Skip to main content

Myocardial Infarction Classification by Morphological Feature Extraction from Big 12-Lead ECG Data

  • Conference paper
  • First Online:
Trends and Applications in Knowledge Discovery and Data Mining (PAKDD 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8643))

Included in the following conference series:

Abstract

Rapid and accurate diagnosis of patients with acute myocardial infarction is vital. The ST segment in Electrocardiography (ECG) represents the change of electric potential during the period from the end of ventricular depolarization to the beginning of repolarization and plays an important role in the detection of myocardial infarction. However, ECG monitoring generates big volumes of data and the underlying complexity must be extracted by a combination of methods. This study combines the advantages of polynomial approximation and principal component analysis. The proposed approach is stable for the 12-lead ECG data collected from the PTB database and achieves an accuracy of 98.07 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reisne, A.T., Clifford, G.D., Mark, R.G.: The physiological basis of the electrocardiogram. In: Clifford, G.D., Azuaje, F., McSharry, P.E. (eds.) Advanced Methods and Tools for ECG Data Analysis. Artech House Publishing, London (2006)

    Google Scholar 

  2. Garcia, T.B., Holtz, N.E.: Introduction to 12-Lead ECG: The Art of Interpretation (2001)

    Google Scholar 

  3. de Chazal, P., O’Dwyer, M., Reilly, R.B.: Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51, 1196–1206 (2004)

    Article  Google Scholar 

  4. Reznik, A.G., Ivanov, I.N.: Myocardial morphology in cases of death from acute heart ischemic disease. Arkh. Patol. 69, 32–35 (2007)

    Google Scholar 

  5. Thygesen, K., Alpert, J.S., White, H.D.: Universal definition of myocardial infarction. Circulation 116, 2634–2653 (2007)

    Article  Google Scholar 

  6. Shen, Z., Hu, C., Liao, J., Meng, M.Q.H.: An algorithm of ST segment classification and detection. In: 2010 IEEE International Conference on Automation and Logistics (ICAL’10), pp. 559–564 (2010)

    Google Scholar 

  7. Jayachandran, E.S., Joseph, K.P., Acharya, U.R.: Analysis of myocardial infarction using discrete wavelet transform. J. Med. Syst. 34, 985–992 (2010)

    Article  Google Scholar 

  8. Addison, P.S.: Wavelet transforms and the ECG: A review. Physiol. Meas. 26, R155–R199 (2005)

    Article  Google Scholar 

  9. Ghaffari, A., Homaeinezhad, M.R., Akraminia, M., Atarod, M., Daevaeiha, M.: A robust wavelet-based multi-lead electrocardiogram delineation algorithm. Med. Eng. Phys. 31, 1219–1227 (2009)

    Article  Google Scholar 

  10. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)

    Book  Google Scholar 

  11. Murugan, S., Radhakrishnan, S.: Automated ischemic beat classification using Genetic Algorithm based Principal Component Analysis. Int. J. Healthc. Technol. Manage. 11, 151–162 (2010)

    Article  Google Scholar 

  12. Chawla, M.P.S.: PCA and ICA processing methods for removal of artifacts and noise in electrocardiograms: A survey and comparison. Appl. Soft Comput. 11, 2216–2226 (2010)

    Article  Google Scholar 

  13. Castells, F., Laguna, P., Sörnmo, L., Bollmann, A., Roig, J.M.: Principal component analysis in ECG signal processing. EURASIP J. Adv. Sig. Process. 2007, 1–21 (2007). Article ID: 074580

    Google Scholar 

  14. Ge, D., Sun, L., Zhou, J., Shao, Y.: Discrimination of myocardial infarction stages by subjective feature extraction. Comput. Methods Programs Biomed. 95, 270–279 (2009)

    Article  Google Scholar 

  15. Chauhan, S., Wang, P., Sing, L.C., Anantharaman, V.: A computer-aided MFCC-based HMM system for automatic auscultation. Comput. Biol. Med. 38, 221–233 (2008)

    Article  Google Scholar 

  16. Andreao, R.V., Dorizzi, B., Boudy, J., Mota, J.C.M.: ST-segment analysis using hidden Markov model beat segmentation: Application to ischemia detection. Comput. Cardiol. 31, 381–384 (2004)

    Google Scholar 

  17. Graja, S., Boucher, J.M.: Hidden Markov tree model applied to ECG delineation. IEEE Trans. Instrum. Meas. 54, 2163–2168 (2005)

    Article  Google Scholar 

  18. Andreao, R.V., Dorizzi, B., Boudy, J., Mota, J.C.M.: ST-segment analysis using hidden Markov model beat segmentation: Application to ischemia detection. Comput. Cardiol. 31, 381–384 (2004)

    Google Scholar 

  19. Chang, P.C., Hsieh, J.C., Lin, J.J., Chou, Y.H., Liu, C.H.: A Hybrid System with Hidden Markov Models and Gaussian Mixture Models for Myocardial Infarction Classification with 12-Lead ECGs. In: Proceedings of the 2009 11th IEEE International Conference on High Performance Computing and Communications (HPCC ‘09), pp. 110–116 (2009)

    Google Scholar 

  20. Georgiou, H., Mavroforakis, M., Dimitropoulos, N., Cavouras, D., Theodoridis, S.: Multi-scaled morphological features for the characterization of mammographic masses using statistical classification schemes. Artif. Intell. Med. 41, 39–55 (2007)

    Article  Google Scholar 

  21. Li, B., Meng, M.Q.H.: Computer-based detection of bleeding and ulcer in wireless capsule endoscopy images by chromaticity moments. Comput. Biol. Med. 39, 141–147 (2009)

    Article  Google Scholar 

  22. Jeong, G.Y., Yu, K.H., Kim, N.G.: A polynomial approximation approach for analyzing ST shape change. In: the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology (EMBS’05), Vol. 7, pp. 4034–4037 (2005)

    Google Scholar 

  23. Jeong, G.Y., Yu, K.H., Yoon, M.J., Inooka, E.: ST shape classification in ECG by constructing reference ST set. Med. Eng. Phys. 32, 1025–1031 (2010)

    Article  Google Scholar 

  24. Blanco-Velasco, M., Weng, B., Barner, K.E.: ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Comput. Biol. Med. 38, 1–13 (2008)

    Article  Google Scholar 

  25. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis. Proc. Royal Soc. A: Math. Phys. Eng. Sci. 454, 903–995 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Chawla, M.P.S., Verma, H.K., Kumar, V.: A new statistical PCA-ICA algorithm for location of R-peaks in ECG. Int. J. Cardiol. 129, 146–148 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Tzu-Ya Weng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Weng, J.TY., Lin, JJ., Chen, YC., Chang, PC. (2014). Myocardial Infarction Classification by Morphological Feature Extraction from Big 12-Lead ECG Data. In: Peng, WC., et al. Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2014. Lecture Notes in Computer Science(), vol 8643. Springer, Cham. https://doi.org/10.1007/978-3-319-13186-3_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13186-3_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13185-6

  • Online ISBN: 978-3-319-13186-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics