031–1038 (2004)

    Article  MATH  Google Scholar 

  29. Lorenz, E.N.: Deterministic periodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  Google Scholar 

  30. Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12(3), 659–661 (2002)

    Article  MATH  Google Scholar 

  31. Mondal, S., Mahanta, C.: Adaptive second order terminal sliding mode controller for robotic manipulators. J. Franklin Inst. 351(4), 2356–2377 (2014)

    Article  MathSciNet  Google Scholar 

  32. Murali, K., Lakshmanan, M.: Secure communication using a compound signal from generalized chaotic systems. Phys. Lett. A 241(6), 303–310 (1998)

    Article  MATH  Google Scholar 

  33. Nehmzow, U., Walker, K.: Quantitative description of robotenvironment interaction using chaos theory. Robot. Auton. Syst. 53(3–4), 177–193 (2005)

    Article  Google Scholar 

  34. Petrov, V., Gaspar, V., Masere, J., Showalter, K.: Controlling chaos in Belousov-Zhabotinsky reaction. Nature 361, 240–243 (1993)

    Article  Google Scholar 

  35. Qi, G., van Wyk, M.A., van Wyk, B.J., Chen, G.: A new hyperchaotic system and its circuit implementation. Chaos, Solitons Fractals 40(5), 2544–2549 (2009)

    Article  Google Scholar 

  36. Qu, Z.: Chaos in the genesis and maintenance of cardiac arrhythmias. Prog. Biophys. Mol. Biol. 105(3), 247–257 (2011)

    Article  Google Scholar 

  37. Rech, P.C.: Chaos and hyperchaos in a Hopfield neural network. Neurocomputing 74(17), 3361–3364 (2011)

    Article  Google Scholar 

  38. Rhouma, R., Belghith, S.: Cryptoanalysis of a chaos based cryptosystem on DSP. Commun. Nonlinear Sci. Numer. Simul. 16(2), 876–884 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  39. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. 57A(5), 397–398 (1976)

    Article  Google Scholar 

  40. Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71(2–3), 155–157 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  41. Sharma, A., Patidar, V., Purohit, G., Sud, K.K.: Effects on the bifurcation and chaos in forced Duffing oscillator due to nonlinear damping. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2254–2269 (2012)

    Article  MathSciNet  Google Scholar 

  42. Shi, J., Zhao, F., Shen, X., Wang, X.: Chaotic operation and chaos control of travelling wave ultrasonic motor. Ultrasonics 53(6), 1112–1123 (2013)

    Article  Google Scholar 

  43. Smaoui, N., Karouma, A., Zribi, M.: Secure communications based on the synchronization of the hyperchaotic Chen and the unified chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 16(8), 3279–3293 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50(2), 647–650 (1994)

    Article  MathSciNet  Google Scholar 

  45. Sprott, J.C.: Competition with evolution in ecology and finance. Phys. Lett. A 325(5–6), 329–333 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  46. Suérez, I.: Mastering chaos in ecology. Ecol. Model. 117(2–3), 305–314 (1999)

    Article  Google Scholar 

  47. Sundarapandian, V.: Adaptive control and synchronization of uncertain Liu-Chen-Liu system. Int. J. Comput. Inf. Syst. 3(2), 1–6 (2011)

    Google Scholar 

  48. Sundarapandian, V.: Output regulation of the Tigan system. Int. J. Comput. Sci. Eng. 3(5), 2127–2135 (2011)

    Google Scholar 

  49. Sundarapandian, V., Pehlivan, I.: Analysis, control, synchronization, and circuit design of a novel chaotic system. Math. Comput. Model. 55(7–8), 1904–1915 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  50. Tigan, G., Opris, D.: Analysis of a 3D chaotic system. Chaos, Solitons Fractals 36, 1315–1319 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  51. Usama, M., Khan, M.K., Alghatbar, K., Lee, C.: Chaos-based secure satellite imagery cryptosystem. Comput. Math. Appl. 60(2), 326–337 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  52. Vaidyanathan, S.: Adaptive control and synchronization of the Shaw chaotic system. Int. J. Found. Comput. Sci. Technol. 1(1), 1–11 (2011)

    Google Scholar 

  53. Vaidyanathan, S.: Adaptive control and synchronization of uncertain Liu-Liu-Liu-Su chaotic system. Int. J. Control Theory Appl. 4(2), 99–109 (2011)

    Google Scholar 

  54. Vaidyanathan, S.: Output regulation of the Sprott-G chaotic system by state feedback control. Int. J. Instrum.Control Syst. 1(1), 20–30 (2011)

    Google Scholar 

  55. Vaidyanathan, S.: Sliding mode control based global chaos control of Liu-Liu-Liu-Su chaotic system. Int. J. Control Theory Appl. 5(1), 15–20 (2012)

    MathSciNet  Google Scholar 

  56. Vaidyanathan, S.: A new six-term 3-D chaotic system with an exponential nonlinearity. Far East J. Math. Sci. 79(1), 135–143 (2013)

    MATH  Google Scholar 

  57. Vaidyanathan, S.: Analysis and adaptive synchronization of two novel chaotic systems with hyperbolic sinusoidal and cosinusoidal nonlinearity and unknown parameters. J. Eng. Sci. Technol. Rev. 6(4), 53–65 (2013)

    MathSciNet  Google Scholar 

  58. Vaidyanathan, S.: A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities. Far East J. Math. Sci. 84(2), 219–226 (2014)

    MATH  MathSciNet  Google Scholar 

  59. Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N.: Experimental investigation on coverage performance of a chaotic autonomousmobile robot. Robot. Auton. Syst. 61(12), 1314–1322 (2013)

    Article  Google Scholar 

  60. Wang, J., Chen, Z.: A novel hyperchaotic system and its complex dynamics. Int. J. Bifurc. Chaos 18(11), 3309–3324 (2008)

    Article  MATH  Google Scholar 

  61. Wang, J., Zhang, T., Che, Y.: Chaos control and synchronization of two neurons exposed to ELF external electric field. Chaos, Solitons Fractals 34(3), 839–850 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  62. Witte, C.L., Witte, M.H.: Chaos and predicting varix hemorrhage. Med. Hypotheses 36(4), 312–317 (1991)

    Article  MathSciNet  Google Scholar 

  63. Wu, X., Wang, H., Lu, H.: Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication. Nonlinear Anal. Real World Appl. 13(3), 1441–1450 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  64. Yassen, M.T.: On hyperchaos synchronization of a hyperchaotic Lü system. Nonlinear Anal. Theory, Methods Appl. 68(11), 3592–3600 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  65. Yassen, M.T.: Synchronization hyperchaos of hyperchaotic systems. Chaos, Solitons Fractals 37(2), 465–475 (2008)

    Article  MathSciNet  Google Scholar 

  66. Yuan, G., Zhang, X., Wang, Z.: Generation and synchronization of feedback-induced chaos in semiconductor ring lasers by injection-locking. Optik—Int. J. Light Electron Opt. 125(8), 1950–1953 (2014)

    Article  Google Scholar 

  67. Yujun, N., Xingyuan, W., Mingjun, W., Huaguang, Z.: A new hyperchaotic system and its circuit implementation. Commun. Nonlinear Sci. Numer. Simul. 15(11), 3518–3524 (2010)

    Article  Google Scholar 

  68. Zaher, A.A., Abu-Rezq, A.: On the design of chaos-based secure communication systems. Commun. Nonlinear Syst. Numer. Simul. 16(9), 3721–3727 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  69. Zhang, Q., Guo, L., Wei, X.: A novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Optik—Int. J. Light Electron Opt. 124(18), 3596–3600 (2013)

    Article  Google Scholar 

  70. Zhou, W., Xu, Y., Lu, H., Pan, L.: On dynamics analysis of a new chaotic attractor. Phys. Lett. A 372(36), 5773–5777 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  71. Zhu, C.: Adaptive synchronization of two novel different hyperchaotic systems with partly uncertain parameters. Appl. Math. Comput. 215(2), 557–561 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  72. Zhu, C., Liu, Y., Guo, Y.: Theoretic and numerical study of a new chaotic system. Intell. Inf. Manag. 2, 104–109 (2010)

    Google Scholar 

  73. Zou, Y.L., Zhu, J., Chen, G., Luo, X.S.: Synchronization of hyperchaotic oscillators via single unidirectional chaotic coupling. Chaos, Solitons Fractals 25(5), 1245–1253 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundarapandian Vaidyanathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vaidyanathan, S., Azar, A.T. (2015). Analysis and Control of a 4-D Novel Hyperchaotic System. In: Azar, A., Vaidyanathan, S. (eds) Chaos Modeling and Control Systems Design. Studies in Computational Intelligence, vol 581. Springer, Cham. https://doi.org/10.1007/978-3-319-13132-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13132-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13131-3

  • Online ISBN: 978-3-319-13132-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics