Skip to main content

Cancer Based Pharmacogenomics Network for Drug Repurposing

  • Conference paper
  • First Online:
Trends and Applications in Knowledge Discovery and Data Mining (PAKDD 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8643))

Included in the following conference series:

Abstract

Pharmacogenomics (PGx) as an emerging field, is poised to change the way we practice medicine and deliver health care by customizing drug therapies on the basis of each patient’s genetic makeup. A large volume of PGx data including information on relationships among drugs, genes, and single nucleotide polymorphisms (SNPs) has been accumulated. Normalized and integrated PGx information could facilitate revelation of hidden relationships among drug treatments, genomic variations, and phenotype traits to better support drug discovery and next generation of treatment. In this study, we constructed a normalized cancer based PGx network (CPN) by integrating cancer orientated PGx information from multiple well known PGx resources including the Pharmacogenomics Knowledge Base (PharmGKB), the FDA Pharmacogenomic Biomarkers in Drug Labeling, and the Catalog of Published Genome-Wide Association Studies. The ultimate goal of the CPN is to provide comprehensive cancer specific PGx information to support oncology related research, including cancer based drug discovery – drug repurposing. We have successfully demonstrated the capability of the CPN for drug repurposing by conducting two case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hewett, M., Oliver, D.E., Rubin, D.L., et al.: PharmGKB: The pharmacogenetics knowledge base. Nucleic Acids Res. 30(1), 163–165 (2002)

    Article  Google Scholar 

  2. Fu, B., Brennan, R., O’Sullivan, D.: A configurable translation-based cross-lingual ontology mapping system to adjust mapping outcomes. Web Semant. Sci. Serv. Agents World Wide Web 15, 15–36 (2012)

    Article  Google Scholar 

  3. Lipson, D., Capelletti, M., Yelensky, R., et al.: Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat. Med. 18(3), 382–384 (2012)

    Article  Google Scholar 

  4. Kreso, A., O’Brien, C.A., van Galen, P., et al.: Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339(6119), 543–548 (2013)

    Article  Google Scholar 

  5. Coulet, A., Smail-Tabbone M., Napoli, A., Devignes, M.D.: Suggested ontology for pharmacogenomics (SO-Pharm): Modular construction and preliminary testing. In: Proceedings of the Wokshop on Knowledge Systems in Bioinformatics, 29 October 2006

    Google Scholar 

  6. Dumontier, M., Villanueva-Rosales, N.: Towards pharmacogenomics knowledge discovery with the semantic web. Briefings Bioinform. 10(2), 153–163 (2009)

    Article  Google Scholar 

  7. McGuinness, D.L., Van Harmelen, F.: OWL web ontology language overview. W3C recommendation, vol. 10, pp. 2004–03 (2004)

    Google Scholar 

  8. Coulet, A., Smaïl-Tabbone, M., Napoli, A., Devignes, M.-D.: Suggested ontology for pharmacogenomics (SO-Pharm): Modular construction and preliminary testing. Paper presented at: On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops2006

    Google Scholar 

  9. FDA Table of Pharmacogenomic Biomarkers in Drug Labeling. http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm. Accessed 14 Jan 2014

  10. Kumar, S.K., Harding, J.: Ontology mapping using description logic and bridging axioms. Comput. Ind. 64, 19–28 (2012)

    Article  Google Scholar 

  11. Frueh, F.W., Amur, S., Mummaneni, P., et al.: Pharmacogenomic biomarker information in drug labels approved by the United States food and drug administration: prevalence of related drug use. Pharmacother. J. Hum. Pharmacol. Drug Therapy 28(8), 992–998 (2008)

    Article  Google Scholar 

  12. Hindorff, L.A., MJEBI, Morales, J., Junkins, H.A., Hall, P.N., Klemm, A.K., Manolio, T.A.: A Catalog of published genome-wide association studies. www.genome.gov/gwastudies. Accessed 14 Jan 2014

  13. National Cancer Institute. http://www.cancer.gov/cancertopics/types/alphalist. Accessed 14 Jan 2014

  14. The Pharmcogenomics Knowledgebase. http://www.pharmgkb.org/. Accessed 14 Jan 2014

  15. Whetzel, P.L., Noy, N.F., Shah, N.H., et al.: BioPortal: Enhanced functionality via new Web services from the National Center for Biomedical Ontology to access and use ontologies in software applications. Nucleic Acids Res. 39(suppl 2), W541–W545 (2011)

    Article  Google Scholar 

  16. National Center for Biomedical Ontology Rest Service. http://data.bioontology.org/documentation. Accessed 14 Jan 2014

  17. Bos, L.: SNOMED-CT: The advanced terminology and coding system for eHealth. Med. Care Compunetics 3 121, 279 (2006)

    Google Scholar 

  18. Nelson, S.J., Zeng, K., Kilbourne, J., Powell, T., Moore, R.: Normalized names for clinical drugs: RxNorm at 6 years. J. Am. Med. Inform. Assoc. 18(4), 441–448 (2011)

    Article  Google Scholar 

  19. Gardiner, K.: Human genome organization. Curr. Opin. Genet. Dev. 5(3), 315–322 (1995)

    Article  Google Scholar 

  20. Sayers, E.W., Barrett, T., Benson, D.A., et al.: Database resources of the national center for biotechnology information. Nucleic Acids Res. 39(suppl 1), D38–D51 (2011)

    Article  Google Scholar 

  21. Coletti, M.H., Bleich, H.L.: Medical subject headings used to search the biomedical literature. J. Am. Med. Inform. Assoc. 8(4), 317–323 (2001)

    Article  Google Scholar 

  22. Bodenreider, O.: The unified medical language system (UMLS): Integrating biomedical terminology. Nucleic Acids Res. 32(suppl 1), D267–D270 (2004)

    Article  Google Scholar 

  23. Saito, R., Smoot, M.E., Ono, K., et al.: A travel guide to Cytoscape plugins. Nat. Methods 9(11), 1069–1076 (2012)

    Article  Google Scholar 

  24. Drugs@FDA. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/

  25. Stankova, J., Shang, J., Rozen, R.: Antisense inhibition of methylenetetrahydrofolate reductase reduces cancer cell survival in vitro and tumor growth in vivo. Clin. Cancer Res. 11(5), 2047–2052 (2005)

    Article  Google Scholar 

  26. Elhawary, N.A., Hewedi, D., Arab, A., et al.: The MTHFR 677T allele may influence the severity and biochemical risk factors of Alzheimer’s disease in an Egyptian population. Dis. Mark. 35(5), 439–446 (2013)

    Article  Google Scholar 

  27. Mansouri, L., Fekih-Mrissa, N., Klai, S., Mansour, M., Gritli, N., Mrissa, R.: Association of methylenetetrahydrofolate reductase polymorphisms with susceptibility to Alzheimer’s disease. Clin. Neurol. Neurosurg. 115(9), 1693–1696 (2013)

    Article  Google Scholar 

  28. Shemesh, O.A., Spira, M.E.: Rescue of neurons from undergoing hallmark tau-induced Alzheimer’s disease cell pathologies by the antimitotic drug paclitaxel. Neurobiol. Dis. 43(1), 163–175 (2011)

    Article  Google Scholar 

  29. Zhang, B., Maiti, A., Shively, S., et al.: Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc. Natl. Acad. Sci. U.S.A. 102(1), 227–231 (2005)

    Article  Google Scholar 

  30. Drug label of Capecitabine in DailyMed. http://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=a1de8bba-3b1d-4c9d-ab8a-32d2c05e67c8. Accessed 14 Jan 2014

  31. Dong, N., Yu, J., Wang, C., et al.: Pharmacogenetic assessment of clinical outcome in patients with metastatic breast cancer treated with docetaxel plus capecitabine. J. Cancer Res. Clin. Oncol. 138(7), 1197–1203 (2012)

    Article  Google Scholar 

  32. Androutsopoulos, V.P., Spyrou, I., Ploumidis, A., et al.: Expression Profile of CYP1A1 and CYP1B1 Enzymes in Colon and Bladder Tumors. PLoS ONE 8(12), e82487 (2013)

    Article  Google Scholar 

  33. Patel, B., Forman, J., Fontana, J., Frazier, A., Pontes, E., Vaishampayan, U.: A single institution experience with concurrent capecitabine and radiation therapy in weak and/or elderly patients with urothelial cancer. Int. J. Radiat. Oncol. Biol. Phys. 62(5), 1332–1338 (2005)

    Article  Google Scholar 

  34. Michels, J., Barbour, S., Cavers, D., Chi, K.N.: Metastatic signet-ring cell cancer of the bladder responding to chemotherapy with capecitabine: Case report and review of literature. Can. Urol. Assoc. J. 4(2), E55 (2010)

    Google Scholar 

  35. Wishart, D.S., Knox, C., Guo, A.C., et al.: DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34(suppl 1), D668–D672 (2006)

    Article  Google Scholar 

  36. Kanehisa, M., Goto, S.: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30 (2000)

    Article  Google Scholar 

  37. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the web (1999)

    Google Scholar 

  38. Zhu, Q., Freimuth, R.R., Pathak, J., Durski, M.J., Chute, C.G.: Disambiguation of PharmGKB drug-disease relations with NDF-RT and SPL. J. Biomed. Inform. 46(4), 690–696 (2013)

    Article  Google Scholar 

  39. Jiang, G., Solbrig, H.R., Chute, C.G.: ADEpedia: a scalable and standardized knowledge base of Adverse Drug Events using semantic web technology. Paper presented at: AMIA Annual Symposium Proceedings (2011)

    Google Scholar 

  40. Hassanzadeh, O., Zhu Q, Freimuth, R., Boyce, R.: Extending the “Web of Drug Identity” with Knowledge Extracted from United States Product Labels. Submitted to AMIA Summit on Clinical Research Informatics (2013)

    Google Scholar 

  41. Chowdhury, G.G.: Natural language processing. Ann. Rev. Inf. Sci. Technol. 37(1), 51–89 (2003)

    Article  Google Scholar 

  42. Shenoy, M.K., Shet, K., Acharya, D.U.: Semantic Web Technologies (2010)

    Google Scholar 

  43. Klyne, G., Carroll, J.J., McBride, B.: Resource description framework (RDF): Concepts and abstract syntax, W3C recommendation, p. 10 (2004)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Pharmacogenomic Research Network (NIH/NIGMS-U19 GM61388).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, L., Liu, H., Chute, C.G., Zhu, Q. (2014). Cancer Based Pharmacogenomics Network for Drug Repurposing. In: Peng, WC., et al. Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2014. Lecture Notes in Computer Science(), vol 8643. Springer, Cham. https://doi.org/10.1007/978-3-319-13186-3_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13186-3_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13185-6

  • Online ISBN: 978-3-319-13186-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics